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Executive Summary 
Background 
Police crash data has been the primary source of information for transportation safety analysis for decades. There 
has been continual effort to improve police crash data’s ability to assist monitoring and evaluation of road safety 
and also improve understanding of strategies to improve safety.  Police crash data is limited, primarily focusing on 
the physical circumstances surrounding the crash and excluding the many pre-crash and post-crash factors that 
affect crash rates and injury outcomes. Many complementary datasets exist and can provide a more complete 
picture of road safety. This report identifies how those datasets can be integrated into road safety analysis to 
answer questions that police crash data alone is ill-suited to answer.  

Recent efforts expand datasets available to improve understanding of safety. Most of the data integration efforts 
and successes have revolved around using Post-Crash data, like hospitalization data to better understand injury 
outcomes. Specifically, hospitalization data and associated health datasets are vast and contain much more 
specific injury assessments than police crash reports. Improved care and access to appropriate hospital facilities is 
a substantial contributor to improved injury outcomes for traffic crashes. In the United States, the Crash Outcome 
Data Evaluation System (CODES) program was a state-by-state initiative organized by the National Highway Traffic 
Safety Administration (NHTSA) to formulate processes to consistently link hospital datasets with police crash 
datasets. These datasets have differences between states, so the CODES program encouraged states to develop 
processes to link their state-specific databases. This program, though no longer overseen by NHTSA, initiated a 
wave of linkage efforts between state police crash programs and counterpart hospitalization datasets. The biggest 
challenges with these efforts is acquiring access to sensitive 
health data and developing reliable linkage methods to 
integrate the two datasets. 

Completing the picture of crashes with 
added data 
A complete picture of crashes can be conceptualized in 
Exhibit 1, where crash outcome data (e.g., police crash or 
near miss data) is improved by adding complementary Pre-

Crash, Environment, and Post-Crash datasets. In this report, we 
describe a broad set of Pre-Crash, Environment, and Post-Crash 

datasets (Exhibit 1). Post-Crash datasets include 
conventional hospitalization data, but also expand to the 
many other datasets that are important to understanding 
crash outcomes. Some examples include Medical Insurance 
Claims databases, Emergency Medical Systems (EMS) data, 
and Vital Statistics. Many of these datasets are managed by 
state departments of health and have been the focus of 
many previous linkage efforts.  

Exhibit 1. Complete Picture  
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Many other datasets are 
used with police crash data 
to provide greater safety 
insights. Two broad 
categories encompass most 
of the datasets that exist 
(non-Post-Crash).  Pre-Crash 
datasets include data that 
could predict factors that 
influence crashes. Some 
pre-crash datasets are driver 
or vehicle oriented, like 
citation histories or other 
predictors of crashes 
derived from Department of 
Motor Vehicle (DMV) 
datasets. Pre-crash data 
could also include 
meteorological data, naturalistic data 
(e.g., SHRP2), or crowdsourced data (e.g., WAZE or others).   

Environment datasets broadly include datasets that describe the crash environment of specific crashes or, at the 
aggregate level, the environment in which many crashes occur (e.g., city level metrics). Environment data generally 
include the built environment (roadway and land use characteristics), socioeconomic information derived from 
census data, or information from travel demand models. These datasets contribute to understanding important 
exposure variables and factors of the built environment that contribute to crash rates and outcomes. The datasets 
and linkages described in this report are shown in Exhibit 2.  

Methods of linking datasets  
Reliably linking datasets is critical to exploiting the benefits of utilizing multiple datasets. In this project, we 
establish police crash data as the core dataset from which to establish linkage procedures1. All datasets described 
in this document have explicit safety implications but require linkage to crash databases through one of three 
methods: Deterministic Linkage, Probabilistic Linkage, or Spatial/Temporal Linkage (See Exhibit 1).  

Deterministic linkages rely on a unique identifier to match records in a secondary database (e.g., hospital) with a 
primary database (e.g., police crash). Deterministic linkages can include a unique identification code for each crash 
victim, but more often include a series of identifiers that reliably link two records. These identifiers could include 
social security numbers, names, gender, and date and the analyst assigns linkages. Deterministic linkages can be 
used to link any person- or vehicle-oriented database with crash databases.  

Often, the linking process includes some ambiguity, or data elements do not match (e.g., name variants). A 
probabilistic linkage approach aims to remove subjectivity in the data matching process and rely on probabilistic 
                                                             
1 We also acknowledge that near-misses are a type of sub-crash incident that shares many common characteristics of crashes. 
The work here could also be paired with near-miss data or used to identify and analyze unreported crashes that are not in the 
police crash database.  

Exhibit 2. Datasets Described In The Report 
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approaches to link data. Each data element is matched probabilistically with elements in the other datasets. The 
data are included and matched if they meet a threshold probability. In almost all cases, deterministic or probabilistic 
matching is used when complementary datasets contain information about specific agents in a crash (e.g., crash 
victims or vehicles).  

Many datasets do not include specific characteristics of crash victims, but rather rely on the environment of the 
crash or pre-crash conditions. Often these datasets are linked to police crash data by spatial and temporal 
identifiers. Geocoded crash data can be linked with surrounding data through geographic matching to pair data. 
Spatial matching allows characteristics that surround the crash to be paired with the crash data to identify factors 
that are not in the crash database that likely contributed to the crash. A few examples include roadway design 
information, surrounding land use characteristics, or weather conditions. This report details how each dataset 
relates to police crash data and how the linkage is applied to road safety. 

Case Studies  
To illustrate how data linkage can aid in completing the picture for transport safety analysis, we present five case 
studies. Each case study illustrates different approaches and advantages to utilizing a subset of linked data.  

Case 1: Linked Crash & Health Data to Assess Bicycle and Pedestrian Safety, 
Under Reporting, and Injury Assessment 
This case reviews the literature on bicycle and pedestrian underreporting and injury assessment in police crash 
data. This study focuses on how hospitalization data can provide better insight and safety for these road users. 
Specifically, one outcome of linking hospitalization data is understanding levels of underreporting among bicyclists 
and pedestrians. Crashes are highly underreported in police databases, and hospital data includes many records of 
traffic-related injuries that are not included in police crash databases. Additionally, hospitalization data enables 
better assessment of types and severity of injuries to cyclists and pedestrians that are not included in crash 
databases. These findings have implications for accurate injury surveillance programs and transportation 
countermeasures.  

Case 2: EMS Response Time and Crash Outcomes 
Seemingly similar crashes have different health outcomes, depending on a number of factors. Often rural crashes 
have higher fatality rates than similar urban crashes. One of the factors that likely contributes to crash outcomes is 
the quality and speed of Emergency Medical System (EMS) response. EMS response time varies from minutes to 
hours after a crash with significant implications on the survivability of a severe crash. This work reviews the 
literature on linking police crash data with EMS data. The implication is that one can find the extent to which EMS 
response time contributes to better health outcomes from crashes, which could lead to better EMS policies and help 
explain disparities in road safety between urban and rural areas.  

Case 3: Neighborhood Accessibility and Traffic Safety 
There is a growing literature on the relationship between road safety and urban form. In this case study we 
investigate how neighborhood accessibility levels, calculated through travel demand modeling approaches, affect 
safety at the neighborhood level. This is achieved by developing accessibility metrics at the Census Block Group or 
Traffic Analysis Zone (TAZ) level and predicting crashes, geocoded to the home location of the crash victim. We link 
police crash and planning level data to estimate whether there is a relationship between crashes and accessibility. 
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In this way, we can use accessibility as an exposure metric to understand how the regional distribution of land use 
changes crash and severity rates.  

Case 4: Home-Based Approach: A Complementary Definition of Road Safety 
In this study, we established a new definition to complement the traditional definition of the road safety; the 
traditional definition of the road safety attributes safety to the location of the crashes (i.e., Location-Based 
Approach). Attributing safety to the location of the crash is a reliable method for assigning engineering and 
enforcement resources. However, one may question whether using the location of traffic crashes is a useful tool for 
accessing individuals with higher risk of involvement in traffic crashes for educational purposes. In this study, we 
defined Home-Based Approach as the expected number of crashes that road users who live in a certain geographic 
area have during a specified period. This definition attributes traffic crashes to the home-address of the individuals. 
This Home-Based-specific assessment follows typical epidemiological approaches to the burden of disease 
monitoring and uses matched census data to understand factors that influence crash frequency of individuals at 
zonal level (e.g., census tract). In this approach, high-crash neighborhood hotspots can be identified, and focused 
interventions can be initiated to improve road safety.  

Case 5: Neighborhood-Level Factors Affecting Seat Belt Use 
Seatbelt rates have remained relatively constant in most states. In Tennessee, blanket seatbelt campaigns have had 
some effect on raising the average seatbelt rate. Following the Home-Based Approach (HBA) in Case 4, this case 
study identifies neighborhoods that have low seatbelt use rate based on crash data and correlating seatbelt rates 
with socioeconomic information derived from census data. In this approach, we geocode crashes to the victim’s 
home address and estimate seatbelt use rates based on crash data. We find that seatbelt use rates, on average, 
match those from direct roadside observation studies, but the range of rates in the census tract level varies widely. 
Analysis indicated that some neighborhoods have very high seatbelt use rates while others have very low seatbelt 
use rates. Moreover, with this approach, we can identify rates by seating position and time of day, which are not well 
measured from direct observation studies. This approach can be used to target educational or enforcement 
activities in the neighborhoods with low seatbelt use rates to focus resources and achieve better overall outcomes.  

Project Highlights  
• Police Crash Data is an important, but flawed, source of information to comprehensively understand road safety 
• Other datasets can help analysts and researchers create a “complete picture” of crashes 
• There are several linkage methods that depend on data access, privacy, and types of analysis required.  
• Most efforts to date at the state level have been to link post-crash (hospital-oriented) data with police crash 

datasets.  
• This work provides an analysis of pre-crash, crash, environment, and post-crash datasets that inform road 

safety; including identifying linkages between datasets and implications for safety.  
• We demonstrate the many opportunities for linking data with five case studies that are illustrative of the types of 

analysis possible.  
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Data Integration Introduction 
Police recorded crash data has improved over time, but still fails to report all aspects of crashes that are important 
to developing a full understanding of crash mechanism, injury burden, and ultimately total health outcomes. 
Traditionally, safety and injury analysis have occurred in isolated fields, with road safety researchers relying 
predominately on police-recorded crash reports, and public health researchers relying on health records (e.g., 
hospital, emergency department, ambulatory care data). Often, these records do not reflect the same findings, even 
for the same crash victims. By themselves, injury severity and crash reporting rates are often inconsistent between 
datasets. A “complete picture” of traffic crashes must be established to address these limitations. This complete 
picture needs to consider a multi-perspective approach to road safety instead of one point of view by considering 
multiple sources of data. This complete crash picture can be used to answer inconsistencies in findings and provide 
a better understanding of the nature of traffic crashes, injury outcome, and eventually direct cost of traffic crashes.  

The study objectives are: 

1) To briefly review data linkage methodology, 
2) Review examples of linking databases, 
3) Establish a framework for developing a complete picture of traffic crashes, 
4) Identify databases that have potential to complete the picture of traffic crashes, and 
5) Illustrate linkage potential through case studies. 

History of Crash and Health Data Integration Efforts 
Various researchers and organizations around the world have attempted to link different sources of traffic crashes. 
Most of them, however, are not systematic efforts. This section briefly discusses prominent examples of linking 
police crash reports with health data in the United States.  

Crash Outcome Data Evaluation System (CODES) 
The National Highway Transportation Safety Administration (NHTSA) initially created the Crash Outcome Data 
Evaluation System (CODES) to quantify and report on the benefits of safety equipment and legislation in terms of 
mortality, morbidity, injury severity, and health care costs. The effort was undertaken in response to Section 1031(b) 
of the Intermodal Surface Transportation Efficiency Act of 1991 (Martinez 1993), which required NHTSA to conduct 
a study and report to Congress on the benefits of safety equipment (i.e., seat belt use and motorcycle helmet use) in 
traffic crashes (Kindelberger and Milani 2015). In 1992, NHTSA sought grant applications from entities with existing 
statewide crash and injury data systems that were capable of generating crash, medical, and financial-outcome 
information if linked together. Any state agency, non-profit organization, or educational institution was eligible to 
develop and coordinate a coalition of data owners and users to perform the desired linkages (Milani et al. 2015).  

By October 1992, seven states were awarded grants to establish CODES programs. CODES became institutionalized 
in the awarded states based on a series of partnerships among state traffic safety and public health agencies and 
NHTSA. State agencies, universities or affiliates, or non-profit institutions were the leading organizations in the 
CODES project. In some cases, lead organizations entered into agreements with support entities, such as 
universities, to conduct the actual data linkage and/or analyses. CODES cooperative agreements were administered 
through NHTSA’s National Center for Statistics and Analysis. 

NHTSA encouraged grantees to seek and secure other supplemental funding for their CODES programs and to move 
toward program institutionalization to ensure sustainability while CODES was developing. In 2013, NHTSA had 
CODES cooperative agreements with grantees in 15 states: Connecticut, Delaware, Georgia, Illinois, Kentucky, Maine, 
Maryland, Minnesota, Missouri, Nebraska, New York, Ohio, South Carolina, Utah, and Virginia.  
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Some states left the CODES network or retired their programs; nevertheless, some of the states continued to 
conduct the linkage independently. Other states started linkage projects independently which were not part of the 
CODES data network. Some of these states changed the nature of linking process, and instead of using probabilistic 
methods provided by CODES, they instead used matching identifiers and deterministic linkage to link health 
outcome data and crash database. Other states initiated projects to link Emergency Medical Services and trauma 
registry data, with the goal of adding crash and other data sets. Still, others have used commercial software that 
replicated the CODES methodology and established or piloted state projects similar to those seen in CODES (Milani 
et al. 2015). During transition, NHTSA did not become owners of state CODES data and does not host the data. 
CODES data reside in the states where the linkage originated, and NHTSA does not disseminate CODES data. 
Requests for data or information are handled by individual state CODES project sites (Kindelberger and Milani 2015).  

Crash Medical Outcomes Data Project (CMOD) 
The California Department of Public Health, Safe and Active Communities (SAC) Branch implemented a project to 
integrate police crash reports and medical data to gain a better understanding of traffic injury severity. The Crash 
Medical Outcomes Data (CMOD) Project is funded by NHTSA, under the auspices of the Traffic Records 
Coordinating Committee, and administered by California's Office of Traffic Safety. CMOD is included in California's 
Strategic Highway Safety Plan under Challenge Area 16: Improve Safety Data Collection, Access, and Analysis 
(CMOD 2017). The goal of the CMOD project is to focus on person-level risk factors and crash outcomes to better 
understand how to prevent Californians from being injured or killed in traffic crashes. This project electronically 
links police crash reports with health outcome data sources, and with death data. This project also responds to the 
need for instant online analysis of traffic injury data for policy evaluation and planning by making person-level crash 
data accessible via the web (CMOD 2017). 

Importance of linking databases 
Linking crash databases to medical data is of interest to various agencies and organizations for use in analysis. The 
Centers for Disease Control and Prevention (CDC) determined that linked data, such as that produced by CODES, 
was valuable to determining risk factors for motor vehicle injury and in designing and evaluating interventions to 
address these risk factors (Milani et al. 2015). As a result, in 2010, CDC and NHTSA administrators signed a 
memorandum of understanding for collaborative strategies. Between 2010 and 2012, the CDC and NHTSA agreed to 
explore the feasibility and benefits of an ongoing partnership in the CODES program. The CDC’s continuing interest 
in crash-medical data linkage is a primary motivator of this study.  

Currently, the CDC’s National Center for Injury Prevention and Control (NCIPC) has enlisted the Centers for Medicare 
& Medicaid Services (CMS) Alliance to Modernize Healthcare (CAMH), a federally funded research and development 
center operated by the MITRE Corporation, to create linked information for the Nonfatal Crash Surveillance (LINCS) 
guide. LINCS expands on previous efforts and best practices for establishing and improving linkage programs at the 
state level. This guide provides direction in developing data linkage plans including the selection of variable(s), data 
linkage method(s), data linkage tool(s), and an approach to organize and select the match results.  

In a study regarding single-unit truck crashes and their injury outcomes, the National Transportation Safety Board 
(NTSB) recommended that data linkage systems such as CODES be continued, and issued the following conclusion 
(NTSB 2013): “Data from the Crash Outcome Data Evaluation System provide detailed information on injury 
diagnoses and severities in relation to crash characteristics, cover a large proportion of the population of the 
participating states, are not available elsewhere, and provide useful insight into traffic safety problems.� 

In a Notice of Proposed Rulemaking published on March 11, 2014, the Federal Highway Administration (FHWA) 
included a proposed recommendation that states begin preparations so that no later than January 1, 2020, all states 
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use a medical record injury outcome reporting system that links injury outcomes from medical records to crash 
reports (Milani et al. 2015).  

The Transportation Research Board (TRB), FHWA, NHTSA, and CDC are liaisons to TRB’s National Cooperative 
Highway Research Program (NCHRP) project 17-57, Development of a Comprehensive Approach for Serious Traffic 

Crash Injury Measurement and Reporting Systems. The project’s goals are to 1.) identify an improved injury scoring 
system for further consideration, 2.) create a roadmap to assist states in developing and implementing an interim 
system, and 3.) develop a state-based framework to perform comprehensive linkage of records related to motor 
vehicle crashes that resulted in serious injuries, and provide incremental steps and priorities for achieving the 
linkage. The project recommended linking police crash reports to health data as the best way to obtain an accurate, 
serious injury measurement (Flannagan et al. 2013).  

The International Traffic Safety Data and Analysis Group (IRTAD group), an ongoing working group of the Joint 
Transport Research of the Organization for Economic Co-operation and Development (OECD) and the International 
Transport Forum, issued recommendations for reporting on serious road traffic casualties. This includes the 
recommendation that assessment of injury severity should preferably be conducted by medical professionals, that 
police data should be complemented by hospital data, and that a ‘seriously injured road casualty’ be defined as a 
person with injuries assessed at level 3 or more on the Maximum Abbreviated Injury Scale, i.e., "MAIS3+" (Amoros et 

al. 2009) 

Linking Methodologies 
This section briefly introduces the most common methods for linking observations in two sets of data that describe 
a particular event or individual. For more details about the linkage see Cook et al. (2015). This chapter introduces 
five linkage processes: interface, direct linkage, deterministic linkage, probabilistic linkage, and spatial join.  

Interface Method 
In the interface method, two data sources are able to interact with each other in real time seamlessly. For example, 
when a police officer scans a driver license, he or she is immediately provided with information regarding the driver 
and vehicle. Different hospitals under the same ownership may have their databases interfaced through the use of a 
medical record number. Interfaces should be highly reliable and usually support critical business practices. 
Interfaces between crashes in police databases and healthcare data rarely exist due to the complex nature of data 
ownership, privacy, and how the data are compiled. Crash data and hospital data are collected by different entities: 
crash data by public agencies such as police departments, and health information by general hospitals or private 
healthcare companies. Similarly, the recorded data, particularly the health data, is not archived in real time. A 
compilation of data from multiple law enforcement agencies or hospital systems is often conducted well after the 
event and by different state agencies, Departments of Public Safety or Departments of Transportation for crash 
records, and the Department of Health or State Hospital Association for hospital data.  

Direct Linkage 
The direct linkage method is usually used when two databases share a unique single identifier or a set of identifiers 
that enable databases to be joined. However, to perform this linkage, both databases must share similar data 
elements or collect their data in a similar way and format. For example, in linking traffic crashes and health outcome 
databases, use of a social security number (SSN) or license number for drivers enables researchers to make direct 
links. To protect personal information, police and hospital staff do not usually collect SSN, and if they do so, due to 
the Health Insurance Portability and Accountability Act (HIPAA), this data is not readily available to researchers. As 
a result, performing direct linkage is not usually possible using SSN. The quality of the linkage and success rate is 
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highly dependent on the presence of the identifiers. Moreover, if the success rate in the linkage process is low (due 
to lack of identifiers), it is necessary to use other linking methods.  

Deterministic Linkage 
Another method that can be helpful in the linkage process is to use individuals’ unique identifiers in multiple sources 
of data. This linkage method is only viable if data containing personal information identifiers are available and are 
accessible to researchers. In this process, instead of using a unique identifier that attributes records to the crash 
record or hospital record, researchers use multiple quasi-unique fields that describe an individual who was involved 
in a crash. Date elements (time of the crash, date of birth), personal information identifiers (name, address), 
geographical data element (e.g., location of crash or admission to health facility), in addition to gender and age are 
the most commonly used.  

A perfect match occurs when all the quasi-unique fields agree on a pair of records. However, for several reasons 
(e.g., lack of access to data or missing data), it is likely that only some of the quasi-unique data will agree. In order 
to select the best linkage between two records in the datasets, researchers usually develop a scoring system and 
choose the best pair, based on the highest score achieved and meeting some defined minimum threshold score.  

Although use of such a scoring system seems plausible and reliable, its limitations must be considered. First, each 
researcher develops a scoring system based on individual preferences or personal judgment. Moreover, it is unlikely 
that two researchers will develop an identical scoring system. As a result, based on the scoring system that 
researchers use, two researchers might end up with different match rate and matched observation in one study. 
Another shortcoming is that the relative rarity or commonness of a specific value in a field is not considered. 
Agreement on a value that occurs in half of the records in a database is weighted exactly the same as agreement on 
a value that occurs on only a single record. Finally, there is no way to assess a researcher’s confidence in a given 
pair of records beyond the fact that the pair achieved the threshold.  

The simplest form of a deterministic linkage requires all quasi-unique fields to agree on a pair of records for the 
results to be considered a perfect match. However, this is not always the case. To improve on some of the 
limitations presented above, researchers often construct scoring schemes for their deterministic linkages by giving 
higher point totals to variables that are considered to be more reliable or specific and fewer points to more general 
or less reliable fields. Manual validation can identify if the scoring schemes are producing accurate results.  

Probabilistic Linkage  
The probabilistic linkage is the methodology used by the CODES data network. Probabilistic linkage addresses the 
limitations of the deterministic methods and judgment of researchers. Defining weight and threshold for the linkage 
procedure do not affect the process. The aim of probabilistic linkage is to generate the probability that a pair of 
records describe the same person and event. In this method, a pairwise comparison between every data record in 
two separates databases is conducted by comparing the data fields of two different files. Having numerous 
comparisons for one set of records in a specific database with all or part of the records in a second database leads 
to judgment about whether the two records refer to the same individual (can be linked) or not (cannot be linked). For 
more information on the subject of the mathematical models of probabilistic linkage and current state of practice of 
CODES, please see Cook et al. (2015) on the examination of methodologies and multi-state traffic safety 
applications. 

Spatial Join 
This method is appropriate for data that are stored with geographic locations, often coordinates represented in a 
Geographic Information System (GIS) file format (shapefile). The shapefile format is a digital vector storage format 



 
www.www.roadsafety.unc.edu	 5	

for storing geometric location and associated attribute information. Databases that describe the surroundings of 
the crash site are usually available in shapefile format—the Highway Performance Monitoring System and the US 
Census are two examples. To link a crash to its corresponding environment, a spatial join must be performed. A 
spatial join is a special type of  join operation in which fields from one layer's attribute table (feature layer) are 
attached to another layer's attribute table (target layer) based on the relative locations of the features in the two 
layers. By using a spatial join, researchers can easily join data from one feature class to another feature class. 

There are two types of spatial join relationships: one-to-one relationship or one-to-many relationship. In a one-to-one 
relationship, each individual target feature is joined with exactly one join feature. In a one-to-many join, each target 
feature is joined with more than one join feature, with a specified logic for aggregating across join feature attributes 
into a single attribute in the target feature (ESRI 2009).  

Linking Examples 
Investigating the injury outcome of traffic crashes (e.g., severity, treatment cost) play an important role in road 
safety analysis; therefore, the following section focuses on linking police crash reports and health outcome data. 
The literature on road safety includes abundant examples of studies linking police crash reports with other sources 
to achieve a better understanding of road crash mechanisms. In this section, the studies are classified into two 
types. First, the linkage between police crash reports and health outcome data is discussed, the focus of which is to 
provide examples of different goals of linkage methods. The following section focuses on spatial linkages. 

Linking Highway Patrol Crashes and Hospital Oriented Data 
There are five primary categories of goals for linking police crash reports to medical records of traffic victims:  

1- Comparison of the injury severity and reliability of police evaluation of traffic crashes. 
2- Investigation of the relationship between factors influencing true injury severity of road users.  
3- Investigation of the underreporting issue and identification of unreported traffic crashes, particularly among non-

motorized road users.  
4- Substance abuse by drivers,  
5- The evaluation of the effectiveness of vehicle equipment for reducing the injury risk. Each of these categories is 

discussed in the following section.  
 

Comparison of The KABCO Scale and AIS Injury Severity Scale.  
There are typically two sources of injury severity distribution in road safety literature. The sources of injury severity 
are police reports and medical records of those injured. However, due to the restrictions on accessing medical 
records, accurate injury severity information is not always accessible. One of the limitations of crash reports is 
misclassification of injury by police officers (Sherman et al. 1976, Farmer 2003, Compton 2005). To achieve a more 
accurate level of injury severity, and a better evaluation of the factors affecting injury severity (e.g., crash 
modification factor), one solution is to use injury severity reported by hospital data. Police officers at a crash scene 
do not generally make accurate estimations the injured body part(s) and the scale of injury severity (McDonald et al. 
2009, Tsui et al. 2009, Tarko and Azam 2011). This can be attributed to several factors. Responding officers are not 
medically trained and make their conclusions based on the circumstances and appearances of the victims at the 
crash scene. As a result, some of the injuries that are life-threatening and are not obvious are misclassified by 
officers (CDPH 2015). In some cases, visible injuries may appear more serious than they are (Compton 2005, 
McDonald et al. 2009), leading to misclassification of the injury severity by a police officer at the crash scene. The 
objectives of injury classification by police officers (e.g., classification) is not consistent with the objectives of 
medical personnel (e.g., treatment).  
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Another source of misclassification can be attributed to differences in state classification systems and in police 
officer training (Farmer 2003). On the other hand, clinical scales such as Abbreviated Injury Scale (AIS) are more 
accurate and reliable compared with police officer evaluation of injury severity. The AIS metric was developed based 
on the threat to life and survivability, not merely incapacitation, which is the basis for the KABCO scale (FHWA 
2011); in KABCO scale K, A, B, C, and O respectively stand for a crash with fatal, Incapacitating, Non-Incapacitating 
Evident, Possible Injury, and No Injury. Second, the method of severity assignment has a significant impact on 
accuracy. AIS codes are determined by clinical personnel, who have access to medical records for the individual. 
Third, ability to further calculate Maximum AIS (MAIS) and Injury Severity Score (ISS) figures from the AIS codes 
enhances the capabilities of injury severity assessment. Analyses may focus on individual injuries or overall severity 
for the victim (Burch et al. 2014). However, the AIS is often limited to trauma injuries and reported in trauma 
registries, limiting its application for injuries with lower severity levels. Moreover, these studies also found that 
reported use of a standard medical metric was found to be more consistent between states than law enforcement 
crash injury scoring using the KABCO scale (Sherman et al. 1976, Burch et al. 2014). 

Depending on the study context, sensitivity percentages for severe injury reported by law enforcement that matched 
medically determined severe injury cases were reported to range from 49% to 78% (Sherman et al. 1976, Popkin et al. 
1991, Farmer 2003, Compton 2005, Burch et al. 2014). Results of the comparison indicated that law enforcement 
scales were better at classifying non-incapacitating or non-severe injuries (Popkin et al. 1991, McDonald et al. 2009) 
and usually overestimate severe injuries (Farmer 2003).  

Agran et al. (1990) in a study in Orange County, California, revealed that the police injury severity scale was found to 
correlate poorly with a scale based on medical diagnoses, and substantial underreporting by police of serious 
injuries was demonstrated. Farmer (2003) in a study in Virginia used data from police crash reports gathered by the 
National Automotive Sampling System (NASS). The data included records of all towed 1995–2001 model passenger 
vehicles between 1996 and 2000 and NASS/CDS were examined (n = 10,860). A total of 9,939 of the observations 
either had AIS measures of injury severity or coding of “fatal” on the NASS/CDS treatment-mortality variable. 
Analysis indicated that police officers usually correctly identified fatal or non-injured victims. On the other hand, 
police coding of injury was inexact. Results indicated that male and elderly drivers are misclassified as severely 
injured less often than female and nonelderly drivers. In addition, misclassification of traffic injuries varied by 
region. The authors also concluded that “police-reported information is insufficient for determining vehicle impact 
and driver injury severity” (Farmer 2003). 

In another study in California, data from 2008–2012 (n= 1,156,150) for traffic crashes resulting in non-fatal injuries 
in motor vehicle crashes were examined (CDPH 2015). The data was obtained from linked crash medical data (i.e., 
Statewide Integrated Traffic Records System [SWITRS] and health outcome data). Comparison of the injury severity 
indicated that there was a high level of agreement on the non-severe injuries. Analysis indicated that most injuries 
with a non-severe ISS were reported in SWITRS as “other visible injury” or “complaint of pain” (high specificity). On 
the other hand, officers reported fewer than two-thirds of injuries with a severe ISS as severe (low sensitivity). In 
addition, for every four severe injuries reported in SWITRS, only one had a corresponding severe ISS. When injuries 
that were reported in SWITRS as other visible injuries were combined with those reported as severe, the authors 
found that the matching of severe injuries increased (higher sensitivity). The authors also reported that the injuries 
with the highest levels of discrepancy were those to the torso, head and neck, and traumatic brain injuries (CDPH 
2015). 

Burch et al. (2014) compared traffic crashes injury severity between Maryland and Utah by using CODES data. Data 
from 2006 to 2008 retrieved from the highway patrol, hospital, and trauma centers which yielded samples of 735K 
and 436K observations respectively in Utah and Maryland. The data were linked by using a probabilistic linking 
method. Results indicated that 50% of all injured persons in Maryland were coded as level B or more severe. For 
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Utah, this figure was 40%. Analysis of health data indicated that the AIS score also observed some level of 
fluctuation over time within states. Additionally, MAIS scores were more comparable between the states, and the 
distribution of MAIS was much more comparable between states. Maryland had approximately 85% of hospitalized 
injured cases coded as MAIS = 1 or less severe. In Utah, this percentage was close to 80% for all three years. Burch 

et al. (2014) also recommended the AIS scale as a more reliable measure of injury severity, and linking crash and 
hospital data for more accurate evaluation of injury rates.  

Rosman and Knuiman (1994) linked police crash reports to hospital (n = 18,544) data (n = 3,980) by using a 
probabilistic method in Western Australia. They concluded that police reported the level of severity for non-fatal 
injuries was often inaccurate. Aptel et al. (1999) studied traffic crashes on the French Island of La Réunion in the 
Indian Ocean by comparing police records and hospital data and concluded that police report overestimated injury 
severity. However, the authors failed to capture 13% of the traffic fatalities and also reported that police severity 
grades were not in agreement with the actual hospitalization lengths. 

Lopez et al. (2000) in Australia reported that police injury classification was correct in 78% of cases. Crashes 
resulting in high injury severity were more likely to be classified correctly than those resulting in less severe injury. 
Male injury victims were more likely to be correctly classified than females. The authors also concluded that injury 
classification rates were not influenced by trauma location, road user type, and number of vehicles involved. Tsui et 

al. (2009) studied misclassification in China by comparing hospital data and police crash reports. The authors 
concluded that police report injury grading diverged noticeably from the definition of hospital stay and police 
remarkably overestimated the injury severity. Moreover, the authors concluded that injury severity, victim age and 
position of the victim in traffic crashes had significant associations with injury misclassification.  

To conclude, correlation between police evaluation of injury severity and the corresponding level of injury in a health 
facility varies. Several factors such as study area, sample size, and target population affect this correlation. Linking 
police crash report and health outcome data would provide a more accurate evaluation of injury severity. A first step 
in a linkage process would be to evaluate disparities between police crash data and hospital data, subject to local or 
regional norms, before proceeding with further analysis.  

Factors Correlated with Injury Severity 
One application of data linkage is determining a more accurate correlates of injury severity for traffic crash victims. 
Instead of using the KABCO scale, as reported by police, the medical outcome of traffic crashes could be used for 
more detailed injury severity investigations. In one study, Tarko and Azam (2011) used data from the Indiana crash 
database, of which 4,822 pedestrians’ crashes were linked to medical records. They investigated the impact of 
selectivity bias in linked police-hospital data. Selectivity bias happens when a person with an injury perceived as 
more severe (regardless of the accuracy) is more likely to be directed to a hospital and as a result linked with 
medical data in comparison with a person with less severe injuries (Tarko and Azam 2011). The authors confirmed 
the presence of the sample selection issue, underreporting low-severity crashes. The selectivity bias is considerable 
in predictions of low injury levels. Instead of using KABCO, they used the MAIS scale for injury severity. The authors 
used a bivariate ordered Probit to investigate factors affecting injury severity and concluded that male and older 
pedestrians are particularly exposed to severe injuries. Rural roads and high-speed urban roads are dangerous for 
pedestrians, particularly when crossing such roadways. Crossing a road between intersections was found to be 
particularly dangerous behavior. The size and weight of the vehicle involved in a pedestrian crash were also found to 
affect the pedestrian injury level. 

Cook et al. (2000) also investigated factors affecting the medical outcomes (e.g., injury severity) of drivers over the 
age of 69 involved in traffic crashes by probabilistically linked hospital discharge data and police crash reports data 
between 1992 and 1995 in Utah (n = 14,466). They reported that older drivers were less likely to experience crashes 
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involving drug or alcohol use and high speed. However, older drivers were more than twice as likely to experience 
crashes involving a left-hand turn than were younger drivers. Also, older drivers were more likely to be killed or 
hospitalized than younger drivers. Among belted drivers, older drivers were nearly seven times more likely to be 
killed or hospitalized than younger drivers. 

Using health outcome data as an index for evaluation of crash injury severity would provide a better assessment of 
the association between road design, traffic characteristics, and injury severity. The data linkage should be applied 
in studies to evaluate factors affecting injury severity such as estimating crash modification factors to get a more 
accurate of the impact of implementing a countermeasure on the expected number of crashes or severity on a road 
or intersection. 

Underreporting of Traffic Crashes 
Another challenge in addressing traffic crashes, particularly for vulnerable road users, is the problem of 
underreporting. For several reasons, it is likely that crashes with injury outcome are not recorded in police crash 
reports. This may be attributed to police minimum criteria for reporting a traffic crash or unwillingness of the road 
users to report a crash.  

Dhillon et al. (2001) in a study in Long Beach, CA used data from two trauma hospitals (n = 474) and one non-trauma 
hospital (n = 1015) to investigate child pedestrians and bicyclists crashes. By using a capture-recapture model, they 
evaluated the degree of overlap between police and trauma data. They reported that 80% of hospital-reported cases 
were captured in the police database, while only 37% of police-reported cases were captured in the hospital 
database. In addition, hospital sources identified younger children, more Asian and Hispanic children, fewer 
bicyclists, and fewer African-American children compared with police sources. 

Agran et al. (1990) studied traffic crashes of children under the age of 15 (i.e., pedestrian or bicyclists) in Orange 
County, California. They used California Highway patrol and hospital monitoring system data from April 1 to 
September 30, 1987, to evaluate underreporting. In a conservative estimate, they reported that police underreported 
20% of pedestrian crashes and 10% of bicyclists crashes. One explanation for this number could be police agency 
reporting requirements (e.g., crash cost) and the fact that police are not likely to report non-motorized incidents on 
the roads (e.g., single bicycle crashes). 

Sciortino et al. (2005) conducted a study in the San Francisco area to evaluate underreporting of pedestrian 
crashes. They used Statewide Integrated Traffic Reporting System (SWITRS) data, (n = 1991) and records of 
pedestrians treated at San Francisco General Hospital (SFGH, n = 1323) between 2000 and 2001. By using bivariate 
statistics, logistic regression and mapping they found that police collision reports underestimated the number of 
injured pedestrians by 21% (531/2442). Moreover, they concluded that some groups are more likely to have crash 
reports. Based on their reports, in cases of pedestrians treated at SFGH, African-Americans were less likely than 
whites (odds ratio = 0.55, p-value�0.01), and females were more likely than males (odds ratio = 1.5, p-value�0.01) to 
have a police collision report. 

In another study, in Queensland, Australia, Watson et al. (2015) probabilistically linked 2009 data of the Queensland 
Road Crash Database (QRCD), the Queensland Hospital Admitted Patients Data Collection; (QHAPDC), Emergency 
Department Information System (EDIS), and the Queensland Injury Surveillance Unit (QISU). The number of road 
crash injuries was approximately 28,000, with about two-thirds not linking to any record in the police data. Moreover, 
the results also showed that underreporting was more likely for motorcyclists, cyclists, males, young people, and 
injuries occurring in remote and inner regional areas. 

In an early attempt in Australia, Rosman and Knuiman (1994) linked police crash reports (n = 18,544) to hospital 
data (n = 3980) by using a probabilistic method. The link rate from hospital to police database for their study was 
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64%. The linkage rate was lowest for motorcyclists in single-vehicle crashes (29%) and highest for motor vehicle 
crashes (79%). They concluded that the linkage rate increased as the severity of the crashes increased. Moreover, 
they reported that linkage rate was lower for some ethnicities, and that the underreporting issue was a considerable 
problem, particularly in traffic crashes resulting in less severe injuries. 

Lopez et al. (2000) in another study in Australia linked 1997 traffic crash injuries at one trauma center (n = 497) to 
police reports. Results indicated that only 82% of hospital crash injuries had a corresponding record in the police 
database. Older individuals and females were more likely to have a police report. However, motorcyclists had the 
lowest matching rate among road users, followed by pedestrians. 

In a study in New Zealand, Wilson et al. (2012) investigated the underreporting problem in motorcycle crashes by 
using data from 2000 to 2004. They used a probabilistic linkage to link national hospital discharge records (n = 
2685) with police traffic crash reports. Only 46% of cases could be linked to a police record; 60% of the serious 
injuries and 41% of the moderate injuries. The authors reported that the level of underreporting of cases involving 
serious threat-to-life injuries was alarming. Serious injury cases were less likely to be linked if only one vehicle was 
involved, or the injured riders and passengers were younger than age 20 or spent less than one week in the hospital 
following the crash. For moderate injury cases, there were also differences in linkage by injured body region and 
month of crash. The under-representation of young riders, and of a single vehicle and moderate injury crashes, 
suggests that the low linkage was most likely due to underreporting of crashes to the police. 

In another study in Sussex, England, Cryer et al. (2001) linked non-fatal injury hospital admission data (n = 2666) to 
police road traffic accident reports for traffic crashes between April 1995 and March 1998. Due to limitations of their 
data, they used a manual method for linking the data based on the patient’s name, date of crash/admission, and 
place of occurrence/admission. The overall linkage rate was 61%. The linkage rate was much lower for cyclists 
(31%) than for other road users: 67% for vehicle occupants, 69% for motorcyclists, and 72% for pedestrians. Cryer et 

al. (2001) used non-slight injury and non-fatal serious injury for their analysis. There were higher proportions of 
males among the police Road Traffic Accident (RTA) non-slight injury casualties than among the hospital 
admissions. The authors concluded that police reporting rates varied by age, road user type and injury severity. For 
the linked data, there was a smaller proportion of children under the age of 16 than in the hospital admissions data. 
There were smaller proportions of children and larger proportions of adults ages 16-64 among the police RTA non-
slight injury casualties than among the hospital admissions. The proportions of casualties in each road user group 
appeared similar for the linked database and the hospital admissions data, with the exception of cyclists and 
motorcycle riders. For police RTA non-slight injury casualties relative to hospital admissions, there were lower 
proportions of cyclists, particularly among children, a higher proportion of motorcyclists, a higher proportion of 
young and adult drivers between the ages of 17 and 59, and a lower proportion of car passengers. For non-fatal 
serious injury, defined either using length of hospital stay or nature of the injury, when hospital admissions and the 
linked data were compared for the variables of age and gender, the proportions of males and females and age group 
categories were approximately the same. 

Aptel et al. (1999) studied traffic crashes in La Réunion by comparing police records and hospital data. They 
reported that the police database was not representative of the crashes that occurred. Indeed, findings indicated 
that reporting rates varied according to the type of vehicle involved, the time of the crash and whether a physician 
was in charge of first aid.   

Reviewing road safety literature indicates that underreporting of traffic crashes strongly correlated with study area 
and road user types. Underreporting is most significant with non-motorized road users, motorcycles, minor crashes, 
and is different between socioeconomic groups.  Accordingly, to better understand this issue, it is necessary to 
compare the databases of crash reports by police and health data.  
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Substance Abuse and Motor Vehicle Crashes 
Police officers have several ways to identify drivers who are under the influences of alcohol or drugs. However, due 
to the nature of roadside tests for such substances, officers can send the test samples to the hospital for further 
analysis. As a result, the police reports for most cases usually report pending status for drivers suspected for 
driving under the influence.  

Miller et al. (2012) used a capture-recapture method to evaluate the underreporting of alcohol involvement in traffic 
crashes in the United States. They analyzed 550,933 CODES driver records from 2006–2008 police crash reports 
probabilistically linked to hospital inpatient and emergency department (ED) discharge databases for Connecticut, 
Kentucky, Maryland, Nebraska, New York, South Carolina, and Utah. Findings indicated that police correctly 
identified 32% of alcohol-involved drivers in non-fatal crashes and 48% in injury crashes. Police in all the states 
(excluding Kentucky) reported 47% of alcohol involvement for cases treated in EDs and released and 39% for 
admitted cases. However, hospitals reported 28% of involvement for ED cases and 51% for admitted cases. Police 
also reported alcohol involvement for 44% of those for whom hospital records reported alcohol-involvement, while 
hospitals reported alcohol involvement for 33% of those who police reported were alcohol-involved. Police alcohol 
reporting completeness rose with police reported driver injury severity. Analysis also indicated that 62% of alcohol 
involved-drivers were reported in at least one system (Miller et al. 2012). 

In a study conducted in British Columbia, Canada, injured drivers who were admitted to a local trauma center or 
treated in the Vancouver General Hospital emergency department (1999–2003; n = 2,410) were linked to their 
corresponding police collision reports. The match rate in this study was 73.5%. Findings indicated that 35.6% of the 
drivers had a positive value of Blood Alcohol Content (BAC) and 30.5% of the drivers had BAC greater than 0.05%. 
Comparison of the two databases indicated that police documented alcohol involvement in 72% of injured drivers 
with BAC � 0.05 percent. Police documentation of alcohol involvement was more common at higher BAC levels, in 
nighttime or single-vehicle crashes, for drivers who committed traffic violations or drove unsafe, and for drivers with 
a prior record of impaired driving (Brubacher et al. 2013). 

Analysis of crash statistics in California between 2005 and 2014 indicated that 30,796 fatal motor vehicle collisions 
resulted in 33,775 fatalities. Drugs were involved in 19% (5,734) of these fatal collisions and alcohol was involved 
(i.e., blood alcohol content (BAC) > 0.01g/dL) in 27% (8,348). Analysis demonstrated that, although alcohol-involved 
crashes decreased from 2009 to 2014, drug-involved collisions continued to increase steadily, with an increase from 
18% in 2009 to 21% in 2014. Among 19,543 drivers, 43% of all drivers involved in a fatal collision were tested for 
drugs by blood, urine, or other tests. At least one drug type was found in 5,821 drivers (30% of those tested) involved 
in 5,734 fatal collisions. The percentage of drug-positive drivers among those who were tested has increased 
steadily since 2007 from 26% to 37% in 2014. Drivers who tested positive for at least one drug were more likely to be 
male (80%) with a mean age of 37 years, 45% tested positive for two or more drugs, and 40% also had alcohol in 
their blood. Drivers between the ages of 45 and 64 (25% of all drug-positive drivers) had the highest portion of 
positive drug results followed by groups between the ages of 25 and 34 years (24%) (CMOD 2016). 

Evaluation of Safety Equipment 
Several studies used health outcome databases and traditional police crash reports to evaluate the effectiveness of 
safety equipment, including seat belts and helmets.  

Seat Belt Use 
Olsen et al. (2010) linked 1999 through 2004 data from motor vehicle crashes and emergency department from the 
Utah Health Data Committee/Office of Healthcare Statistics, using the probabilistic linking method. The study only 
considered child occupants between the ages of 0 and 12 traveling with a driver over the age of 21 with a known 
level of restraint use. They reported that child passengers of restrained drivers are more likely to be restrained 
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themselves, and that restrained drivers are less likely to sustain severe injuries in crashes than unrestrained drivers. 
Moreover, their statistical models showed a decreased risk of being evaluated in the ED for children riding with 
restrained drivers compared with children riding with unrestrained drivers. The authors also identified contributing 
factors to the association between driver restraint use and a decreased risk of ED evaluation for child passengers. 
These findings suggest that children are at a decreased risk of requiring a medical evaluation when riding with a 
restrained driver in a crash. 

Han et al. (2015) also examined the relationship between seat belt use and injuries in terms of the body region and 
nature of injury among drivers over the age of 15 involved in motor vehicle crashes (n = 10,479). The data used in 
this study were from the Nebraska Crash Outcome Data Evaluation System (CODES) database for the years 2006–
2011. The authors used Strategic Matching LinkSolv software to link both data sets with probabilistic record linkage 
techniques. The linkage variables included first name, last name, gender, date of birth, date of the crash, and 
location of the crash. The unbelted drivers sustained higher risk of brain injury in comparison with belted (10.4% vs. 
4.1%). Moreover, the proportion of the head, face, and neck injury in unbelted drivers (29.3%) was higher than among 
belted drivers (16.6%). However, the proportion of the unbelted drivers who sustained spinal injury was lower for 
unbelted drivers in comparison with belted drivers (17.9% vs. 35.5%). The authors also reported that seat belt use 
was associated with decreased medical costs for traffic crashes.  

In another study, Han et al. (2017) used data from Nebraska between 2004 and 2013 (n = 90,716). The findings 
indicated that the hospital cost due to the traffic crashes for motor vehicle occupants not wearing seat belts was 
significantly higher than for occupants wearing seat belts ($2,819 vs. $1,597). Moreover, they reported that in 
addition to seat belt use, race, gender, age, type of crash, time of crash, speed limit at the crash, alcohol-impaired 
driving, year of crash and type of health insurance also had a significant association with hospital cost.  

Helmet Use 
Cook et al. (2009) investigated the relationship between motorcycle helmet use and motorcycle crash outcomes 
(i.e., injury types and hospital charges). The authors used CODES data for motorcyclists in 18 states between 2003 
and 2005. Their findings indicated that 57% of motorcyclists were helmeted at the time of the crash and that 43% 
were non-helmeted. For both groups, about 40% were treated at hospitals or died following the crash. A total of 6.6% 
of unhelmeted motorcyclists suffered moderate to severe head or facial injuries compared with 5.1% of helmeted 
motorcyclists. Fifteen percent of hospital-treated helmeted motorcyclists suffered traumatic brain injury (TBI) 
compared with 21% of hospital-treated unhelmeted motorcyclists. Almost 9% of unhelmeted and 7% of helmeted 
hospital-treated motorcyclists received minor to moderate TBI. More than 7% of unhelmeted and 4.7% of hospital-
treated helmeted motorcyclists sustained severe TBI. The authors also reported that median costs for hospitalized 
motorcyclists who survived to discharge were 13 times higher for those incurring a TBI compared with those who 
did not sustain a TBI ($31,979 versus $2,461). Over 85% of hospital-treated motorcyclists without a TBI were 
discharged, compared with 56% of motorcyclists with severe TBI. Motorcyclists admitted to the hospital with TBI 
were more likely to die, be discharged to rehab, or transferred to a long-term care facility. While 17% of all hospital-
admitted motorcyclists had TBI, they accounted for 54% of all admitted riders who did not survive. 

Analysis of bicyclist crashes for riders between the ages of 0 and 17 in California using CMOD system indicated that 
young bicyclists treated at the emergency department (ED) or hospitalized for their injuries were significantly less 
likely to sustain a traumatic brain injury if they were wearing a helmet than if they were not (11% vs.17%) (CMOD 
2013). 
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Spatial Linking Examples 
The literature of the road safety provides abundant examples of spatial linking different databases to police 
databases. Due to the focus of case studies number 3, 4, and 5 on aggregate models, in this section we provided a 
brief review of aggregate crash prediction models.  

Aggregate Crash Prediction Models 
Aggregate crash prediction models (ACPM) assist agencies in identifying locations with high risk of crashes and 
their relationship with socio-demographic variables and transportation infrastructure. ACPMs enable researchers to 
identify hot spots to prioritize for safety considerations in medium and long-term transportation planning.  

The following studies describe the traffic safety of specified geographic areas. Aggregate crash prediction models 
have been applied to several different spatial units from fine geographical areas such as census tracts (Ukkusuri et 

al. 2011, Wang and Kockelman 2013), block groups (Huang et al. 2016), and traffic analysis zones (i.e. 
TAZs2; (Hadayeghi et al. 2010, Abdel-Aty et al. 2011, Pulugurtha et al. 2013, Dong et al. 2014, Dong et al. 2015, Xu and 
Huang 2015) to vast geographic areas such as regions (Washington et al. 1999), and counties (Miaou et al. 2003, 
Aguero-Valverde and Jovanis 2006).  

Several factors predict the relationship between socio-demographic, road infrastructure characteristics and road 
safety (e.g., crash frequency). Researches find that population density (Huang and Abdel-Aty 2010), age cohorts 
(Aguero-Valverde and Jovanis 2006, Hadayeghi et al. 2010, Pirdavani et al. 2012, Dong et al. 2015), incomes 
(Pirdavani et al. 2012, Xu and Huang 2015), employment (Quddus 2008, Hadayeghi et al. 2010), trip generation and 
distribution (Naderan and Shahi 2010, Abdel-Aty et al. 2011, Dong et al. 2014, Dong et al. 2015), and the number of 
persons with driving licenses (Pirdavani et al. 2012) have significant association with crash frequency at the zonal 
level. In addition, street built environment characteristics, such as intersection density (Huang and Abdel-Aty 2010, 
Xu and Huang 2015), road lengths with different speed limits (Abdel-Aty et al. 2011, Siddiqui et al. 2012), road 
lengths with different functional classifications (Quddus 2008, Hadayeghi et al. 2010), junctions and roundabouts 
(Quddus 2008), traffic patterns such as traffic flow and vehicle speed (Quddus 2008, Hadayeghi et al. 2010, 
Pirdavani et al. 2012), environment conditions such as total precipitation/snowfall, and the number of rainy/snowy 
days per year (Aguero-Valverde and Jovanis 2006), land use (Pulugurtha et al. 2013), and vehicle miles travelled 
(VMT) (Pirdavani et al. 2012) have association with safety at the zonal level.  

Complete Picture of Traffic Crashes 
To develop a complete picture of traffic crashes, a framework based on the Haddon matrix (Haddon Jr 1968) and 
road safety pyramid (Hydén 1987, Koornstra et al. 2002) was employed. The Haddon matrix is an analytical tool that 
helps to identify risk factors related to human, environment, and vehicles that are associated with traffic crashes. 
The road safety pyramid also provides information about road safety event frequency and severity.  

The Haddon matrix provides information about the phases of a traffic crash and potential contributing risk factors 
at each phase. Haddon classified crash phases into three independent phases; pre-crash, crash, and post-crash 
events. Figure 1 presents an example of the Haddon matrix applied to traffic safety (Haddon Jr 1968, Barnett et al. 
2005). Each phase depicts different risk factors. For example, the pre-crash phase includes the risk factors (e.g., 
exposure, behavior, and infrastructure) leading to traffic crashes. The post-crash phase represents the database 
that describes first-responder response to traffic incident and subsequent effects of injury treatment on overall 
health outcomes.  

 Factors  

                                                             
2 Traffic Analysis Zone 
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Phase Human Vehicle And 
Equipment 

Physical 
Environment 

Social Environment 

Pre-
Crash 

Crash 
Prevention 

Information; 
Attitude; 
Behavior 

Roadworthiness; 
Lighting; 
Braking 

Road Design; 
Speed Limit; 
Pedestrian 
Facilities 

Law Enforcement, Cultural 
Norms, and Attitudes   

Crash 
Injury 
Prevention 
During Crash 

Use Of 
Restraint;  
Impairment 

Occupant Restraint; 
Other Safety Device 

Crash-Protective  
Road Side 
Objects; 
Forgiving 
Infrastructure 

Good Samaritan Laws; 
Social Responsibility 

Post-
Crash 

Life 
Sustaining  

First Aid 
Skills; 
Access To 
Medics 

Ease Of Access; 
Fire Risk 

Rescue Facilities; 
Congestion 

Insurance Coverage; Social 
or Family  Support 

Figure 1. An example of a Haddon Matrix application in road safety 

 

Figure 2 presents a road safety pyramid (Hydén 1987) that describes the relationship between severity and 
frequency of elementary events in traffic. Hydén (1987) suggested the existence of some severity dimension 
common for all events3 in traffic and proposed a model describing the relation between event severity and 
frequency (Figure 2). The scale ranges from traffic crash to undisturbed passages. Near-miss surrogate safety 
events require a rapid, evasive maneuver by the vehicle, pedestrian, cyclist, or animal, to avoid a crash (Guo et al. 
2010). According to this model (Figure 2), the higher the severity (represented by the vertical position in the 
pyramid), and the lower the frequency (the volume of the pyramid slice at this height) of the events (Laureshyn et al. 
2010). Several studies used near-crashes as a surrogate for traffic crashes to analyze safety of road users (Guo et 

al. 2010, Poulos et al. 2011). In general, “there is a strong relationship between the frequencies of contributing 
factors to crashes and for near-crashes.” (Guo et al. 2010) 

Considering the main goal of this study, which is creating a complete picture of traffic crashes by linking different 
databases, the Haddon matrix and road safety pyramid were used as a basis to create a framework for linking the 
databases. The aim is to classify and use datasets that contribute to understanding the spectrum of contributing 
factors and outcomes associated with a system-view of crashes. Moreover, the present study seeks to understand 
how different databases can be linked to a traffic incident (i.e., conflicts). The top layers of the pyramid presented in 
Figure 2 are road safety performance indicators and are elements of interest for this study. The police crash 
database is the leading source for estimating the crash outcome (i.e., number of killed, injured, and property damage 
only crashes). Moreover, the pyramid also includes layers regarding near miss (serious conflicts), or other safety-
critical event (slight or potential conflicts). Therefore, in addition to the police crash database, near-crash data (i.e., 
serious, slight and potential conflicts) information, to the extent that it exists, is included, as a complementary 
safety outcome for a complete picture of a traffic crash (Figure 3). Since police crash report databases are the core 
source for analyzing road safety, the present study seeks to describe the connection between other databases and 
police crash report databases. Alternatively, near-miss databases are emerging with improved naturalistic methods 
and crowdsourced datasets. These datasets have many of the features and linking potential found in crash 

                                                             
3 An encounter (a simultaneous arrival in a certain limited area) between two road users can be seen as an 
elementary event in the traffic process that has a potential to end up in a collision.  
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databases, but have yet to be systematically integrated into many safety analyses. Different relationships between 
secondary databases can be defined. However, those connections are beyond the principal focus of this study.  

 

 

Figure 2. Road Safety Pyramid (Hydén 1987) 

Regarding crash timeline, the databases can be classified as either pre-crash and post-crash for those events, and 
risk factors that occur before and after the crash incident. In addition to pre-crash and post-crash databases, there 
are databases that explain the general environment or geographic areas of traffic crashes (i.e., crash environment)—
the data elements in these databases are not affected by traffic crashes and are exogenous to crash events and 
usually aggregated at temporal or spatial level. This class of data also can be classified into two sub-classes. The 
first explains sociodemographic information at aggregate level, while the second describes the built environment 
and traffic behaviors.  

Figure 3 presents databases and classes are used to illustrate the complete picture of traffic crashes for the present 
study. A complete list of databases in each phase is described in the Error! Reference source not found. 
Furthermore, the databases were discussed from several points of view. First, we discussed the accessibility to the 
databases and whether the databases include Personally Identifiable Information (PII) or Protected Health 
Information (PHI) data elements. Second, we discussed different layers that were available in each database and 
common data elements in each layer. Last, the consistency of the measurement and forms were discussed across 
the states. The following sections include a concise list with abbreviated descriptions of potential databases that 
can be linked to develop a more complete picture of crashes.  

Data quality is an important indicator that is important in any linkage method. Data quality benchmarks and 
definitions vary by dataset, and acceptable levels of quality vary by application. Some data quality indicators are 
based on subjective observations and are subject to human error or miscategorization (e.g., injury severity). Other 
quality indicators are technical and subject to limitations or specifications of technology (e.g., GPS latency or 
resolution). Notwithstanding the importance of considering data quality when merging datasets, this report does 
not assess the quality of mainstream or emerging datasets in isolation. Indeed, any dataset that is used for safety 
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analysis must do so with a clear understanding of the limitations and appropriate application of the data. Many 
applications are solely focused on assessing quality of data (e.g., underreporting).  

 

Figure 3. Complete Picture of Traffic Crashes 

Crash Incident 
Police Crash Reports 
Police crash report data is the main core of road safety analysis and is collected by law enforcement officers at the 
crash scene. The database includes information about crash, individual, roadway, and vehicle involved at crash 
scene which can be used for variety of analysis. Police crash report databases are fairly consistent across the 
United States and follow a similar format which is based on MMUCC (Model Minimum Uniform Crash Criteria) 
(MMUCC 2012). Police crash databases generally include PII elements that require procedures to protect 
confidentiality of the police report. These elements are protected under the Federal Driver’s Privacy Protection Act 
(DPPA) (18 U.S.C.A. 2721). Within agencies, data use agreements generally dictate terms of use of such data for 
carrying out its functions. Researchers, working with the owners of the data, are required to comply with 
Institutional Review Board protocols for the protection of human subjects if utilizing data with PII. The data 
elements that are available in police crash reports enable researchers and safety practitioners to spatially and 
probabilistically join to other groups of the databases. The linking methodology relies heavily on the level of access 
to PHI and the nature of the target datasets.  

Fatality Analysis Reporting System (FARS) database 
The Fatality Analysis Reporting System (FARS) is a nationwide database provided by NHTSA that provides annual 
data regarding fatal injuries sustained in motor vehicle traffic crashes for Congress and the American public. FARS 
database records information about the crash, vehicle, and individuals involved in fatal crashes. The database is 
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consistent across the nation. The database does not include any PII information, and it is available online for use by 
the public. The data elements in FARS database are similar to police crash database (e.g., crash coordinates) and 
enable researchers to perform spatial or probabilistic join to other databases.  

Post-crash Data 
Post-crash data consists of two data sub-classes: health outcome and emergency response. The health data sub-
class consists of a database that describes the health outcomes of traffic crashes for injured individuals. Due to the 
nature and severity of the injury individuals might use different health facilities. The other subcategory includes 
databases that describe response (i.e., emergency response) to traffic incidents.  

National Vital Statistics System (NVSS) – Mortality 
Mortality data from the National Vital Statistics System (NVSS) are a fundamental source of demographic, 
geographic, and cause-of-death information. This is one of the few sources of health-related data that is comparable 
for small geographic areas and available for a long time period in the United States. The data are also used to 
present the characteristics fatalities, to determine life expectancy, and to compare mortality trends with other 
countries. 

To access each state’s data with identifiers, researchers and practitioners must contact state Department of Health 
or other agencies that are in charge of gathering mortality data. There are several layers in this database. The most 
important layers are patients’ personal information, accident layer, insurance layer, admission layer and health 
outcome (TnDH 2014). In addition to National database, individual states also may provide databases regarding 
individual visiting emergency room visit. For more information, researchers need to contact local authorities and 
departments to access databases. 

Hospital Discharge Data System (HDDS) 
HDDS is a standard database created by the American Hospital Association (AHA) that records billing information 
of patients and can be used nationwide by institutional providers and payers for handling health care claims. 
Currently, this database uses the UB-04 data manual as a standard for billing paper institutional medical claims in 
the United States. The database includes information about patients’ source of injury, health outcome (e.g., injury 
and cost of treatment), insurance information, and PHI. This database can be used to link to the police database to 
learn more about the injury outcome and social burden of traffic crashes. The HDDS database includes PHI. Any 
type of information regarding health status, provision of health care, or payment for health care which is created or 
collected by a covered entity by 45 CFR § 160.103 and can be linked to a specific individual is protected by HIPAA 
Privacy Rule provides federal protections. In order to access PHI data elements, one must follow a specific data 
agreement provided by the owner of database. The PHI elements that are available in HDDS enable researchers and 
safety practitioners to join to health outcome data and police crash reports probabilistically. The linking 
methodology highly relies on level of the access to PHI.  

Ambulatory Surgical Center (ASC) 
Ambulatory surgery centers (ASC) (also known as outpatient surgery centers or same day surgery centers) are 
healthcare facilities where surgical procedures not requiring an overnight hospital stay are performed. These types 
of surgeries are usually of a less complicated nature than those requiring hospitalization. The ASC database 
captures patient records using the CMS-1500 or UB-04 form. The consistency of the Data across States requires 
further investigation (TDH 2013). There are several layers in the ASC database. The most important layers are 
patients’ personal information, insurance, and health outcome. However, depending on whether the CMS 1500 or 
UB-04 form is used, the variables in this layer vary. The data elements in this database include PHI, insurance and 
admission information.  
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Since this database includes PHI, access requires additional procedures. This database could be used to link to 
police crash reports to get a better estimate of less severe traffic crash injuries. The methodology for linking ASC 
database to police crash report database relies heavily on the level of access to the PHI.  

Trauma Center Data 
A trauma center is a hospital that is equipped and staffed to provide care for patients suffering from major 
traumatic injuries as a result of traffic crashes, gunshot wounds, and falls, among others. The National Trauma Data 
Bank® (NTDB®) is the largest aggregation of U.S. trauma registry data assembled. Participation is voluntary and is 
one of the leading performance improvement tools of trauma care (NTDB 2018). Since its inception in 1994, many 
researchers have published work based on data from the NTDB. In 2008, the NTDB implemented the National 
Trauma Data Standard (NTDS) to standardize data collection across all reporting hospitals. Currently, the NTDB 
contains detailed data on over 2.7 million cases from over 900 U.S. trauma centers (NTDB 2018). NTDB® research 
data may be used for informational and research purposes with approval from the American College of Surgeons 
(ACS) Committee on Trauma. Permission to use the NTDB dataset is required via an online data application form 
found on their website.  

There are no general and all-inclusive guidelines for developing each of the trauma registry elements. Currently, 
each institution designs its trauma registry based on its needs or to meet mandatory state or city requirements 
(Zehtabchi et al. 2011). The NTDS provides definitions for variables and response codes. Institutional and state 
trauma registries often collect additional variables depending on their needs. Most trauma registries incorporate the 
following data: demographic information, mechanism of injury (external cause of injury codes), procedures, clinical 
diagnoses, based on International Statistical Classification of Diseases and Related Health Problems, length of stay, 
disposition, and in-hospital mortality. It may also include abbreviated injury scores (AIS), charges, payers, and 
information about complications and follow-up procedures if they occur at the same institution. Some important 
variables, such as longer-term mortality or functional outcomes, are rarely collected (Zehtabchi et al. 2011). The 
methodology for linking trauma center database to police crash report database relies heavily on the level of access 
to the PHI and the nature of local trauma center data. 

Medical Insurance Claims – All-Payer Claims Database (APCD) 
All-Payer Claims Databases (APCDs) are large-scale databases that systematically collect medical claims, 
pharmacy claims, and eligibility and provider files from private and public payers. ACPDs include information about 
healthcare prices, quality, and utilization. Moreover, the majority of states mandated ACPDs to report statutes 
requiring the submission of claims data to a state collecting agency. These databases could be used as sources to 
compare prices and utilization patterns throughout the complex healthcare system (Kelly and King 2017). The first 
statewide APCD system was established in Maine in 2003. By 2017, eighteen states had passed legislation and 
established APCDs. APCD systems collect data from existing claims transaction systems used by healthcare 
providers and payers. The information typically collected in an APCD includes patient demographics, provider codes, 
and clinical, financial, and utilization data.  

Most states define the details about APCD data collection requirements (e.g., format and timing of submission, 
specifications of data elements, and thresholds for payers that are required to submit data) uniquely from other 
states (Porter et al. 2014). Each state assesses its own legislation to determine the most efficient way to design a 
flexible but comprehensive APCD as there is no universal model. States generally de-identify the data using 
encryption and statistical methods to mask the identity of the individuals in the database, though some states allow 
qualified users to access de-identified and research files. Each state must be contacted separately for access to the 
APCD database. The methodology for linking ACPD database to police crash database relies heavily on the level of 
access to the PHI in both databases. 
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Medical Expenditures Panel Survey 
The Medical Expenditure Panel Survey (MEPS), which began in 1996, is a set of large-scale surveys of families and 
individuals across the United States, their employers and availability of health insurance, their medical providers 
(doctors, hospitals, pharmacies, etc.), and their use of nursing home services. MEPS collects data on the specific 
health services that Americans use, how frequently they use them, the cost of these services, and how they are paid 
for, as well as data on the cost, scope, and breadth of health insurance held by and available to U.S. workers. MEPS 
currently has four major components: The Household Component (HC), the Insurance Component (IC), the Medical 
Provider Component (MPC) and the 1996 Nursing Home Component (NHC). The Household Component provides 
data from individual households and their members; the Insurance Component is a separate survey of employers 
that provide data on employer-based health insurance; the Medical Provider Component is used to verify medical 
and financial characteristic information of medical events described in the HC survey from medical providers; and 
the 1996 Nursing Home Component comes from community sources with a minor amount of data collected from 
nursing home sources. The methodology for linking MEPS to other databases reliant on the available data and the 
nature of the secondary database. The MEPS could be used to calculate the social burden of traffic crashes.  

Emergency Medical System (EMS) Data 
The National Emergency Medical Services Information System (NEMSIS) is the national database that is used to 
store EMS data from the U.S. States. NEMSIS is a universal standard for how patient care information resulting from 
an emergency call for assistance is collected.  NEMSIS is a collaborative system to improve patient care through 
the standardization, aggregation, and utilization of point of care EMS data at a local, state and national level. 
NEMSIS is a product of NHTSA’s Office of EMS and in collaboration with the University of Utah is the host of the 
Technical Assistance Center (TAC). Traditionally EMS data has been housed in local trauma registry databases. 
More recently NHTSA has funded development of a national database for housing EMS data nationally, the National 
EMS Information System (NEMSIS). As of 2017, most states submit data to NEMSIS. (https://nemsis.org/). Access 
to the NEMSIS repository is through the University of Utah School of Medicine.  

The primary elements of the NEMSIS database Version 2.2.1 are listed in Attachment A. The data dictionary for 
Version 2.2.1 can be found at https://nemsis.org/technical-resources/version-2/version-2-dataset-dictionaries/. 
Categories of variables are listed below. More detail can be added at each level to indicate the potential uses for 
each category.  

Crash Environment Data 
Travel Demand  
Traffic analysis zone (TAZ) data and associated travel demand model data can be provided by any regional entity 
with an operational travel demand model. Travel demand models describe present and project future patterns of 
travel demand—the origins and destinations of trips, the modes used to reach those destinations, and the routes 
used for each individual trip. 

Traffic analysis zone data is typically available from metropolitan planning organizations (MPOs), some states also 
manage travel demand models and may have such data at the state level. Travel demand models do not include 
personally identifiable information. Moreover, there are no consistent standards for Travel Demand Models (TDM), 
and these models’ data elements varies by state. Often TAZ data includes elements from Census datasets, travel 
surveys, and employment surveys. Depending on the geographical unit analysis of the travel demand models, 
spatial joins can be used to link this database to other databases. Travel demand models provide valuable 
information about travel behavior at zonal and street segment levels which could be used to evaluate the 
association between travel habits, road infrastructures, and road safety.  
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Parcel Data 
Parcel data describes the characteristics of individual land parcels. This data may include land use, land area, 
building area, building square footage, zoning, and land and building value information. Parcel data can be used to 
calculate land use distribution at the zonal or district level. It can also be used to calculate the level of mixed-use 
and the floor area ratio, or building density. Most jurisdictions in the United States have parcel data available in GIS 
form. The fields that are most typically available include taxable value for land, taxable value for buildings, land 
acreage, year structure built, and information about the most recent sale of the property including sale value, 
number of dwelling units and bedrooms. Less common fields include land use codes, zoning codes, and building 
area. 

Parcel data are typically available only for the present year, but in some cases parcel databases are archived and 
available for previous years. One of the primary limitations of parcel data is that the fields available, as well as the 
quality of the data, can vary substantially by jurisdiction. Parcel data can be useful for fine-grain analysis of safety, 
identifying activity centers, understanding important local economic indicators such as land or building value, or 
identifying infrastructure improvements that have been made. Spatial joins can be used to link parcel data to police 
crash reports.  

LODES 
Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES) data provide 
information on the residential location of workers, the workplace location of workers, and the flows between the 
two. The US Census synthesizes this data from multiple administrative sources including state unemployment 
records. The geographical unit of analysis for this data is the census block scale. LODES data are available going 
back to 2002, and most states are covered for most years. Out of 53 states and US territories, 50 were participating 
as of 2017. Personally identifiable information (PII) is not available from LODES as prevented by statutory 
requirements. Noise is added to the data in order to ensure that no PII is recoverable. LODES data include work area 
characteristics, residential area characteristics and origin-to-destination flows. Spatial joins can be used to link 
LODES database to police crash databases. This linking provides additional information regarding the work-related 
and residence-related activities at the location of the traffic crash.  

Census Data 
The US Census gathers data through the decennial census and the American Community Survey every year. The 
decennial census is an attempt at a complete count of the nation’s residential population, but only covers age, race, 
household structure, and residence. The American Community Survey (ACS) covers a wide range of demographic 
and economic information for persons and households but is a sample and therefore cannot typically provide 
accurate counts at small levels of geography. The smaller the geography considered, the larger the margin of error 
is for ACS data. US Census data are available at many levels of geography, with the primary ones being state, 
county, census tract, census block group, and census block. lower levels of census geography nest within higher 
levels in the above scheme. US Census data is completely consistent across US states and territories. Therefore, 
the same data can be used nationwide. Regardless of the available census geographical unit, researchers and 
safety practitioners can use spatial join to link census data to police crash report or other databases. Linking 
census data in safety analysis provides information about the association between sociodemographic at zonal level 
variables and road safety patterns.  

Highway Performance Monitoring System (HPMS) Data 
The HPMS is a national program which includes inventory information for all of the nation's public roads as certified 
by the states’ governors annually. HPMS contains data from 50 states and territories. This database is available 
online, and available free of charge. This database is available in shapefile format. Each state is required to annually 
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report and furnish all data per the reporting requirements that is specified in this HPMS Field Manual. This database 
has several layers—the layers are inventory, route, traffic, geometric, pavement, and special network (e.g., strategic 
highway network, national highway network).  

HPMS is one of the most important databases in road safety analysis that provides information about vehicle miles 
traveled on the transportation network and road classifications. A spatial join is the main method to link HPMS to 
other databases. HPMS data are used to calculate following performance measures (DOT 2017):  

• Rate of fatalities in 23 CFR 490.207(a)(2)  
• Rate of serious injuries in 23 CFR 490.207(a)(2) 
• Percentage of pavements of the Interstate System in Good condition in 23 CFR 490.307(a)(1)  
• Percentage of pavements of the Interstate System in Poor condition in 23 CFR 490.307(a)(2)  
• Percentage of pavements of the non-Interstate NHS in Good condition in 23 CFR 490.307(a)(3)  

Percentage of pavements of the non-Interstate NHS in Poor condition in 23 CFR 490.307(a)(4) 

• Rate of fatalities in 23 CFR 490.207(a)(2)  
• Rate of serious injuries in 23 CFR 490.207(a)(2) 
• Percentage of pavements of the Interstate System in Good condition in 23 CFR 490.307(a)(1)  
• Percentage of pavements of the Interstate System in Poor condition in 23 CFR 490.307(a)(2)  
• Percentage of pavements of the non-Interstate NHS in Good condition in 23 CFR 490.307(a)(3)  
• Percentage of pavements of the non-Interstate NHS in Poor condition in 23 CFR 490.307(a)(4)  

National, state and local transportation decision-making may also use the HPMS database in the transportation 
planning process for decision making to analyze trade-offs among the different modes of transportation. 

Model Inventory of Roadway Elements 
Model Inventory of Roadway Elements (MIRE) is a database provided by Federal Highway Administration (FHWA) 
that maintains listings of roadway inventory and traffic elements which are critical to safety management. The 
intention behind MIRE was to provide a guideline to help transportation agencies improve their roadway and traffic 
data inventories. MIRE provides a basis for a standard of what can be considered a good/robust data inventory and 
helps agencies move toward the use of performance measures to assess data quality (FHWA 2018). There are 202 
elements that comprise MIRE Version 1.0. The MIRE elements are divided among three broad categories: roadway 
segments, roadway alignment, and roadway junctions. Data are collected in different states based on the 
importance of the data elements. The priority ratings are broken down into two major categories: critical and value-
added. Critical elements are those that are necessary for states to collect in order to conduct basic safety 
management analysis. However, value-added elements are those whose presence is beneficial but which are not 
crucial to using current versions of safety analysis tools. 

Pre-Crash Data 
DMV data 
All state departments of motor vehicles (DMV) maintain information about driver's license and non-driver ID 
applicants in electronic databases that share a core set of data elements. These departments have the 
demonstrated capability to share information with other government agencies and link to other databases (BCJ 
2009). Every state department of motor vehicles database is different, but share similar information, such as name, 
address, date of birth, phone number, social security number and, in some cases, medical or disability information. 
These databases are designed to be shared with pre-authorized users on demand (e.g., police, etc.) and can link the 
identification dataset with other databases (e.g., voter registration, automobile titles, etc.). 

While pre-authorized federal, state and local agencies (e.g., Police, Immigration, etc.) can freely access DMV data, 
federal and state laws specify the circumstances in which access is provided to entities (government and others) 
that have not been authorized, and these rules vary by state. There are numerous laws that govern how DMV 
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information is disclosed. For example, the Federal Drivers Privacy Protection Act requires all States to protect the 
privacy of personal information contained in a person’s motor vehicle record with certain exceptions defined in Title 
18, United States Code Section 2721 (BCJ 2009). However, some states sell DMV data access to private-sector 
users who qualify for the privilege under federal and state laws. The list includes law firms; insurance companies; 
auto sales, service and towing companies; private investigators and security firms; and companies and nonprofit 
organizations that employ drivers. Each state department of motor vehicle (DMV) should be contacted in order to 
obtain DMV data. 

Meteorological Data 
Meteorological data is governed by the National Oceanographic and Atmospheric Administration (NOAA). Weather 
station data can be archived and accessed through various data portals (e.g., Open Weather Map), which includes 
forecasts and historical data including precipitation, cloud cover, temperature, and wind. One global standard 
applies to weather stations associated with aviation. METAR (Meteorological Terminal Aviation Routine) weather 
data refer to a well-defined format for reporting weather information to pilots and meteorologists. Raw METAR data 
is standardized by the International Civil Aviation Organization (ICAO), which allows it to be understood throughout 
most of the world (NWS 2018). Three types of weather reporting systems are used to collect data for METAR 
formatting: Automated Terminal Information Service (ATIS), Automated Airport Weather Observation System 
(AWOS) and Automated Surface Observing System (ASOS) data.  

AWOS data collection systems are maintained and operated by state or local governments under the authorization 
and certification of the Federal Aviation Administration (FAA). However, ASOS systems are maintained and operated 
by a joint effort between the National Weather Service and Department of Defense (NOAA 2017). The ASOS systems 
provide weather information beyond that of aviation. Weather stations from around the world report weather 
conditions every hour in a unified format. The Aviation Weather Center saves up to seven days of this data. METAR 
data can be downloaded from the Aviation Weather Center website at https://aviationweather.gov/, but it is 
archived on several other portals. The data can be accessed through an interactive display or from their data server. 
METAR raw data contains information that can be grouped into four categories: Data Station Layer, Wind Data 
Layer, Weather Conditions Layer and Visibility and Sky Conditions Layer.  

SHRP2 Project NDS Data 
Congress created the second Strategic Highway Research Program (SHRP 2) in 2005 to address the challenges of 
moving people and goods efficiently and safely on the nation’s highways. SHRP 2 addresses four strategic focus 
areas—the role of human behavior in highway safety; rapid renewal of aging highway infrastructure; congestion 
reduction through improved travel time reliability; and transportation planning that better integrates community, 
economic, and environmental considerations into new highway capacity. Between 2010 and 2013 a total of 3,400 
drivers participated in the Second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study (NDS), 
which produced over 4,300 vehicle-years of naturalistic driving data. Data were collected from six sites across the 
nation, the largest of which were in Seattle, Washington; Tampa, Florida; and Buffalo, New York.  

Participant vehicles were instrumented with a data acquisition system (DAS) that collected four video views 
(driver’s face, driver’s hands, forward roadway, rear roadway), vehicle network information (e.g., speed, brake, 
accelerator position), and information from additional sensors included with the DAS (e.g., forward radar, 
accelerometers) (Hankey et al. 2016). In order to both uphold the privacy of study participants and promote the use 
of the data in important research, a process was created for researchers to establish a data use license (DUL) under 
which terms they may work with the data. In many cases, Institutional Review Board (IRB) approval of a qualified 
researcher’s plans for data use will be required due to the involvement of human subjects. 
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There are several types of data in the SHRP 2 project. The variables can be classified into several layers namely, 
participant assessments, vehicle information, continuous data, trip summary data, event data, cell phone data and 
roadway data. Additionally, detailed investigations of selected crashes are also available for researchers.  

Safety Pilot Model Deployment Data 
The Safety Pilot Model Deployment Data (SPMD) program is a research initiative containing real-world 
implementation of connected vehicle safety technologies, applications, and systems in everyday vehicles and 
multimodal driving conditions. U.S. Department of Transportation (USDOT) National Highway Traffic Safety 
Administration, Intelligent Transportation Systems Joint Program Office, Federal Highway Administration, Federal 
Motor Carrier Safety Administration, and Federal Transit Administration sponsored the SPMD program. Research 
Data Exchange (RDE) also provides SPMD data for consumption. The RDE provides data and documentation of 
connected vehicle for research projects, collaboration with other users, and comments on hosted data sets. 

The SPMD program is a comprehensive data collection effort under real-world conditions, with multimodal traffic 
and vehicles equipped with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication devices that 
used DSRC to communicate Basic Safety Messages (BSMs). BSMs contains information regarding vehicle 
operation (e.g., speed, location) at a frequency of 10 messages per second. 

RDS provides text-based (non-video, non-audio) data of the SPMD accompanied by a downloadable data dictionary 
and metadata document that provides information to support its use. The RDE SPMD data environment includes six 
data sets: 

• Two driving datasets, consisting of data acquired using two types of DAS—DAS1 and DAS2  
• One BSM data set, consisting of data generated by equipped vehicles  
• One RSE data set, consisting of BSMs received by RSEs and signal timing and curve speed warning messages 

transmitted by RSEs  
• One weather data set, consisting of weather information for the time periods corresponding to data collection.  
• One network dataset containing traffic count data from Ann Arbor. 

 

Several algorithms were applied to vehicle trajectories to protect the identities of the SPMD participants’. These 
algorithms truncated trip trajectories to remove the trip origins and destinations. Moreover, data elements including 
personally identifiable information were removed from the datasets. 

Crowdsourcing data 
Crowdsourcing involves the gathering of data for a particular purpose from a network of collaborators. 
Transportation crowdsourcing leverages the combined data gathered by a group of people utilizing smartphone 
apps and/or website interfaces. Transportation crowdsourced data can be provided by third-party vendors and 
dedicated platforms, as well as by social media and the internet. Crowdsourcing data can be gathered for different 
purposes, for examples these data sets gather information about mapping and navigation (e.g., Open Street Map); 
detailed traffic performance data (e.g., Waze, HERE Technologies); ride-sharing and public transit data (e.g., UBER 
Movement); pedestrian and bicycling data (e.g., STRAVA), and roadway infrastructure conditions (e.g., 
StreetBUMP).  Each of the examples provides crowdsourced data related to some aspect of transportation. 
Depending on the nature of crowdsourcing database, one can use them to learn about factors influencing road 
safety that are not offered in traditional databases. Additional details about crowdsourcing databases and their 
application in transportation can be found in Appendix A.  
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Conclusion and Recommendations for Future Directions 
Police crash report are the main source of data concerning traffic safety. Although police crash databases have 
hundreds of variables, they are unable to describe the causes and consequences of roadway crashes fully. This 
reflects one of many known limitations of such databases. Data at the crash scene is usually collected by a police 
officer at the time of the crash. Since officers have many competing objectives and are not experts in all 
contributing factors, much of the collected data only explains a part of the crash story. Moreover, police officer 
estimations of the severity of traffic injuries and crash costs are not medically precise and require careful, objective 
consideration later.  

In order to provide qualitative and accurate estimates of the data elements, and learn more about the data elements 
that are not captured by police officers in standard police crash databases, it is necessary to create a more 
complete picture of traffic crashes. To do so, it is crucial to understand which data elements exist in various data 
sources (examples are provided in Appendix A) to be able to perform data linking. The remainder of this document 
describes the essential applications of linking different databases.  

To link police crash data to other sources, first, it is necessary to identify the elements that can be related to other 
data elements in another database. Secondly, based on the nature of the target database(s) and accessible data 
elements, the proper linking method must be chosen (e.g., spatial vs. probabilistic). For example, if the goal is to 
perform the linking at a disaggregate level (i.e., individual level), PII or PHI is required that creates barriers to 
performing analysis. However, databases that store geographically aggregated data use the spatial join method for 
linking databases.  

Due to the classification of the databases (explained in the previous section), databases with similar characteristics 
are presented in one class. Accordingly, a similar methodology can be used to link each class to police crash data. 
Figure 4, which is based on Figure 3‒Complete Picture of Traffic ‒, illustrates both linking methods and the main data 
elements layers that are needed to link each class of data to police crash data.  

Police Reporting and Crash Environment 
As illustrated in Figure 1, the crash environment layer includes databases that describe the crash environment 
including and not limited to the built environment, traffic conditions, sociodemographic environment, weather 
conditions and aggregate travel behavior patterns. This class of data describes characteristics of the environment, 
therefore, to perform a linking process, there is a need to spatially join police crash report data and the target(s) 
databases. 

Police officers at crash scenes do not usually collect detailed information about the crash environment, and if they 
do, the information has a qualitative nature rather than quantitative. One example is road design features. For 
example, officers report whether a crash occurred at a curve or not; the information does not typically include the 
radii of the curve. To analyze the effect of different curve radii on crash rate of a specific segment, police crash data 
must be linked to a database that includes geometry features of the road (e.g., MIRE, HPMS). Another example of 
the data that police do not record is traffic count—to get a better estimate of traffic count, police crash data can be 
linked to HPMS data or data from other local sources that store higher resolution traffic data. Other examples of the 
different linking databases and the methods to perform the linking are described in the previous section.  
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Figure 4. Complete Picture of Traffic Crashes With Linking Method 

Police crash reports include data elements that describe the location (i.e., physical address or coordinates) of 
crashes and home address of individuals involved in crashes. The location of a crash is the data element that 
researchers/practitioner use to link environmental databases to a police database. Alternatively, home address of 
an individual also can be used as an alternative in analysis to capture wide-ranging information about 
sociodemographic factors of individuals who are involved in crashes. Address information can also be used to 
analyze the type of built or sociodemographic environments that comprise a disproportionate share of crashes. This 
approach can be used in analysis to identify neighborhoods whose residents have higher crash rates (see case 
study 3, 4, and 5 in the Appendix B for further details). In most cases, police crash report data must be aggregated at 
the zonal level in order to be joined with environmental data that is present at the zonal scale.  

Police Reporting and Hospital-oriented Data 
Hospital-oriented data are important in road safety analysis since they describe the health outcomes of individuals 
involved in traffic crashes and the social burden of traffic crashes. Depending on the goals of a particular study, 
researchers can analyze road safety at disaggregate (e.g., injury severity) or aggregate level (e.g., calculating social 
cost of traffic crashes).  

Police officers’ estimates of injury severity at the crash scene are not always accurate—for a better estimate of 
injury severity, analysis of health outcome data is helpful. An injured person can use a different health facility based 
on injury sustained in a traffic crash. Thus, in order to learn the true (or more accurate) outcome of crash-related 
injury, researchers must rely on a variety of databases. For example, individuals who suffer from less severe injuries 
that do not require overnight stays at the hospital are likely to be treated at ambulatory surgical centers, while those 
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who sustain major injuries requiring immediate attention are often transported to trauma centers or other medical 
facilities. This is also the case for tests related to driving under the influences of alcohol or other substances. Police 
officer reports in crash databases may not include accurate test results, while medical facilities have better 
diagnostic tools. Therefore, in order to learn more about driving under the influence of alcohol or drugs, it is 
necessary to link police crash databases to health outcome data. Another reason for seeking a better estimate of 
traffic crash outcomes is to calculate the direct cost of injuries resulting from traffic crashes, Medical Insurance 
Claims, Medical Expenditures Panel Survey, and the Hospital Discharge Data System are among databases that 
record the cost of injury treatment.  

Underreporting is another challenge related to police crash databases, and can be attributed to several factors. Due 
to definition of police multi-vehicle crashes in police reports, officers generally do not report on single bicycle 
crashes (even in severe cases). Moreover, in some cases, pedestrians and bicyclists do not report their traffic 
crashes to the authorities for a number of reasons. Accordingly, police crash databases do not capture a significant 
portion of vulnerable road user crashes. Linking health outcome data to police crash database can provide 
additional details regarding the underreporting of pedestrians and bicyclist crashes. For more details on the subject 
of underreporting issue, please see case study 1 in Appendix B.  

To perform the linking process at the individual level, researchers and practitioners must use PII in police crash 
databases and PHI in health outcome databases as inputs for the linking process. Depending on sample size and 
available data elements, the methodology for linking police crash database and health outcome data varies. The 
probabilistic method provided by CODES project is one of the common methods implemented in the United States.  

Police Reporting and Pre-Crash Data (DMV) 
Another source of data that can provide additional information about road users and their driving history (e.g., crash 
and citation) are the DMV state departments of motor vehicles (DMVs). They maintain information about driver's 
license and non-driver ID applicants in electronic databases that share a core set of data elements essential to voter 
registration, and that have the demonstrated capability to share information with other government databases (BCJ 
2009). Every state DMV database is different, but they share similar information, such as name, address, date of 
birth, phone number, social security number, and, in some cases, medical or disability information. These databases 
are designed to be shared with pre-authorized users on demand (e.g., police departments) and can link the 
identification dataset with other databases (e.g., voter registration, automobile titles, etc.). 

Conclusion 
This study provided a brief review of a history of linking police crash reports and health data in the US as well as a 
review of the methodologies for linking databases and examples of the integrations’ applications. Moreover, this 
report provided a complete picture of traffic crashes by linking different sources of the data that contribute to data 
science in road safety.  

While this report is meant to provide a comprehensive list of main data sets that are relevant to safety, we cannot 
enumerate all possible use-cases or applications of safety data and potential datasets that can be integrated. 
Indeed, as road safety analysis becomes more system-oriented, the linkages between disparate data sources 
become more important. Similarly, as transportation systems have recently leveraged emerging and novel data 
sources, safety applications could evolve in ways that we cannot predict in this report. Importantly, researchers and 
practitioners should be able to apply any relevant dataset within the crash phase and linkage framework that we 
have presented here in order to provide a more complete picture of road safety.  
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Crash Incident Databases 
Police Crash Reports 
Police crash reports are the core of road safety analysis. Law enforcement officials collect data either electronically or 
manually about every motor vehicle crash via police crash reports. The data in each crash report is then submitted to a 
state’s centralized database where it is edited, reported and analyzed by a wide range of stakeholders. The crash 
reports follow a similar format which is based on the MMUCC (Model Minimum Uniform Crash Criteria) (MMUCC 2012).  

How to Access the Database  
Police crash reports are usually available for researchers and practitioners through highway patrol or Department of 
Homeland Security. Moreover, some of the programs such as the Highway Safety Information System provide crash 
reports to researchers at no charge. In order to access crash records with personal identifiers, it is necessary to check 
with the owner of the database to meet the minimum requirement for accessing the database.  

Consistency of the Data across States 
The database is of a similar format in every state, however, due to the voluntary nature of the MMUCC guideline, the 
data elements that describe a traffic crash can vary between states. In addition, each state has a financial threshold for 
reporting a traffic incident.  

Typically, the data elements and their values (attributes) describe who was involved, where the crash took place, when 
and under what circumstances it took place, what the impacts of the crash were, and why the crash happened. When 
used by a reporting agency, MMUCC data elements record what happened during and after a crash. Since this data is 
so critical to state and local decision-making, state, and local agencies are encouraged to collect as many of the 
recommended MMUCC data elements and their attributes as possible (MMUCC 2012). 

Layers of the Database 
The MMUCC database has several layers of data that describe different aspects of the crash incident, namely crash, 
vehicle, person, and roadway data elements.  

Person-Level 

This layer includes information about the individual who was involved in a traffic crash and describes the 
characteristics, actions, and consequences to the individual. Regarding the accessibility of the data to the public, this 
layer can be further categorized into two sublayers. The first sublayer includes Personally Identifiable Information (PII) 
which needs certain permission or approval for retrieving the data. The second part includes personal information that 
are available to the public.  

The PII data elements in this layer are the most vital information for performing the deterministic linkage. Names, 
family name, middle name, date of birth, complete resident’s address, phone, and driving license information (e.g., 
statues and restrictions) are among the most vital PII data elements. Other data elements that would help the 
researchers in the linking (i.e., probabilistic and deterministic) process and describe individuals and are available to the 
public are age, gender.  

The other sublayer contains data elements that describe individuals condition (regardless of the user type) at the crash 
scene. Among these data elements are violations, restrictions, and injury severity outcome of the traffic crash.  

MMUCC recommended that this variable be recorded in the person level: name of person involved, date of birth, gender, 
person type, injury status, occupant’s motor vehicle unit number, seating position, restraint systems/motorcycle 
helmet use, air bag deployed, ejection, driver license jurisdiction, driver license number, class, CDL and endorsements, 
speeding-related, driver actions at time of crash, violation codes, driver license restrictions, driver license status, 
distracted by, condition at time of the crash, law enforcement suspects alcohol use, alcohol test, law enforcement 
suspects drug use, drug test, transported to first medical facility, injury area, injury diagnosis, injury severity. 



 
www.roadsafety.unc.edu	 32	

www 

Crash Level 

This level contains information that describes the general crash environment. Useful information that could be used in 
this study to perform linking includes coordinates of the crash location, address of the crash location (i.e., county, city, 
place, street address), time of the crash (i.e., year, month, day, hour, minute) which are useful for in performing linking. 
It is worth noting that not all the crashes have established coordinates; nevertheless, we can use the address provided 
by police to geocode the crash location. The quality of the geocoding depends on the detail of the address provided by 
a police officer in the electronic forms.  

Moreover, this layer includes other time-related data elements that describe the time of the crash, notify and response 
of police officer and time of emergency response team which are useful in both probabilistic and deterministic 
methods.  

MMUCC suggests that this variable be recorded at the crash level: crash identifier, crash classification, crash date and 
time, crash county, crash city/place (political jurisdiction), crash location, first harmful event, location of first harmful 
event relative to the traffic way, manner of crash/collision impact, source of information, weather conditions, light 
conditions, roadway surface conditions, contributing circumstances – roadway environment, relation to junction, type 
of intersection, school bus-related, work zone-related (construction/maintenance/utility), crash severity, number of 
motor vehicles involved, number of motorists, number of non-motorists, number of non-fatally injured persons, number 
of fatalities, alcohol involvement, drug involvement, and day of week. 

Vehicle Level 

The motor vehicle data elements describe the characteristics, events, and consequences of the motor vehicle(s) 
involved in the crash. Vehicle level also consists of two sub-layers. The first layer includes vehicle identifiers that are 
not accessible to the public such as Vehicle Information Number (VIN) and license plate number. These two data 
elements could be used to link database to DMV data.  

The second sublayer includes information vehicle registration, state, make, model year, model, body type, number of 
occupants, and similar vehicle-related data elements. Moreover, this layer includes information about vehicle 
maneuvers prior to the crash. Data elements such as direction of travel before the crash, number of lanes, roadway 
alignments, traffic control device, motor vehicle maneuver, speed, and similar items are stored in this sub-layer.  

MMUCC suggests that this variable be recorded in the vehicle level: VIN, motor vehicle unit type and number, motor 
vehicle registration state and year, motor vehicle license plate number, motor vehicle make, motor vehicle model year, 
motor vehicle model, motor vehicle body type category, total occupants in motor vehicle, special function of motor 
vehicle in transport, emergency motor vehicle use, motor vehicle posted/statutory speed limit, direction of travel before 
crash, traffic-way description, total lanes in roadway, roadway alignment and grade, traffic control device type, motor 
vehicle maneuver/action, vehicle damage, sequence of events, most harmful event for this motor vehicle, hit and run, 
towed due to disabling damage, contributing circumstances, motor vehicle  

Roadway Level 

Roadway data elements are generated by linking crash to roadway inventory and highway data. The data elements 
used for linkage include “crash location” and others as necessary, depending upon the type of roadway inventory 
system implemented by the state. When a state does not have a roadway inventory, the police officer should collect as 
many of the data elements as possible should at the crash scene (MMUCC 2012). 

MMUCC recommends that this variable be recorded at the roadway level: bridge/structure identification number, 
roadway curvature, grade, part of national highway system, roadway functional class, annual average daily traffic, 
widths of lane(s) and shoulder(s), width of median, access control, railway crossing id, roadway lighting, pavement 



 
www.roadsafety.unc.edu	 33	

www 

markings, longitudinal, presence/type of bicycle facility, mainline number of lanes at intersection, cross-street number 
of lanes at intersection, total volume of entering vehicles.  

Fatality Analysis Reporting System 
FARS is a database that provides information regarding motor vehicle traffic crashes with fatal injuries. NHTSA, 
Congress and the American public are the primary users this data. FARS contains data on all fatal traffic crashes 
across the nation and Puerto Rico. In order for a crash to be included in FARS, it must meet specific criteria. First, the 
crash must occur on a traffic way customarily open to the public. Second, the crash must result in the death of a 
person within 30 days of the crash.  

There are several state agencies in each state that work in agreement with NHTSA to provide information in a standard 
format on fatal crashes in the state. Each agency collects, codes and submits the data into a microcomputer data 
system transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and 
evaluate the effectiveness highway safety programs.  

How to Access Database with PII 
FARS database does not include personally identifiable information (PII). The FARS database is available for the public. 
The database can be downloaded from FTP website (ftp://ftp.nhtsa.dot.gov/fars/). The FTP website included traffic 
crashes fatally between 1975 to 2016.  

Consistency of the Data across States 
The National Center for Statistics and Analysis (NCSA) which is a component of NHTSA, is the director of FARS 
database. NHTSA has a cooperative agreement with an agency in each State’s government; this agency is responsible 
for providing information on all qualifying fatal crashes that occurred in the state. NCSA’s FARS program staff are 
managing the agreement between NHTSA and state government agencies. Moreover, in each state, trained state 
employees, called FARS Analysts, are responsible for gathering, translating, and transmitting their state’s data to NCSA 
in a standard format.  

Layers of the Database 
FARS also collects information on over 100 different coded data elements that characterize the crash, the vehicle and 
the people who were involved in a fatal traffic crash. As a result, the FARS database consisted of several layers namely: 
accident, vehicle, person, parkwork, pbtype, cevent, vevent, vsoe, damage, distract, factor, maneuver, violatn, vision, 
nmcrashm nmimpair, nmprior, safetyeq, vindecode. It is worth noting that the presence of this layer is consistent for all 
years. Moreover, the variable descriptions in many cases were subjected to change (NHTSA 2016). For more details, 
please visit the Fatality Analysis Reporting System (FARS) Analytical User’s Manual (NHTSA 2016). The most 
important layers in this layer are accident, vehicle, person, and pbtype.  

Accident 
This data file contains information about crash characteristics and environmental conditions at the time of the crash. 
There is one record per crash. The most critical variables in this layer are: county, city, time of crash (month, hours, day, 
minute), traffic way identifier, route signing, land use, functional system, special jurisdiction, latitude, longitude, time of 
EMS arrival at hospital (hour, minute), notification time (hour, minute). This layer is present in all the years (NHTSA 
2016). 

Vehicle 
This data file contains information that describes the in-transport motor vehicles and their corresponding driver who 
are involved in the crash. Each motor-vehicle has one record in the FARS database. The most important variables in 
this layers are: registration state, registered vehicle owner, vehicle information (make, body, model year), Vehicle 
Identification Number (VIN), Motor Carrier Identification Number (MCID), MCID Issuing Authority, MCID Identification 
Number, driver’s license state, driver’s ZIP Code. This layer is present in all the years (NHTSA 2016). 
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Person 
This data file covers information describing all persons involved in the crash crashes. Road user types are motorists 
(i.e., drivers and passengers of in-transport motor vehicles) and non-motorists (e.g., pedestrians and pedal-cyclists). 
This layer includes data elements that describe individual characteristics (e.g., age, sex, vehicle occupant restraint use) 
and their injury severity. Each person has its unique corresponding record in the FARS database. The most important 
variables in this layer are age, sex, person type, injury severity, seating position, death time (year, month, day, time, 
hour), race, Hispanic origin. This layer is present in all the years (NHTSA 2016). 

Pbtype 
This layer contains information regarding crashes between people on personal conveyances and bicyclists, motor 
vehicles, and pedestrians. Data from the crash are entered into the Pedestrian and Bicycle Crash Analysis Tool 
(PBCAT). The output fields from PBCAT, including the pre-crash actions of the parties involved (crash type), are 
included in this dataset. Each of pedestrian, bicyclist or person on a personal conveyance have a unique record. The 
most important variables in this layer are age, sex, person type, crash location. This layer is also present in all the years 
(NHTSA 2016). 

 

Post-Crash Database 
Emergency Medical System (EMS) Data 
Traditionally EMS data has been housed in local trauma registry databases. More recently NHTSA has funded 
development of a national database for housing EMS data nationally, the National EMS Information System (NEMSIS). 
As of 2017, most states are submitting data to NEMSIS. (https://nemsis.org/) 

How to access EMS data 
Access to data NEMSIS repository is through the University of Utah School of Medicine. The link to request access to 
NEMSIS data is https://nemsis.org/using-ems-data/request-research-data/). The following web link provides the status 
of the contribution of each state for Version 2 NEMSIS (https://nemsis.org/). Version 3 is now underway. A number of 
variables are only accessible at the state level. 

In California data from CEMSIS (the California version of NEMSIS) can be accessed by submitting a request to the 
EMSA unit at the California Department of Public Health (California DPH). Procedures for accessing data vary from 
state to state. 

Layers of the database 
The primary elements of the NEMSIS database Version 2.2.1 are listed below. The data dictionary for Version 2.2.1 is at 
the following website: https://nemsis.org/technical-resources/version-2/version-2-dataset-dictionaries/. Categories of 
variables are listed below. More detail can be added at each level to indicate the potential uses for each category. 
Items within these categories are differentially available.  

• Demographic (Agency) Dataset 
• AGENCY GENERAL INFORMATION 
• EMS agency variables have limited availability 
• AGENCY CONTACT INFORMATION 
• Agency zip code 
• EMS (Event) Dataset 
• RECORD INFORMATION 
• Administrative record codes 
• UNIT / AGENCY INFORMATION 
• Agency codes and response delay codes 
• UNIT / CALL INFORMATION 
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• Complaint report information 
• TIMES 
• Response time variables 
• PATIENT 
• Patient information including zip code (not name) (matching variables0 
• BILLING 
• Billing codes 
• SCENE 
• Number of patients and type of location 
• Incident Zip Code 
• SITUATION 
• Injury and provider information 
• SITUATION / TRAUMA 
• Cause of Injury (IDC code) 
• SITUATION / CPR 
• Cardiac variables 
• MEDICAL HISTORY 
• Patient information 
• INTERVENTION / MEDICATION 
• Medication variables 
• INTERVENTION / PROCEDURE 
• Procedure variables 
• DISPOSITION 
• Disposition variables 
• OUTCOME AND LINKAGE 
• ED and hospital disposition 

 

National Vital Statistics System (NVSS) – Mortality 
Mortality data from the National Vital Statistics System (NVSS) are a fundamental source of demographic, geographic, 
and cause-of-death information. This is one of the few sources of health-related data that are comparable for small 
geographic areas and are available for a long time-period in the United States. The data are also used to present the 
characteristics of those dying in the United States, to determine life expectancy, and to compare mortality trends with 
other countries. 

How to access database with PII 
To access each state data with identifiers, researchers and practitioners need to contact state Department of Health or 
other agencies that are in charge of gathering mortality data.  

Layers of the database 
There are several layers in this database. The most important layers are patients’ personal information, accident layer, 
insurance layer, admission layer and health outcome (TnDH 2014).  

Patients’ personal information  
This layer includes personal information of the deceased. The variables in this layer are Certificate Number, 
Generational Identifier of Decedent, Surname of Decedent, Given Name of Decedent, Middle Initial of Decedent, Age at 
Death, Date of Birth, Race, Sex, Marital Status, Social Security Number, The Deceased was ever in US Armed Forces, 
State of Residence, County of Residence, City of Residence, Address of Residence, City Limits Indicator, Zip Code of 
Residence, State/Country of Birth, Hispanic Origin, Education of Decedent, Surname of Decedent’s Father, Given Name 
of Decedent’s Father, Maiden Name of Decedent’s Mother, and Given Name(s) of Decedent’s Mother.  
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Accident layer 
This layer contains data elements about the cause and time of death. This layer also has information of traffic 
accident. Variables in this layer are If Injury is due to Transportation Accident, Underlying Cause of Death, Type of 
Vehicle, Injury at Work, Time of Injury, Date of Injury, Date of Death, Time of Death, County of Death, and City of Death.  

Admission layer 
This layer includes information about the facility. Variables in this layer are Facility Code, Type of Place of Death, Type 
of Certifier, Date Signed by Certifier, and License Number of Physician or Medical Examiner. 

 
Hospital Discharge Data System  
The first standard dataset for reporting a single billing form and standard data set that can be used nationwide by 
institutional providers and payers for handling health care claims was created by the American Hospital Association 
(AHA) brought the National Uniform Billing Committee (NUBC) in 1975 (Gilbreath and Dinkins 2003).  

In Tennessee, all the hospitals are required by law to report patient-level discharge information to the Tennessee 
Department of Health. This report includes all incidents regarding discharges from rehabilitation hospitals, 
rehabilitation and psychiatric units within acute care hospitals, and free-standing ambulatory surgical treatment 
centers that are part of a hospital, only if they are from a TDH licensed hospital and meet the requirements for 
“Reportable Records.” Moreover, discharges for charity or free care are included in the reporting requirement, and they 
are handled similarly (TDH 2017).  

How to Access Database with PII 
To access this database, one needs to contact their local state departments of health, the procedure for accessing the 
data is different in each state. The procedure for accessing the data with Protected Health Information (PHI) is also 
different from the dataset without PHI. The Protected Health Information under the US law is any information about 
health status, provision of health care, or payment for health care that is created or collected by a Covered Entity (or a 
Business Associate of a Covered Entity) and can be linked to a specific individual. Under the US Health Insurance 
Portability and Accountability Act (HIPAA), PHI that is linked based on the following list of 18 identifiers must be 
treated with special care (Anon 2018a). The PHI usually includes the following variables:    

• Names 
• Geographic data 
• All elements of dates 
• Telephone numbers 
• FAX numbers 
• Email addresses 
• Social Security numbers 
• Medical record numbers 
• Health plan beneficiary numbers 
• Account numbers 
• Certificate/license numbers 
• Vehicle identifiers and serial numbers including license plates 
• Device identifiers and serial numbers 
• Web URLs 
• Internet protocol addresses 
• Biometric identifiers (i.e., retinal scan, fingerprints) 
• Full face photos and comparable images 
• Any unique identifying number, characteristic or code 
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Consistency of the Data across States 
In 1982, the NUBC voted to accept the UB-82 and its associated data manual for implementation as a national uniform 
bill. Virtually all states adopted the use of the UB-82 data set. After an 8-year moratorium on change, the UB-82 was 
replaced by UB-92 and became the standard for billing paper institutional medical claims in the United States. This 
system was also replaced in 2007 with UB-04 form (current state of practice). This was a nationwide change which 
included state of Tennessee (TDH 2017). 

Layers of the database 
There are several layers in this database. The most important layers are patients’ personal information, accident layer, 
insurance layer, admission layer and health outcome (TDH 2017).  

Patients’ personal information  
This layer includes information about the individual who received service in ASTC. Regarding the accessibility of the 
data to the public, this layer can be further categorized into two sublayers. The first sublayer includes Personally 
Identifiable Information (PII) which needs certain permission or approval for retrieving the data. The second part 
includes personal information that is available to the public. The data elements in this layers are patient's name, family 
name, residential address, gender, date of birth, federal tax number (SSN) and patient’s ethnicity/race.  

Accident layer 
This layer contains data elements about the source of injury (not necessarily the motor-vehicle crashes). The variables 
in this layer are accident date, accident location, accident hour, accident code and external cause of injury.  

Insurance layer 
This layer contains data elements regarding patients insurance. The variables are: Classification Classification of 
Payer(s), Health Plan Identification Number, Patient’s Relationship to Insured(s), National Provider Identification (NPI), 
Insured’s Unique ID Number, Insurance Group Number(s), Name of Insured's Employer Primary Insured Initials, 
Secondary Insured Initials, Tertiary Insured Initials Primary Insured Name – First and Last, Secondary Insured Name – 
First and Last, and Tertiary Insured Name – First and Last. 

Health layer 
This layer include information about diagnosis and hospital cost. The variables in this layer are: Principal Diagnosis 
Code with POA, Other Diagnosis Codes with POA, Admitting Diagnosis Code, Patient Reason for Visit Code, Diagnosis 
and Procedure Version Qualifier, External Cause of Injury Code (E-Code), Principal Procedure Code, Principal Procedure 
Date, Other Procedure Codes and Dates, Attending Provider ID Numbers, Operating Provider ID Numbers, Other 
Provider1 ID Numbers, Other Provider2 ID Numbers, Type of Emergency Department Visit, and Outcome of Emergency 
Department Visit.  

Admission layer 
This layer includes information regarding the admission event. The variables are: Admission Date, Admission Hour, 
Type of Admission/Visit, Point of Origin Service Date(s), Creation Date, Units of Service, Total Charges by Revenue 
Code Category, and Non-Covered Charges.  

 

Ambulatory Surgical Center 
Due to concern about medical charges at the hospital led to an increasing proportion of surgeries being performed on 
an outpatient basis (TDH 2013). This shift from Traditionally surgeries in hospitals to ASTC had arose a new trend of 
injury treatment. Ambulatory surgery centers (ASC)4 are healthcare facilities where surgical procedures not requiring 

                                                             
4 Also known as outpatient surgery centers or same day surgery centers 
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an overnight hospital stay are performed. These types of surgeries usually have less complicated nature than that 
requiring hospitalization.  

Both ambulatory surgery center and a specialty hospital provide similar facilities and support similar types of 
procedures for their patients. However, the specialty hospital may provide the same procedures or slightly more 
complex ones, and the specialty hospital will often allow an overnight stay. ASCs do not routinely provide emergency 
services to patients who have not been admitted to the ASC for another procedure. 

In most states, ASC facilities mandate to report their records to state’s Department of Health. For example, in 
Tennessee, T. C. A. 68-1-119 requires each licensed ambulatory surgical treatment center (ASTC) in the state to report 
its claims data to the Tennessee Department of Health. ASTCs also need to keep personal identifies confidential. 
Patient Record Data Systems (PRDS), part of the Division of Health Statistics, has been charged by the Department to 
carry out this project. Each ASTC will transmit its records to the vendor it has selected. Each vendor will send the 
records it has received from its ambulatory surgical treatment centers to PRDS (TDH 2013). 

How to Access Database  
Depending on the state, the procedure for accessing the database varies. 

Consistency of the Data across States 
The national standard for the usage of the CMS-1500 form is the manual produced by the American Medical 
Association’s National Uniform Claims Committee. The national standard for the usage of the UB-04 forms is 
established by the American Hospital Association’s National Uniform Billing Committee (TDH 2013). Each record sent 
by the vendor to the Health Department is the electronic representation of one CMS-1500 or UB-04 form. Records are 
fixed format. All the records for a quarter for all facilities reporting through a vendor should be combined into two 
separate files, one of CMS-1500 records and the second of UB-04 records. The consistency of the data over the states 
needs further investigation (TDH 2013).  

Tennessee established a standard layout for reporting. However, if another layout is acceptable to the center and its’ 
vendor, it is acceptable to the Health Department if all reporting requirements are met. The vendor is also responsible 
for creating the vendor-generated fields. These may be created from raw data values or reported directly by the centers 
(TDH 2013). 

Layers of the Database 
There are several layers in this database. The most important layers are patients’ personal information, insurance, and 
health outcome. However, depending CMS 1500 or UB-04 the variables in this layer varies. In the following, the data in 
the CMS 1500 will be discussed. The UB-04 form is similar to HDDS database. It is also worthy to mention that CMS 
1500 does not report the health and diagnosis variables.  

Patients’ Personal Information 
This layer includes information about patients who received service in ASTC. Regarding the accessibility of the data to 
the public, this layer can be further categorized into two sublayers. The first sublayer includes Personally Identifiable 
Information (PII) which needs certain permission or approval for retrieving the data. The second part includes personal 
information that is available to the public. The data elements in this layer are patient’s name, family name, residential 
address (i.e., state, city, zip code), marital status, employment, federal tax id (SSN), race, Federal Tax ID Number, 
Federal Tax ID Number (SSN / EIN) 

Insurance layer 
This layer contains data elements regarding insurance, namely Type of Insurance, Insured ID Number Insured’s Policy 
Group or FECA Number, Insured’s Employer’s or School Name, Insurance Plan or Program Name, Other Insured’s Policy 
or Group Number, Insurance Plan or Program Name, Another Health Benefit Plan, Insurance Plan Program 
Classification Code (Primary), Insurance Plan Program Classification Code (Other) 
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Admission layer 
This layer includes information regarding the admission event: the variables are ID of Referring Physician, NPI Number 
of Referring Physician, Hospitalization Dates Related to Current Services – From and Through, Diagnosis or Nature of 
Illness or Injury Date(s) of Service – From and Through Place of Service, Emergency Code, Patient’s Account Number, 
Total Charges, Days or Units EPSDT. 

 

Trauma Center Data 
A trauma center is a hospital that is equipped and staffed to provide care for patients suffering from major traumatic 
injuries such as vehicle collisions, gunshot wounds, falls, etc. Depending on available resources of each trauma center, 
patients may require stabilization and transfer to another facility. The National Trauma Data Bank® (NTDB®) is the 
largest aggregation of U.S. trauma registry data ever assembled. Participation is voluntary and is one of the leading 
performance improvement tools of trauma care (NTDB 2018). Since its inception in 1994, many researchers have 
published work based on data from the NTDB. In 2008, the NTDB implemented the National Trauma Data Standard 
(NTDS) to standardize data collection across all reporting hospitals. Currently, the NTDB contains detailed data on over 
2.7 million cases from over 900 U.S. trauma centers (NTDB 2018). 

How to Access the Database  
NTDB® data are maintained in a secure database with limited internal access. External users must gain permission to 
the database and data; users are then supplied data at the aggregate level only. The data set is de-identified, and no 
protected health information is provided. Use of NTDB data is in strict compliance with the Health Insurance Portability 
and Accountability Act of 1996 (HIPAA). The NTDB does not distribute or report hospital information in any manner 
that allows the reporting hospital to be identified without the express written permission of the hospital. The dataset 
collected by NTDB is considered a limited dataset under HIPAA, and the research dataset that ACS releases is a de-
identified dataset (ACS 2018).  

National Trauma Data Bank® (NTDB®) research data may be used for informational and research purposes with 
approval from the American College of Surgeons (ACS) Committee on Trauma. Permission to use the NTDB dataset is 
required via an online data application form found on their website.  

Consistency of the Data across States 
There are no general and all-inclusive guidelines for developing each of the trauma registry elements. Currently, each 
institution designs its trauma registry based on its needs or to meet mandatory state or city requirements (Zehtabchi et 

al. 2011). The NTDS provides definitions for variables and response codes. Institutional and state trauma registries 
often collect additional variables depending on their needs. Most trauma registries incorporate the following data: 
demographic information, mechanism of injury (external cause of injury codes), procedures, clinical diagnoses (based 
on International Statistical Classification of Diseases and Related Health Problems), length of stay, disposition, and in-
hospital mortality. Many also include abbreviated injury scores (AIS), charges, payers, and information about 
complications as well as follow-up procedures if they occur at the same institution. Some important variables, such as 
longer-term mortality or functional outcomes, are rarely collected (Zehtabchi et al. 2011).  

Layers of the Database 
The Research Data Set (RDS) provided by the NTDB is a set of relational tables and consists of 18-20 data files. These 
files are provided in ASCII-CSV (comma separated value) format, standard SAS (*.sas7bdat) data tables (for datasets 
Admission Year (AY) 2007 and later), and DBF format (DBASE version 2.0), which can be easily imported to most 
statistical software. The relational tables are too large to be analyzed in Microsoft Excel but have been used in 
Microsoft Access, SAS, STATA, SPSS, and Tableau. 

Three different classes of tables exist in the data set: 
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1. Incident-based tables - Most of the data files include a unique incident identifier (inc_key) for merging the data 
files together.  

2. Facility-based tables - One data file (RDS_FACILITY) includes the facility information for participating hospitals, 
and these data can be merged to RDS_ ED, RDS_DEMO, and RDS_DISCHARGE, by using the unique facility 
identifier (fac_key). 

3. Lookup tables - The remaining data files (RDS_AISDES, RDS_ECODEDES, RDS_DCODEDES, and RDS_PCODEDES; 
RDS_DIAGNOSISDESC and RDS_PROCEDUREDESC in Admission Year 2002-2006 data) are look-up tables with 
the description of the AIS code, ICD-9-CM E-Code, ICD-9-CM diagnosis codes, and ICD-9-CM procedure codes, 
ICD-10-CM E-Code, ICD-10-CM diagnosis codes, ICD-10-CM procedure codes, and ICD-10-CM location codes. 
The look-up tables can be merged with the unique RDS_DCODE, RDS_ICD10_DCODE, RDS_ECODE, 
RDS_ICD10_ECODE, RDS_PCODE, RDS_ICD10_PCODE, and RDS_ICD10_LOC (RDS_DIAGNOS and 
RDS_PROCEDUR in AY 2002-2006 data) table 

 

Of interest are the following files: 

• RDS_DEMO includes information about patient demographics, including patient's birth year, age at time of 
injury, gender, race, and ethnicity; 

• RDS_FACILITY provides information about the facility; 
• RDS_SCENE pertains to information about the scene of the trauma, including year, county and site of injury (i.e., 

Home, Farm, Mine and Quarry, Industrial Places and Premises, Place for Recreation and Sport, Street and 
Highway, Public Building, Residential Institution, Other Specified Places, and Unspecified Places);  

• RDS_PROTDEV refers to protective devices; 
• RDS_SAFETY includes information pertaining to safety equipment used/worn at time of the injury; 
• RDS_TRANSPORT includes the type and mode of transportation; 
• RED_ECODE pertains to external cause of injury 
• BODYREGION - Body region based on the AAAM (Association for the Advancement of Automotive Medicine) 

area on body, includes head, face, neck, thorax, abdomen, spine, upper extremity, lower extremity and 
unspecified. 

• RDS_ED references the ED and Injury information including year when the patient was injured, first recorded 
time of patient's arrival at reporting hospital, and whether patient used alcohol or drugs. 

 

Medical Insurance Claims – All-Payer Claims Database (APCD) 
In recent years, a growing number of states have established databases that collect health insurance claims 
information from all healthcare payers into a statewide information repository. By December 2017 at least 18 states 
had enacted “all-payer claims databases” (or APCDs). APCDs are large-scale databases that systematically collect 
medical claims, pharmacy claims, dental claims (typically, but not always), and eligibility and provider files from private 
and public payers. The first statewide APCD system was established in Maine in 2003. By 2017, 18 states had passed 
legislation and established APCDs. Cooperative state-private sector databases are found in Colorado, Kansas, 
Minnesota, Tennessee, Maine, Maryland, Massachusetts, New Hampshire, Rhode Island, Utah and Vermont (NCSL 
2017). States that have been implementing APCDs more recently include Connecticut, Nebraska, New York, Virginia 
and West Virginia. States that have had existing voluntary efforts to maintain an APCD include Virginia, Washington, 
and Wisconsin (NCSL 2017). 

APCD systems collect data from existing claims transaction systems used by healthcare providers and payers. The 
information typically collected in an APCD includes patient demographics, provider codes, and clinical, financial, and 
utilization data. Because of the difficulties involved with the collection of certain information, most states 
implementing APCD systems typically have not included a number of data elements, such as denied claims, workers’ 
compensation claims, and, because claims do not exist, services provided to the uninsured (Porter et al. 2014).  
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How to Access the Database  
Most states define the details about APCD data collection requirements (e.g., format and timing of submission, 
specifications of data elements, and thresholds for payers that are required to submit data) uniquely from other states 
(Porter et al. 2014). Each state assesses its own legislation to determine the most efficient way to design a flexible but 
comprehensive APCD as there is no model. Determining what data and information will be released and to whom can 
be the most sensitive aspect of APCD implementation, and there is significant variation in policies and practices 
across states (Porter et al. 2014). States generally de-identify the data using encryption and statistical methods to 
mask the identity of the individuals in the database, though some states allow qualified users to access de-identified 
and research files. Regulations that specify data access and release policies vary according to state legal and political 
environments (e.g., Minnesota does not release data to external organizations because of privacy concerns; some 
states limit data access to state government only) (Porter et al. 2014). Each state will need to be contacted separately 
to gain access to the APCD database. Various state departments house the database (i.e., Department of Health (Utah, 
Minnesota); Independent state agency (West Virginia, Maine); Health and insurance departments with overlapping 
responsibilities (New Hampshire), and External, non-governmental agency (Colorado)).  

Layers of the Database 
Though not standardized, generally there are several layers in each state’s APCD database. Generally, these would 
include information regarding the Patient, Subscriber, Claim, and Service. The Agency for Healthcare Research and 
Quality has performed basic database formatting of APCD data based on Accredited Standards Committee X12 (ASC 
X12) input (AHRQ 2018a). ASCX12 is a standards organization chartered by the American National Standards Institute 
to develop and maintain electronic data interchange architecture. 

Patient Personal Information Layer  
This layer includes personal information of the patient. These variables could include Encrypted Member First Name, 
Middle Initial, and Last Name; Patient Address, City, State and Zip Code; Date of Birth and Gender, and Patient 
Identification Code and Patient Relationship Code to Subscriber, and Subscriber Social Security Number. 

Subscriber Personal Information Layer  
This layer includes personal information of the patient. These variables could include Encrypted Subscriber First Name, 
Middle Initial, and Last Name; Subscriber Insured Group or Policy Number, Subscriber Plan Specific Contract Number, 
and Subscriber Social Security Number, which would link the Subscriber Data layer to the Patient Data layer.  

Medical Insurance Claim Layer 
This layer generally contains data elements about the medical insurance and payments claim. This layer can contain 
information on Insurance Product, such as Health Maintenance Organization (HMO), Preferred Provider Organization 
(PPO), Type of Insurance Contract (e.g., single, family, etc.), and Subscriber Insured Group or Policy Number, which can 
link to the Subscriber Personal Information Layer. The Medical Insurance Claim Layer can also include Health Plan 
Payments, Member Payment Responsibility, Type and Date of Bill Paid, Claim Status and Revenue Codes.  

Medical Service Layer 
This layer may contain data elements about the service and treatment. Variables in this layer could include Information 
on the Dates or Service, and the Date Service was Approved; Admission Date/Time, Type, Point or Origin and Billing 
Provider; Discharge Date/Time and Status; Admitting Diagnosis, E-Code and/or Other Diagnosis, and Billing Provider 
Information, such as Last Name, Organization Name and Number, and Billing Provider ID. Also, this layer contains 
Service Provider Information, such as Service Provider ID, City Type, Entity Type, Service Provider Name (i.e., First, Last 
and Middle Initial) and Number, State/Zip Code, Specialty, and Tax Identification Number. Other dataset fields include 
information regarding Charge Amount, Co-Pay Amount, Coinsurance Amount, Deductible Amount, Diagnosis Related 
Group Code, Drug Code, Procedure Code, and Revenue Code.  
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Medical Expenditures Panel Survey 
The Medical Expenditure Panel Survey (MEPS), which began in 1996, is a set of large-scale surveys of families and 
individuals across the United States, their employers and availability of health insurance, their medical providers 
(doctors, hospitals, pharmacies, etc.), and their use of nursing home services. MEPS collects data on the specific 
health services that Americans use, how frequently they use them, the cost of these services, and how they are paid 
for, as well as data on the cost, scope, and breadth of health insurance held by and available to U.S. workers.  

How to Access the Database  
There are four parts to the MEPS data: The Household Component (HC), the Insurance Component (IC), the Medical 
Provider Component (MPC), and the 1996 Nursing Home Component (NHC). The HC data for households and IC 
estimates for national, regional, state and metropolitan areas are available on the MEPS Web site in data tables (i.e., 
tabular form), downloadable data files, via interactive data tools, and in publications using HC data. MPC data is used 
to supplement, verify, and/or replace information provided by household respondents about the charges, payments, 
and sources of payment associated with specific healthcare encounters. MPC data are collected once for each 
calendar year of data, during the year following the reference year. The most current data years of the MPC 
questionnaires are available online. MPC data from previous data years are available upon request to the MEPS project 
director. The purpose of the MPC data is to supplement household-reported data, and it is not intended to be an 
independent sample of providers for estimation purposes. The NHC was conducted in 1996 only. Because of 
confidentiality concerns, data collected from the 1996 MEPS-NHC questionnaire are only available at the Agency 
Healthcare Research and Quality (AHRQ 2018b) Data Center. 

Layers of the database 
MEPS currently has four major components: The Household Component (HC), the Insurance Component (IC), the 
Medical Provider Component (MPC) and the 1996 Nursing Home Component (NHC). The Household Component 
provides data from individual households and their members; the Insurance Component is a separate survey of 
employers that provide data on employer-based health insurance; the Medical Provider Component is used to verify 
medical and financial characteristic information of medical events described in the HC survey from medical providers, 
and the 1996 Nursing Home Component comes from community sources with a minor amount of data collected from 
nursing home sources.  

Household Component Layer  
The Household Component (HC) collects data from a sample of families and individuals in selected communities 
across the United States, drawn from a nationally representative subsample of households that participated in the prior 
year's National Health Interview Survey (conducted by the National Center for Health Statistics). Multiple rounds of 
household interviews are conducted allowing MEPS to collect detailed information for each person in the household on 
many topics. The round of household interviews covers approximately 45 sections, with each section comprising 
multiple questions. Listed below is a brief description of each of the 45 sections: 

1. Access to Care (AC) identifies whether each household member has a medical provider, aspects of the 
providers, and problems a household may have in obtaining health care; 

2. Alternative/Preventive Care (AP) gathers information on any preventive care received, such as frequency of 
dental and physical check-ups, flu shots, etc.;  

3. Assets (AS) asks about household members' real estate, businesses, vehicles, investments, other assets, and 
debts; 

4. Calendar Section (CA) monitors the use of a health events calendar provided to the respondent for use in 
recording visits to medical providers and medical places; 

5. Condition Enumeration (CE) obtains a summary assessment of each person's physical and mental health; 
6. Caregiver (CG) collects information on potential caregivers both inside and outside the household; the types and 

duration of care provided, etc.; 
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7. Closing (CL) is when participants are asked to provide written authorization for the MEPS to collect additional 
information from medical/insurance providers and employers; 

8. Conditions (CN) collects additional information about physical and mental health conditions identified through 
medical events or disability days; 

9. Charge Payment (CP) tracks total charges and sources of payment for medical events; obtains specific 
information regarding total charges, copayments, out-of-pocket payments, etc.; 

10. Caregiver Roster (CR) collects detailed information on non-household members identified as a potential 
caregiver in the Caregiver supplemental section; 

11. Child Preventive Health (CS) collects information on health care status and needs, behavioral problems, 
accessibility to care, preventative care, height, and weight of any child in the family; 

12. Disability Days (DD) assesses each year’s impact of any physical illness, injury, or mental or emotional problem 
on household members' attendance at work or school; 

13. Dental Care (DN) obtains details on the nature of any dental care visit, type of dental care provider, treatments 
and services performed, and prescribed medicines; 

14. Event Driver (ED) verifies and modifies information entered; provides an opportunity to add new medical events 
throughout the interview if the respondent recalls an event later; 

15. Employment (EM) covers questions about each person's employment or lack of employment status, including 
type and size of business, employment length, reasons for unemployment, etc. 

16. Overall Structure of Employment (EM-O) collects detailed information on jobs held by each person in the 
household aged 16 or older and the health insurance provided by each employer; 

17. Emergency Room (ER) obtains information on the health conditions requiring emergency room care, medical 
and surgical services provided, prescribed medicines, etc.; 

18. Event Roster (EV) asks for additional detail on event dates, type of event, and type of provider, as well as the 
charge and payment for each event; 

19. Employment Wage (EW) collects detailed information about the wage structure for all non-self-employed; 
20. Flat Fee (FF) is a subsection of Charge Payment (CP) and captures information on those types of medical 

payments that charge a grouped amount, or flat fee, for multiple visits or services; 
21. Health Status (HE) assesses the physical and mental health status for both children and adults. Specific areas 

assessed include the loss of adult teeth, limitations in activities of daily living, etc.; 
22. Home Health (HH) obtains information on the types of health care workers providing home health services, 

reasons for and nature of the care, frequency of visits, length per visits, etc.; 
23. Private Health Insurance Detail (HP) collects details on each private health insurance policy, including name of 

insurance company, policyholder identified, household members covered by each policy, etc.; 
24. Time Period Covered Detail (HQ) clarifies the timeframe for which each person was covered by each reported 

health insurance policy; 
25. Hospital Stay (HS) obtains details on the length of stay, reasons or conditions requiring hospitalization, 

surgical procedures performed, medicines prescribed, etc.; 
26. Health Insurance (HX) collects detailed information about various insurance programs, household members 

covered; program coverage; etc. This section creates a link to job characteristics collected in the Employment 
(EM) section; 

27. Income (IN) collects information about the household members' Federal income tax filing status, itemized 
deductions for health insurance premiums, tax credits, wages, other income, etc.; 

28. Long-Term Care (LC) collects information on institutionalized household member who received long-term care 
due to an impairment or a physical or mental health problem and their care; 

29. Managed Care (MC) determines whether household members are covered under a private managed care plan; 
30. Medical Provider Visits (MV) obtains details on the nature of visits, type of and time with provider, health 

conditions requiring services, treatments and procedures, prescriptions, etc.  
31. Over-the-Counter Medicine (OC) collects details about purchases of any over-the-counter medicines used, type 

of health conditions for which they were purchased and cost; 
32. Old Employment/ Private Related Insurance (OE) collects information about the continuation of insurance 

coverage; 
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33. Other Medical Expenses (OM) collects information in cases where respondents report expenses for glasses or 
contact lenses or for insulin and other diabetic equipment; 

34. Outpatient Department (OP) obtains information on any outpatient visits (e.g., nature of the contact, type of 
care received, health conditions requiring outpatient services, treatments, etc.); 

35. Priority Conditions (PC) collects information about a select group of medical conditions including sore or strep 
throat, diabetes, asthma, hypertension, coronary heart disease, angina, heart attacks, other heart disorders, 
strokes, emphysema, joint pain, and arthritis; 

36. Provider Directory (PD) compiles a directory of all medical persons and medical facilities reported by MEPS 
respondents; 

37. Priority Conditions Enumeration (PE) obtains a summary assessment of each person's physical and mental 
health; 

38. Pregnancy Detail (PG) collects additional information (duration, complications, etc.) for women identified in the 
Condition Enumeration section as having been pregnant; 

39. Prescribed Medicines (PM) obtains details on prescribed medicines reported in earlier medical events sections, 
such as date of use, refill status, etc. 

40. Provider Probes (PP) collects information required to create a medical event in the database, i.e., the type of 
event, the person incurring the event, the health care provider, and the date(s) of the event; 

41. Old Public Related Insurance (PR) collects information on household members covered by Medicare, Medicaid 
or other state or local government sponsored programs; 

42. Provider Roster (PV) creates a roster to display the name and street address of each provider and/or facility 
associated with each person's medical events; this information is strictly confidential;  

43. Re-numeration-A and B(RE-A/RE-B) identifies each person and family unit living within each household and 
defines how family members are related to one another and the size of the family unit (i.e., race, ethnicity, 
educational attainment, and military status); 

44. Review of Employment Information (RJ) reviews employment information for any current job including job 
status, salary, health insurance benefits, size of employment establishment, etc.; 

45. Satisfaction with Health Plan (SP) collects satisfaction information (e.g., ease of access, delays incare, etc.) for 
private insurance, Medigap, Medicare managed care programs, Medicaid, etc.  

 

Insurance Component Layer  
The Insurance Component (IC) collects data from a sample of private and public sector employers on the health 
insurance plans they offer their employees. The data include the number and types of private insurance plans offered 
(if any), premiums, contributions by employers and employees, eligibility requirements, benefits associated with these 
plans, and employer characteristics. The survey is also known as the Health Insurance Cost Study. IC data is divided 
into two sections: Establishment Information and Health Insurance Information.  

Establishment Information Layer  

Establishment information includes location of business, number of employees, minimum number of hours per week 
employees had to work in order to be eligible for health insurance, workforce information (e.g., union membership, 
percentage of female employees, employees aged 50 or older, hourly pay, types of fringe benefits, types of tax-
advantaged benefits, etc.), availability and cost of insurance plans for employees, the health insurance plans, employee 
eligibility and enrollment in various insurance plans, the number of part-time workers, their insurance eligibility and 
number of workers enrolled in health care plans, and the number of employees who work less than 30 hours per week. 
Other information includes: the use of Small Business Health Options Program or use of insurance broker or agent to 
help purchase a plan, the eligibility of employees for optional health plans (e.g., dental, vision, prescription drug, long-
term care, etc.), the total amount paid by employer and employee for optional coverage, the imposition of a waiting 
period for new employees, any financial compensation or incentives to employees if they did not elect to receive health 
insurance coverage, the eligibility of employee spouses, domestic partners or other family members in health insurance 
plans, and the availability and eligibility of retirees in health insurance plans. 
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Health Insurance Information Layer  

The Health Insurance Information Layer contains a number of variables. These include the name of the health 
insurance plan with the largest (or next largest) enrollment; type of health care provider arrangement available through 
this plan (e.g., single, family, etc.); whether the plan requires the enrollee to see a gatekeeper or primary-care physician; 
whether the plan is offered through a union or a trade association; if the plan has been purchased from an insurance 
underwriter or was it self-insured; if the organization employed a third party administrator (TPA) or purchase 
administrative services only (ASO) from an insurer for this self-insured plan; if the organization purchased a stop-loss 
coverage for this plan and the specific stop-loss amount per employee; the percentage of medical expenses paid by the 
plan; the number of employees enrolled in the various coverages (e.g., single coverage, employee plus one coverage 
and family coverage); the number of employees enrolled through COBRA; the deductibles for each coverage type; the 
availability and contributions of health savings accounts or health reimbursement arrangements, and the percentage 
of total hospital, specialist or prescription drug bill paid by employer versus employee. 

Medical Provider Component  
The Medical Provider Component (MPC) requests data from hospitals, physicians, home health care providers, and 
pharmacies identified by HC respondents. Its purpose is to supplement and/or replace information received from the 
respondents about the health care that was provided to sample household members in the course of the survey year. 
Patients in sampled households were asked to sign permission forms authorizing contact with their healthcare 
providers. The purpose of the MPC is to supplement, verify, and/or replace information provided by household 
respondents about the charges, payments, and sources of payment associated with specific healthcare encounters. 
This is important because people cannot always accurately answer questions about the health services they received 
and about the cost of those services. The information is used solely for editing and imputation purposes on the 
Household Component. Therefore, these data will not be released in a stand-alone file. The seven questionnaires are 
designed to obtain information on both the medical and financial characteristics of medical events. A brief summary of 
each questionnaire is found below. 

Home Care Health Care Provider Event Questionnaire is used to collect data from home health care agencies which 
provide medical care services to household respondents. Information collected includes type of practitioner providing 
care, hours of service and visits provided per month, and the charges and payments for services received. 

Home Care Provider Event Questionnaire for Non-Health Care Providers. This is used to collect information about 
services provided in the home by non-health care workers to household respondents because of a medical condition; 
for example, cleaning or yard work, transportation, shopping, or child care. Charges and payments for services received 
are also collected. 

Institutional Event Questionnaire for Non-Hospital Facilities. This is used to collect information on services and 
expenditures for persons from the household sample who were admitted to a nursing home, rehabilitation center, or 
other non-hospital long-term health care facility during the survey year.  

Office-based Provider Event Questionnaire. This is used to collect data from the office-based physician sample, 
including Doctor of Medicine (MDs) and osteopathy (DOs), as well as providers practicing under the direction or 
supervision of an MD or DO (e.g., physician assistants and nurse practitioners working in clinics). Providers of care in 
private offices, as well as staff model HMOs, are included. This includes diagnoses, procedure, and inpatient stay 
codes, charges or charge equivalents (where available) before any contractual adjustments or discounts, sources and 
amounts of all payments made, and the reasons for any difference between charges and payments.  

Separately Billing Doctors Event Questionnaire. Information from physicians identified by hospitals as providing care to 
sampled persons during the course of inpatient, outpatient department or emergency room care, but who bill 
separately from the hospital, is collected in these questionnaires.  
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Hospital Event Questionnaire. This is used to collect information about hospitals events, including inpatient stays, 
outpatient department, and emergency room visits. Hospital data are collected not only from the billing department, 
but the medical records and administrative records departments as well. Medical records is contacted to determine the 
names of all the doctors who treated the patient during a stay or visit. In many cases, the hospital administrative office 
also has to be contacted to determine whether the doctors identified by medical records billed separately from the 
hospital itself. HMO hospitals are included in the data collection effort. This includes diagnoses, procedure, and 
inpatient stay codes, charges or charge equivalents (where available) before any contractual adjustments or discounts, 
sources and amounts of all payments made, and the reasons for any difference between charges and payments.  

Pharmacies and Other Sources of Prescribed Medicines Event Questionnaire. Pharmacy data collection focuses on the 
request for a patient profile (a computer generated listing of the prescriptions dispensed to a given customer). Date 
filled, National Drug Code, medicine name, strength of medicine (amount and unit), quantity (package size/amount 
dispensed), and payments and amounts by source. However, when possible, a patient profile (a computer-generated 
printout of a person's drug purchases) is requested to make the request less burdensome on the provider. Generally, 
patient profiles contain all the data elements requested in the questionnaire. Pharmacy data collection includes drug 
stores, grocery stores, discount stores, mail order, online, clinics, HMOs, and hospitals. 

1996 Nursing Home Component 
The 1996 Nursing Home Component (NHC) comprises 12 questionnaires with multiple queries. Data were collected 
from community sources, and a minor amount of data was collected from nursing home sources. This component is 
only available for 1996. The following is a listing of the 12 Questionnaire types: 

• Nursing Home: Person Characteristics Questionnaires  
• Nursing Home: Facility Background and Health Insurance Questionnaires  
• Nursing Home: Health Status Questionnaire  
• Nursing Home: Facility Residence History Questionnaire  
• Nursing Home: Prescribed Medicines Questionnaire  
• Nursing Home: Expenditures Questionnaire  
• Nursing Home: Use of Services Questionnaire  
• Community Sources: Person Characteristics Questionnaires 
• Community Sources: Community Questionnaire  
• Community Sources: Facility Characteristics Questionnaires (from sampled facility sources) 
• Community Sources: Facility-Level Questionnaire  
• Community Sources: Facility Characteristics Questionnaires (from new facility sources) 

 

Crash Environment Databases 
Travel Demand Models 
Traffic Analysis Zone (TAZ) data and associated travel demand model data can be provided by any regional entity with 
an operational travel demand model. Travel demand models describe present and project future patterns of travel 
demand, which means the origins and destinations of trips, the modes used to reach those destinations, and the routes 
used for each individual trip. 

TAZ data is typically available from Metropolitan Planning Organizations (MPOs). Some states also manage travel 
demand models and may have such data at the state level. Traffic Analysis Zone data is typically not posted for 
download on the internet. It must be requested from the appropriate person within an MPO or state departments of 
transportation (DOTs). Some organizations have standardized processes for requesting such data whereas others do 
not. 
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How to Access the Database with PII 
Personally identifiable information is not available in TAZs or from travel demand models. 

Consistency of the Data across States 
There are no consistent standards for TAZ data across MPOs and State DOTs. 

Layers of the Database 
Travel demand models include data on TAZs and data on flows between TAZs. 

Data on TAZs 
Most travel demand models include basic demographic information at the TAZ scale, including population counts and 
employment counts with a variety of population and employment types. Population is often available by income group. 
In some cases, the pedestrian friendliness of each zone is scored. 

TAZs may also have other data associated with the travel demand model such as trip productions, trip attractions or 
accessibility. Trip productions are statistically modeled estimates of the number of trips of a particular purpose 
originating from a given TAZ. Trip attractions are statistically modeled estimates of the number of trips of a particular 
purpose destined for a given TAZ. Accessibility is a generalized measure of the ability to reach a particular type of 
destination by a particular mode across the region. 

Data on TAZ Flows 
Travel demand models predict the number of trips between TAZs by time of day and by mode (auto, public transit, walk, 
bike, taxi, etc.). They also estimate the expected travel time between TAZs by time of day and by mode. 

 

Parcel Data 
Parcel-level data are generally available from local jurisdictions such as counties, cities, and townships. They are 
typically available only for the present year, but in some cases parcel databased are archived and available for each 
year. One of the primary limitations of parcel data is that the fields available, as well as the quality of the data, can vary 
substantially by jurisdiction. 

Most jurisdictions in the United States have parcel data available in GIS form. The fields that are most typically 
available include Taxable value for land; taxable value for buildings; land acreage; year structure built; and information 
about the most recent sale of the property, including sale value. Less common fields include land use codes; zoning 
codes; and building area. 

Based upon these fields, it is sometimes possible to calculate the percentage of land in different land uses within a 
district, the number of parcels of different land uses within a district, and if building area is available, floor area ratio, 
which is the ratio of building floor area to parcel land area. 

Based on the acreage in different types of land uses, it is also possible to calculate level of mixed-use via an entropy 
calculation. 

Land use types, land use entropy, and floor area ratio have all been used in safety research to identify potential hot 
spots for different crash types. 

How to Access the Database With PII 
Parcel data is requested by contacting the GIS administrator of a local jurisdiction. Some jurisdictions post their parcel 
data and/or land use data online available for free download. Other jurisdictions require payment for access to their 
parcel and/or land use data. 

Since parcel data surrounding the crash location is unrelated to the identification of crash victims, PII data is not 
available from parcel data. 
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Consistency of the Data across States 
There is no national data standard for parcels. Some states have standardized state formats, such as the State of 
Washington (https://depts.washington.edu/wagis/projects/parcels/). But it is quite common to have substantial 
variations across local jurisdictions within states. 

Layers of the Database 
Parcel-level data has only a single layer, data corresponding to land parcels. 

 

LODES 
Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES) data provide 
information on the residential location of workers, the workplace location of workers, and the flows between the two. 
The US census synthesizes this data from multiple administrative sources including state unemployment records. The 
geographical unit of analysis for this data is the census block scale. 

LODES data are available back to 2002, and most states are covered for most years. Out of 53 states and US territories, 
50 were participating as of 2017. 

Data are available from US census’ Longitudinal Employer-Household Dynamics website: 
https://lehd.ces.census.gov/data/#lodes  

How to access database with PII 
Personally identifiable information is not available from the LODES. Statutory requirements prevent LODES from 
disclosing personally identifiable information. Noise is added to the data in order to ensure that no personally 
identifiable information is recoverable. 

Consistency of the Data across States 
LODES data is completely consistent over US States as well as US territories. The same data can be used nationwide, 
although not all states are covered for every data year. 

Layers of the database 
US census has data on several different universes. These universes include people, households, families, workers, 
housing units, and certain subsets of the above (i.e., population 25+). The primary universes of interest for crash data 
are people and households. 

Residential Area Characteristics (RAC) 
Residential Area Characteristics data includes total number of workers, workers by age, workers by earnings category, 
workers by race, workers by industrial category (North American Industry Classification System or NAICS), workers by 
sex, and workers by educational attainment. Notably, counts are by job, not by worker, so a worker may be counted 
twice unless only primary jobs are selected for analysis. 

Workplace Area Characteristics (WAC) 
Workplace Area Characteristics data includes total number of workers, workers by age, workers by earnings category, 
workers by race, workers by industrial category (NAICS), workers by sex, workers by educational attainment, workers by 
firm size, and workers by firm age. Notably, counts are by job, not by worker, so a worker may be counted twice unless 
only primary jobs are selected for analysis. 

Origin to Destination Flows (OD) 
This contains the total number of jobs flowing from a given residential block to a given workplace block. Counts are 
also available disaggregated by worker age, worker income category, and major worker industrial sector. 
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Census Data 
The US census gathers data through the decennial census and the American Community Survey every year. The 
decennial census is an attempt at a complete count of the US residential population, but only covers age, race, 
household structure, and residence. The American Community Survey (ACS) covers a wide range of demographic and 
economic information for persons and households but is only a sample and therefore cannot provide accurate counts 
at small levels of geography. The smaller the geography considered, the larger the margin of error is for ACS data. 

US census data are available at many levels of geography, with the primary ones being State, County, Census Tract, 
census Block Group, and census Block. Lower levels of census geography next within higher levels in the above 
scheme. 

US census data are available from the American Factfinder website, but also from many secondary data providers such 
as ESRI Business Analyst, Social Explorer, and National Historic GIS. In some cases, secondary data providers may 
make the data easier to access than American Factfinder.  

How to Access the Database With PII 
Personally identifiable information is not available from the US census. Statutory requirements prevent the US census 
from disclosing personally identifiable information. 

Consistency of the Data across States 
US census data is completely consistent over US States as well as US territories. The same data can be used 
nationwide. 

Layers of the Database 
US census has data on several different universes. These universes include people, households, families, workers, 
housing units, and certain subsets of the above (i.e., population 25+). The primary universes of interest for crash data 
are people and households. 

Data on the Universe of People 
Data on the Universe of People includes a wide range of demographic and economic variables including age, race, sex, 
ethnicity, migration status, household status, educational status, and employment status. 

Data on the Universe of Households 
Data on the Universe of Households includes housing tenure, housing costs, vehicle availability, household type (i.e., 
parents, children, marital status, and unrelated persons). 

Data on the Universe of Workers 
Data on commuting is for the universe of workers aged 16+. Commuting data includes work location relative to 
residential location, commute mode, commute time of day, and commute length in minutes. 

 

Highway Performance Monitoring System 
The Highway Performance Monitoring System (HPMS) is a national program which includes inventory information for 
all of the Nation's public roads as certified by the States’ Governors annually. HPMS contains data from 50 states, DC 
and Puerto Rico and US territories. Regardless of road ownership, all roads that are open to public travel are reported in 
HPMS, including Federal, State, county, city, and privately-owned roads such as toll facilities. HPMS data are used to 
calculate following performance measures (DOT 2017):   

• Rate of fatalities in 23 CFR 490.207(a)(2)  
• Rate of serious injuries in 23 CFR 490.207(a)(2)  
• Percentage of pavements of the Interstate System in Good condition in 23 CFR 490.307(a)(1)  
• Percentage of pavements of the Interstate System in Poor condition in 23 CFR 490.307(a)(2)  
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• Percentage of pavements of the non-Interstate NHS in Good condition in 23 CFR 490.307(a)(3) 
• Percentage of pavements of the non-Interstate NHS in Poor condition in 23 CFR 490.307(a)(4) 

National, State, and local transportation decision-making may also use HPMS database in transportation planning 
process for decision making to analyze trade-offs among the different modes of transportation.  

How to access database  
This database is available online, and it is free of charge. This database is available in shapefile format. In the HPMS 
website, the data from 2011 to 2015 are available to the public.  

Consistency of the Data across States 
Each state is required to annually report and furnish all data per the reporting requirements which is specified in this 
HPMS Field Manual. The District of Columbia and the Commonwealth of Puerto Rico are treated as states for HPMS 
reporting purposes. Moreover, United States Territories (Guam, the Commonwealth of the Northern Marianas, American 
Samoa, and the Virgin Islands of the United States) are required to annually report limited HPMS summary data only, in 
addition to the separate reporting of certified public road mileage (DOT 2017). 

Layers of the database 
This database has several layers; the layers are inventory, route, traffic, geometric, pavement and special network. For 
more details about the data elements and their changes during the time, please visit highway performance monitoring 
system field manual (DOT 2017).  

 

Meteorological Data, Terminal Aviation Routine (METAR) Weather Data 
The most globally consistent weather data is associated with aviation activity. METAR (Meteorological Terminal 
Aviation Routine) weather data refer to a well-defined format for reporting weather information to pilots and 
meteorologists. Raw METAR data is standardized by the International Civil Aviation Organization (ICAO), which allows 
it to be understood throughout most of the world (NWS 2018). Three types of weather reporting systems are used to 
collect data for METAR formatting: Automated Terminal Information Service (ATIS), Automated Airport Weather 
Observation System (AWOS) and Automated Surface Observing System (ASOS) data.  

ATIS data requires a human to monitor weather at a terminal and integrate these data into automatically observed 
weather data systems provided by AWOS or ASOS. AWOS data collection systems are maintained and operated by 
state or local governments under the authorization and certification of the Federal Aviation Administration (FAA). On 
the other hand, ASOS systems are maintained and operated by a joint effort between the National Weather Service and 
Department of Defense (NOAA 2017). The ASOS systems provide weather information beyond that of aviation.  

How to access database  
Weather stations from around the world report weather conditions every hour. The Aviation Weather Center saves up to 
seven days of this data. METAR data can be downloaded from the Aviation Weather Center website at 
https://aviationweather.gov/. The data can be accessed through an interactive display or their data server.  

The METAR interactive display page contains an image of the current surface observations in the United States. This 
page uses OpenLayers to provide an interactive display of data including zoom and pan, which allows the user to alter 
the map display to include the world, and allows the user to click on a specific station or airport to obtain METAR 
information. The background map can be viewed in Light (vector map display), Dark (raster map display) or Simple (line 
map display). Data Layers are available in Satellite or Radar. In addition, overlays such as Highways, Top Jet routes and 
Air Route Traffic Control Center/Flight Information Region (ARTCC/FIR) Bounds are available. Each station or airport is 
automatically viewed in a station model or square plot layout. The station model layout illustrates the temperature in 
the upper left, dewpoint in the lower left, coded altimeter setting in upper right, visibility far left, weather near left, cloud 



 
www.roadsafety.unc.edu	 51	

www 

cover colored by flight category and wind barb. The Plot Options section of the interactive map allows the user to 
select or deselect these options, in addition to data density and scale, as well as time frame for data display. 

The data server provides a method to query specific datasets in order to access real-time METAR, PIREP, AIREP, TAF 
and AIRSIGMET data. This service is oriented towards automated parsing and is an ideal mechanism for users needing 
more flexible access to raw data that is available through the interactive website. Results are downloaded into CSV 
(Comma Separated Value) or XML files. In the CSV file, statistics are reported first, followed by a header indicating 
which fields are being reported. All data is ordered by descending observation time. CSV files can be open in Excel or 
Access. XML files are an Extensible Markup Language file. METAR XML output has an XML schema, which describe 
the elements in an XML document in a series of XSD files (e.g., aircraftreport1_0.xsd, airsigmet1_1.xsd, gairmet1_0.xsd, 
metar1_2.xsd, pirep1_2.xsd, station1_0.xsd, taf1_2.xsd, etc.). These files are plain text files that can be opened in 
Notepad or a web browser. 

Layers of the database  
METAR raw data contains information that can be grouped into four categories: Data Station Layer, Wind Data Layer, 
Weather Conditions Layer and Visibility and Sky Conditions Layer.  

Data Station Layer 
The Data Station Location Layer includes elements pertaining to the following attributes: 

• Observation Type can be either METAR for a regularly reported observation (such as an hourly) or SPECI for a 
special observation; 

• Station Identifier consists of four characters that can be alphanumeric (e.g., McGhee Tyson Airport station 
identifier is KTYS, with the letter K designating a US Station); 

• Date/Time of observation in International Organization for Standardization (ISO); ISO8601 date/time format in 
Zulu/UTC (e.g., 051853Z indicates the day of the month is the 5th and the time of day is 1853 Zulu/UTC (1:53 
PM EST)); 

• Latitude and Longitude (in decimal degrees) of the station that reported the data; 
• Elevation of the station that reported the data; 
• Both temperature and dew point are calculated in degrees Celsius. If the temperature or dew point falls below 0 

degrees there will be an "M" before the variable meaning minus (e.g., 03/M02 represent a temperature of 3 
degrees Celsius with a dew point of minus 2 degrees Celsius).  

• Altimeter refers to atmospheric pressure. For example, A30.16 stands for 30.16 inches of mercury for the 
pressure. 

• RMK simply means REMARKS and marks the end of the standard METAR observation and the beginning of the 
remarks that are put in as necessary. There are many remarks, and the FMH-1 (Federal Meteorological 
Handbook-1) provides a full listing of them.  

 

Wind Data Layer 
The wind data layer includes the following: 

• Wind Direction consists of the direction of the winds in degrees from 0 to 359 degrees, as 360 degrees is zero 
(e.g., 19020G26KT indicates wind direction is 190 degrees true north). For winds traveling greater than 6 knots 
and with a directional variation of at least 60 degrees, the designation may be 18015KT 150V210. This means 
the winds are from 180 degrees at 15 knots, but the direction is actually variable between 150 degrees and 210 
degrees 

• Wind Speed reports the speed of the winds in knots (e.g., 19020G26KT indicates wind is traveling at 20 knots). 
For winds speeds below 7 knots, the designation is VRB, which means the wind direction is variable. This is the 
idea of "light and variable" found in a forecast. 

• Wind Gusts reports the wind gusts in knots (e.g., 19020G26KT indicates gusts of wind are traveling at 26 knots; 
KT represents all values are reported in knots). Not all reports will contain information regarding wind gusts as 
there are criteria which must be met in order to have a gust.  
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Weather Conditions Layer 
Weather conditions are described by intensity and/or proximity, event description, precipitation type, obscuration type 
and other weather phenomena. The specific criteria that must be met for accurate weather designations is found in the 
Federal Meteorological Handbook (FMH) No. 1 "Surface Observations and Reports," which contains the designations 
for more than 100 variable combinations. Generally, intensity is presented as a negative, non-existent, or positive value. 
Precipitation is categorized as either light (-), moderate ( ), or heavy (+) based on the criteria in the handbook. Proximity 
of a weather event can be VC or in the Vicinity. Frequently used event descriptors include partial (PR), blowing (BL), 
showers (SH), thunderstorms (TS) or FZ (Freezing). Examples of precipitation events include rain (RA), snow (SN), and 
hail (GR) among others. Some common obscuration elements include fog (FG), mist (BR), smoke (FU), sand (SA) and 
haze (HZ). Examples of other weather phenomena include funnel cloud tornado waterspout (+FC), squall (SQ) and sand 
or dust storm (SS). For example, a weather designation of –SHRA indicates light rain showers. 

Visibility and Sky Conditions Layer 
Visibility designates the statute miles of visibility (e.g., 6SM-Visibility means 6 Statute Miles of visibility). Occasionally, 
the designation can reflect visibility up to 20 or 30 SM, but generally, the designation will be from < 1/4 (visibility below 
1/4 SM) up to 10 SM. Sky Conditions indicate cloud cover. The cloud cover will either be FEW (1/8 TO 2/8 cloud 
coverage), SCT for Scattered (3/8 TO 4/8 cloud coverage), BKN for Broken (5/8-7/8 coverage), or OVC for overcast (8/8 
Coverage). The numeric value found after the sky conditions represents the cloud elevation. For example, BKN090 
indicates broken cloud cover at 9,000 feet (simply add 2 zeroes to get the height). More than one designator can be 
used in sequence (e.g., SCT035 BKN090 OVC140). An indefinite ceiling caused by fog, rain, snow, etc., will require a 
designator as VV (Vertical Visibility). VV is the vertical visibility into the indefinite ceiling. Also, significant clouds such 
as TCU (Towering Cumulus), CB, (Cumulonimbus, or a shower/thunderstorm), or ACC (Altocumulus Castellanos) will be 
found at the end of a designation sequence (e.g., SCT035TCU means scattered clouds at 3,500 feet with towering 
cumulus). 

 

Model Inventory of Roadway Elements 
Model Inventory of Roadway Elements (MIRE) is a database provided by FHWA that maintains a listing of roadway 
inventory and traffic elements which are critical to safety management. The intention behind MIRE was to provide a 
guideline to help transportation agencies improve their roadway and traffic data inventories. Mire provides a basis for a 
standard of what can be considered a good/robust data inventory and helps agencies move toward the use of 
performance measures to assess data quality (FHWA 2018).  

Consistency of the data over the states 
Consistency of the recorded data elements in the MIRE is based on their priority rating. The priority ratings are broken 
down into two major categories: critical and value added. Critical elements are those that are necessary for states to 
collect in order to conduct basic safety management and/or are contained in safety analysis tools such as 
SafetyAnalyst. On the other hand, value-added elements are those elements whose presence is beneficial but are not 
crucial to using current versions of safety analysis tools.  

Layers of the database 
There are a total of 202 elements that comprise MIRE Version 1.0. The MIRE elements are divided among three broad 
categories: roadway segments, roadway alignment, and roadway junctions. A breakdown of categories and 
subcategories is shown below. 

• I. Roadway Segment Descriptors  
• I.a. Segment Location/Linkage Elements  
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• I.b. Segment Roadway Classification  
• I.c. Segment Cross Section  
• I.c.1. Surface Descriptors  
• I.c.2. Lane Descriptors  
• I.c.3. Shoulder Descriptors  
• I.c.4. Median Descriptors  
• I.d. Roadside Descriptors  
• I.e. Other Segment Descriptors  
• I.f. Segment Traffic Flow Data  
• I.g. Segment Traffic Operations/Control Data  
• I.h. Other Supplemental Segment Descriptors  
• II. Roadway Alignment Descriptors  
• II.a. Horizontal Curve Data  
• II.b. Vertical Grade Data  
• III. Roadway Junction Descriptors  
• III.a. At-Grade Intersection/Junctions  
• III.a.1. At-Grade Intersection/Junction General Descriptors  
• III.a.2. At-Grade Intersection/Junction Descriptors (Each Approach)  
• III.b. Interchange and Ramp Descriptors  
• III.b.1. General Interchange Descriptors  
• III.b.2. Interchange Ramp Descriptors 

 

Pre-Crash Databases 
Department of Motor Vehicle Data 
Every state requires that citizens provide personal data (name, address, date of birth, phone number, Social Security 
Number and, in some cases, medical or disability information) to obtain a driver's license or identification card and to 
register a vehicle. The information is stored in state-controlled databases along with records of drunken-driving arrests, 
traffic offenses, and accidents. All state departments of motor vehicles (DMV) maintain the information about driver's 
license and non-driver ID applicants in electronic databases that share a core set of data elements essential to voter 
registration, and that have the demonstrated capability to share information with other government databases (BCJ	
2009). 

 How to Access the Database  
While pre-authorized federal, state and local agencies (e.g., Police, Immigration, etc.) can freely access DMV data, 
federal and state laws specify the circumstances in which access is provided to entities (government and others) that 
have not been authorized, and these rules vary by state. There are numerous laws that govern how DMV information is 
disclosed. For example, the Federal Drivers Privacy Protection Act requires all States to protect the privacy of personal 
information contained in a person’s motor vehicle record with certain exceptions defined in Title 18, United States Code 
Section 2721 (BCJ	2009). However, some states sell DMV data access to private-sector users who qualify for the 
privilege under federal and state laws. The list includes law firms; insurance companies; auto sales, service and towing 
companies; private investigators and security firms; and companies and nonprofit organizations that employ drivers. 
Each State Department of Motor Vehicle should be contacted in order to obtain DMV data.	
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 Consistency of the Data across States 
Every state's department of motor vehicles database is different, but share similar information, such as name, address, 
date of birth, etc. These databases are designed to be shared with pre-authorized users on demand (e.g., police, etc.) 
and can link the identification dataset with other databases (e.g., voter registration, automobile titles, etc.).  	

 Dataset Layers 
All state department of motor vehicles drivers’ license/non-driver ID databases have the following data elements in 
common: (1) full name; (2) date of birth; (3) address; (4) a unique driver's license/ID number; and (5) Social Security 
number (BCJ 2009). Some databases contain additional information including license expiration date, and physical 
descriptions (e.g., height, weight, hair color). Additionally, when linked with other databases, the DMV database can 
extract and download other information such as insurance policy number, name of provider, type of coverage (full or 
liability), any citation numbers, speeding tickets, parking tickets, as well as vehicle registration indemnification, vehicle 
type, vehicle tag number, and vehicle manufacturer (BCJ 2009). 

 

Crowdsourced Data 
Crowdsourcing occurs when data from a network of collaborators is gathered for a particular purpose. This includes 
gathering data that would otherwise be cost or labor-intensive or for which the available expertise within a defined 
organization is unavailable or insufficient (Misra et al. 2014). Transportation crowdsourcing involves leveraging the 
combined data gathered by a group of people utilizing multiple types of internet-connected devices, such as 
smartphones, and various applications to identify an issue related to transportation. The term “crowdsourcing” is 
applied in common usage to several dissimilar processes (Dennis 2015). A few methods for collecting crowdsourced 
data used in transportation include:  

• Commercial Providers: Transportation agencies already obtain aggregated crowdsourced data through 
contracted third-party commercial providers, most often for traffic speed and vehicle-count information (e.g., 
HERE Traffic Analytics), to assess travel reliability, congestion, and emissions (e.g., INRIX, Telenav), and define 
origin and destination sequences (e.g., Cellint Systems, TravelCast).  

• Social Media: Some transportation agencies have experimented with leveraging internet-based social networks 
(e.g., predominantly Facebook and Twitter) to obtain public feedback regarding the condition of the 
transportation system and performance of the agency. The Michigan Department of Transportation and City of 
Austin, Texas, have used social media to crowdsource information about transportation networks. 

• Internet: Many travelers use real-time transportation data integrated from the Internet. Examples include the use 
of open traffic data to obtain network traffic speed estimations or predict the impact of special events on the 
transportation system. In 2005 Google launched an application programming interface for its online map to 
provide travel time estimation. Other examples include Waze, Bing Maps, Tom-Tom, etc. These platforms are 
primarily used to receive turn-by-turn navigation directions and live traffic information. Crowdsourced data 
gathering is a secondary activity often used to report traffic hazards.  

• Dedicated Platforms: Transportation agencies use crowdsourcing platforms, where the data generated by the 
platform is created specifically for transportation system management. These applications can utilize the 
phone’s built-in GPS, accelerometers, camera, and other sensors to allow the agency to collect a wide variety of 
information. Dedicated crowdsourcing apps include automated vehicle location for public transit (e.g., Moovit, 
RideScout), pavement condition data collection (e.g., City of Boston Street Bump), bicycle travel and 
infrastructure data (e.g., Minnesota DOT’s Cyclopath), parking management, origin-destination studies, 
environmental data collection and planning and project prioritization. 

Commercial providers of crowdsourced data related to transportation require the purchase of data. Much of the value 
provided by contracted third-party data providers is the data fusion, analysis, and information packaging necessary to 
turn raw data into traffic information useful to a transportation agency (Dennis 2015). Social media platforms may 
require some expertise in their creation, but the data should be open to the public and freely obtained. Though the raw 
data may be easily accessed the methods of systematically assessing the raw data may prove problematic. The maps 
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and data associated with open source internet interfaces are proprietary, and through shared, the raw data is owned by 
the company providing the platform (e.g., Google, Waze, etc.). Dedicated platform data is also proprietary and owned by 
the platform developer. Each unique company should be contacted for data access.  

Crowdsourced data comes in a large number of formats, which presents a challenge for developing systems that can 
integrate and analyze multiple types of crowdsourced data, and well as integrate the data into legacy systems. 
Agencies wishing to leverage crowdsourced data must establish data-intake processes that interpret and distribute the 
data appropriately (Dennis 2015). 

Given the types of crowdsourced data available, there does not appear to be any consistency in the attributes of the 
dataset layers other than some form of geo-referencing found in data from commercial providers, internet platforms, 
and some dedicated platforms. Some demographic information may be able to be extracted from social media 
crowdsourcing as well as some geo-referenced information. Due to massive amount and longevity of the data, 
commercial and internet providers may not be able to link data to demographics. On the other hand, researchers may 
be able to investigate evolving patterns of mobility trends in an area. Social media demographic information may need 
to be manually mined and linked adding costs to the use of social media platforms for crowdsourcing data. 
Furthermore, social media networks are most often used by those demographically younger, skewing the data. Finally, 
any data obtained that can identify individuals should consider the privacy rights of users, and those knowingly or 
unknowingly providing data. 

Examples of Crowdsourced Data in Transportation 
What follows is a list of sources of data that uses crowdsourcing to obtain information relevant to transportation 
applications. It is not a comprehensive list, nor are the researchers recommending any of the products listed. This list 
provides a general description and contact information for crowdsourced data sets that are used for mapping and 
navigation; detailed traffic performance data, ride-sharing and public transit data, pedestrian and bicycling data, and 
roadway infrastructure conditions.  

 

 

Name Description Contact 
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GOOGLE MAPS Google Maps provide real-time traffic and incident 
updates that modify navigation to less congested 
routes. Google has access to and incorporates 
location data collected by smartphones containing a 
Google App in order to provide real-time 
crowdsourced data that provides real-time traffic 
updates, estimates current traffic speeds and 
pinpoints road diversions. The underlying Google 
maps database will adjust directions accordingly 
based on the real-time input.  

Real-time traffic and navigation Information 
is viewed by downloading a phone app or 
by using a computer. This aggregated and 
displayed real-time information is free.  

GOOGLE CONTACT: 

 1-877-355-5787 

www.google.com/contact/ 
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Name Description Contact 

TELENAV 
Open Street 
Map (OSM) 

TELENAV is partnered with OpenStreetMap, a 
crowdsourced community of 1.3 million people, who 
have gathered GPS data while driving, biking and 
walking the streets of the world to mark roadways 
and objects in the environment (e.g., trees, park 
benches, potholes, structure footprint, etc.). The 
static map layers include standard, cycle, public 
transport and humanitarian. Other data sets include 
map notes, map data, and public GPS traces. 

Maps are free. Data is free to download in 
gpx files. 

 

OPENSTREETMAP: 

https://www.openstreetmap.org/  

PELMOREX 

Beat the  

Traffic 

The crowdsource phone App provides real-time data 
on estimated travel time, traffic flow, incidents, 
construction, road closures, and traffic camera 
locations and weather. Users report traffic incidents 
by shaking their device to alert fellow users of 
issues on the road. Additionally, real-time traffic 
reports are broadcast live. 

Pelmorex Corp. Headquarters & 

The Weather Network Media Centre 

2655 Bristol Circle, 

Oakville, Ontario L6H 7W1 

https://www.pelmorex.com/en/ 

WAZE 

 

WAZE is a phone App and real-time website that 
allows commuters to modify maps and add real-time 
traffic data. This includes reports on gas prices, 
arrival time coordination to facilitate car-pooling, 
real-time alerts for police, accidents, road hazards or 
traffic jams. Community forums are also available.  

Waze Office 

Google West Campus 3,  

1505 Salado Dr (MTV-GWC3)  

https://www.waze.com/ 
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Technology 

By collaborating with vehicle manufacturers (e.g., 
BMW, Audi, Daimler, Volkswagen, etc.), HERE is able 
to use passively collected crowdsourced traffic and 
driving data that can help steer people around 
backups and road hazards due to inclement weather 
conditions and construction slow-downs. The data 
collected also includes speed, breaking info, 
windshield wiper activation, headlight use, location 
information and data from other sensors. 
HEREWeGo is also offered. It is a navigation app.  

Datasets are proprietary.  

HERE Industry website: www.here.com/en 



 
www.roadsafety.unc.edu	 57	

www 

 

Name Description Contact 

INRIX 

Analytics 

INRIX Analytics provides a number of products that 
rely in part on crowdsourced data. These datasets 
and tools include historic speed and travel time 
data; accurate origin-destination data; volume and 
other location-based and market-based analytics; 
parking matrix data and traffic information, incidents 
and road closures for major roads. 

INRIX offers a variety of ways to access 
INRIX XD Traffic information including 
traffic tiles, a monitoring site, flexible APIs 
and TPEG Connect. 

INRIX Americas Headquarters  

10210 NE Points Dr., Suite 400 

Kirkland, WA 98033  

(425) 284-3800  

info@inrix.com 

http://inrix.com/ 

CELLINT 

Traffic 

Solutions 

Cellint uses the cell tower signals provided by cell 
phones to assign GPS coordinates to each data 
point in real time. The system then matches the 
crowdsourced live signaling data from the network 
with cellular signaling pattern maps to determine 
origin and destination pairs. Thus, the system tracks 
various active mobile phones on the roads 
anonymously to provide the traffic information. 

Datasets are proprietary.  

USA Address: 

175 Bellechasse Drive, 

Chesterfield, MO 63017 

Tel: +1-314-728-6255 

www.cellint.com/contact-us/contact-us/ 
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UBER 

Movement 

Uber Movement provides anonymized data from 
over two billion trips for use by city officials or 
researchers, not by commercial entities. The 
historical data is available to analyze patterns and 
impacts of events, rush hours, and road closures, 
etc. All data is anonymized and aggregated to 
ensure no personally identifiable information or user 
behavior can be surfaced through the Movement 
tool. Data is available under a Creative Commons, 
Attribution Non-Commercial license.  

The Movement Tool can be downloaded. All 
data is downloadable in machine-readable 
format. Where permitted, shapefile exports 
are available for use of Movement data in 
geospatial applications. 

UBER MOVEMENT 

https://movement.uber.com 

movement-research@uber.com 

NYC Taxi & 
Limousine 
Commission 

The New York City Taxi and Limousine Commission 
provides crowdsourced data on taxi trips including 
pick-up and drop-off dates/times, pick-up and drop-
off locations, trip distances, itemized fares, rate 
types, payment types, and driver-reported passenger 
counts. The For-Hire Vehicle trip records include 
fields capturing the dispatching base license 
number and the pick-up date, time, and taxi zone 
location ID (in shapefile format). 

Data is downloaded on the website. Data is 
available in CSV; taxi zone shapefiles are 
also available.  

Website: 

http://www.nyc.gov/html/tlc/ 

html/about/trip_record_data.shtml 
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Name Description Contact 

MOOVIT Moovit owns and manages a repository of transit 
data, generating hundreds of millions of data points 
a day from its App users and 180,000 local editors. 
More than 100 million users utilize Moovit for their 
urban mobility in more than 1,500 cities in 77 
countries and 43 languages. The App provides 
information on Trip planning (e.g., next arrivals, 
service alerts, etc.), Bus data (e.g., Real-Time Bus 
Arrival Data, digital departure boards in stations, and 
voice announcements on vehicles), and an Agency 
Dashboard that provides live bus tracking, planned 
versus actual schedule arrivals, and advanced 
analytics. Data sets are used by cities and transit 
agencies to analyze travel patterns to and from 
specific regions, on a specific line, or at a specific 
station. 

The data is anonymized and aggregated 
from Moovit. 

 

Nir Bezalel 

VP Research and Development 

press@moovitapp.com   

Phone: 972 8 621 3141  

https://www.solutions.moovit.com/ 
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STRAVA 
Metro/Labs 

STRAVA is an App that tracks and maps location in 
real-time and collects other metric data (e.g., speed, 
heart rate, etc.) of bicyclists and runners. Each user 
records his/her activity and then shares it with 
specific followers. Strava then merges routes 
frequently utilized to create Running or Bicycling 
Route Guides. Strava Metro and Strava Labs also 
use running and bicycling data for other projects. 

Strava Headquarters 

500 3rd Street #110 

San Francisco, CA 94107 

https://www.strava.com/ 

https://labs.strava.com/ 

https://metro.strava.com/ 

Email:partner@strava.com 

WALKScope WALKscope is an App developed by WalkDenver and 
PlaceMatters for collecting data related to 
sidewalks, intersections, and pedestrian counts in 
the Denver metro area. This information creates an 
inventory of pedestrian infrastructure and counts, 
identify gaps, and build the case for improvements. 
Maps are available to view the data collected.  

Jill Locantore at WalkDenver 

Email: jill.locantore@walkdenver.org 

http://www.walkscope.org/ 
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Name Description Contact 

Bikeshare (e.g., 
Divvy) 
Bikes 

Divvy Bikes is a bike-share program in Chicago, 
Illinois. Divvy uses crowdsourcing to identify 
location points for bike station placement. An App is 
available to determine bike accessibility at stations. 
Public use trip data is available at 
https://www.divvybikes.com/system-data 

Trip data includes Trip start/end day, time and 
station; rider type based on membership. If the rider 
is a member, the dataset includes gender and year 
of birth. 

Divvy Bikes 

https://www.divvybikes.com/ 

Data@DivvyBikes.com 

PROJECT 
SIDEWALK 

In order to improve conditions in Washington, D.C. 
for those with mobility impairments, a team at the 
University of Maryland is crowdsourcing a map of 
sidewalk impediments. The Walk Score-inspired 
map, called Project Sidewalk, allows the public to 
catalog and rate the accessibility of sidewalks and 
curb ramps and any obstacles like fire hydrants or 
crumbling pavement both physically and through 
virtual mapping. Currently, there are 64,000 labels 
and 463 miles of D.C. roads covered.  

Jon E. Froehlich 

Associate Professor 

Computer Science and Engineering  

University of Washington 

https://sidewalk.umiacs.umd.edu/ 

sidewalk@umiacs.umd.edu 

R
oad Infrastructure Condition 

STREET 
Bump 

Street Bump is a crowd-sourcing App project that 
helps residents collect road condition data while 
they drive. The data provides governments with real-
time information. Street Bump produced by the 
Mayor's Office of New Urban Mechanics in Boston. 
Designed and developed by Connected Bits. 

1 City Hall Square 

5th Floor 

Boston, MA 02201 

617-635-0044 

http://www.streetbump.org/ 

newurbanmechanics@boston.gov. 

FIX MY 
STREET 
Platform 

FixMyStreet uses Open Source software to launch a 
website that helps people to report street problems 
like potholes and broken streetlights. Problem 
reports are sent to site administrators and 
government authorities. Open source report-
mapping software can be deployed anywhere in the 
world. This software is most commonly used for 
reporting street issues to government officials, but 
flexible enough to fit any project that uses 
geographical points. 

http://fixmystreet.org/ 

international@mysociety.org 
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Name Description Contact 

SEE 
CLICK 
FIX 

SEEClickFix is a website and App that connects 
citizens reporting infrastructure issues to city or 
county officials. It is used to report illegal dumping, 
potholes, graffiti, sidewalk problems and more. Data 
is proprietary.  

770 Chapel Street, 3F 

 New Haven, CT 06510  

https://seeclickfix.com/ 

Toll-free: 1-(800)-369-9060 

Local: 1-(203)-752-0777  

Sales: sales@seeclickfix.com 

Partners: support@seeclickfix.com 

Citizens: contact@seeclickfix.com 

 

 

SHRP2 Project Data 
The United States Congress created the second Strategic Highway Research Program (SHRP 2) in 2005 to address the 
challenges of moving people and goods efficiently and safely on the nation’s highways. Currently, SHRP 2 is 
administered by the Transportation Research Board of the National Academies, under a Memorandum of 
Understanding with the Federal Highway Administration (under the U.S. Department of Transportation) and the 
American Association of State Highway and Transportation Officials.  

SHRP 2 addresses four strategic focus areas: the role of human behavior in highway safety; rapid renewal of aging 
highway infrastructure; congestion reduction through improved travel time reliability; and transportation planning that 
better integrates community, economic, and environmental considerations into new highway capacity. A naturalistic 
driving study investigates ordinary driving under real-world conditions in order to make the driving experience safer 
(SHRP2 2015).  

Between 2010 and 2013, 3,400 drivers participated in the Second Strategic Highway Research Program (SHRP 2) 
Naturalistic Driving Study (NDS), which produced over 4,300 years of naturalistic driving data. Data were collected from 
six sites around the United States. The largest collection sites were in Seattle, Washington; Tampa, Florida; and 
Buffalo, New York.  

Participant vehicles were instrumented with a data acquisition system (DAS) that collected four video views (driver’s 
face, driver’s hands, forward roadway, rear roadway), vehicle network information (e.g., speed, brake, accelerator 
position), and information from additional sensors included with the DAS (e.g., forward radar, accelerometers) (Hankey 

et al. 2016). Dingus et al. (2015) and Antin (2011) provided more information about the data collection sites and how 
they compare to national data in this project.  

How to Access the Database with PII 
The Naturalistic Driving Study data are considered human subjects’ data and must be protected in accordance with 
federal law. It also contains sensitive and personally identifiable information (PII) such as face video and GPS traces. 
However, privacy protections promised to participants in the research protocol and consent forms regarding their data 
continue even after the study ended. Yet, researchers need to have access to the data in order to maximize the 
financial and personal investment made by the sponsors and the participants. 

The most commonly used PII data elements include driver face video; full trip GPS traces which can be used to identify 
a person’s home, work, and school locations; and unaltered forward video of a crash. There are other less commonly 



 
www.roadsafety.unc.edu	 61	

www 

used yet potentially identifying data elements. Data elements that contain any personally identifying information (PII) 
is available only within a secure data enclave (SDE) to protect the privacy of study participants. Qualified researchers 
who wish to view and analyze PII must meet eligibility criteria and agree to the requirements of a data use license 
(DUL) (TRB 2018). In order to both uphold the privacy of study participants and promote the use of the data in 
important research, a process was created for researchers to establish a data use license (DUL) under which terms 
they may work with the data. In many cases, Institutional Review Board (IRB) approval of a qualified researcher’s plans 
for data use will be required due to the involvement of human subjects. 

Layers of the Database 
There are several types of data in the SHRP 2 project. The variables can be classified into several layers namely, 
Participant Assessments, Vehicle Information, Continuous Data, Trip Summary Data, Event Data, cell phone data and 
roadway data. The following is a breakdown of the data elements in each layer.  

Participant Assessments  

• Demographic Questionnaire, 
• Driving History  
• Driving Knowledge  
• Medical Conditions and Meds  
• ADHD Screening  
• Risk Perception  
• Frequency of Risky Behavior  
• Sensation Seeking Behavior  
• Sleep Habits  
• Visual. Physical, and Cognitive Test Results  
• Exit Interview  

 
Vehicle Information  

• Make, Model Year, Body Style  
• Vehicle Condition (tires. battery. etc.)  
• Safety and Entertainment Systems  

 
Continuous Data  

• Face. Forward. Rear, and Instrument Panel Video  
• Vehicle Network Data  
• Accelerometers/Gyros, Forward RADAR. GPS  
• Additional Sensor Data  

 
Trip Summary Data  

• Characterization of Trip Content  
• Start Time and Duration of Trip  
• Min, Max, Mean Sensor Data  
• Time and Distance Driven at Various Speeds, Headway,  
• Vehicle Systems Usage  

 
Event Data  

• Crashes, Near Crashes, Baselines  
• 30s Events with Classifications  
• Post-Crash Interviews  
• Other Crash Data  

 
Cell Phone Records  
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• Subset of participant drivers  
• Call time and duration  
• Call type (text call. pic. etc.)  

 
Roadway Data  

• Matching trip GPS to roadway database  
• Roadway classifications  
• Other roadway data (Hankey et al. 2016) 

Moreover, detailed investigations of selected crashes are also available for researchers. Some of the available data are 
listed below:  

• Multiple Videos 
• Machine Vision Eyes Forward Monitor 
• Machine Vision Lane Tracker 
• Machine Vision Driver ID 
• Accelerometer Data (3 axis) 
• Rate Sensors (3 axis) 
• GPS 
• Latitude, Longitude, Elevation, Time, Velocity 
• Forward Radar 
• X and Y positions 
• Xdot and Ydot Velocities 
• Cell Phone 
• ACN, health checks, location notification 
• Health checks, remote upgrades 
• Illuminance sensor 
• Passive alcohol sensor 
• Video 
• Incident push button 
• Audio (only on incident push button) 
• Turn signals 
• Vehicle network data 
• Accelerator 
• Brake pedal activation 
• ABS 
• Gear position 
• Steering wheel angle 
• Speed 
• Horn 
• Seat Belt Information 
• Airbag deployment 
• Many more variables (SHRP2 2015) 

 
Strava Metro Data 
Strava is a smartphone app, allowing individuals to record, track, and upload their cycling, walking, running or other 
fitness activities. Typically, bicyclists, pedestrians, and joggers use this app to keep track of their activities privately or 
publicly. Strava Metro data are the anonymized and aggregated form of activity data of Strava users, who agree to 
share their activities through the app publicly. The data are aggregated at road segment levels and are currently 
provided in GIS shapefile. 
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Strava Metro Data provide information on distance, times, pace, trail routes, and other geographic information of 
bicycle rides and walks/runs. The fields that are most typically available include number of unique athletes, number of 
trips, median of times taken by all trips, and sum of commute activities for each road segment. The data are available 
per direction of road segment and for different time periods (e.g., times of day, weekday, weekend, season, month, and 
year).  

Safety professionals, including departments of transportation, urban city planners, and other safety organizations can 
use Strava data for assessing the needs of bicyclists and pedestrians. Strava Metro Data help to understand users’ 
riding and walking behavior, e.g., the routes mostly traversed, peak commute times, trip lengths not only at a point but 
across the entire network of streets of an area. Such visualization helps in taking some proactive measures for 
ensuring safety of bicyclists and pedestrians. Similarly, Strava data can help in understanding how a new infrastructure 
development is impacting bicyclists and pedestrians.  

Strava Metro Data are not available for public use. Organizations can purchase the data for specific jurisdictions (e.g., 
city, metropolitan area, county, district) and specific years. The fee depends on the population of the geographic area, 
the number of years for which data are requested, and the level of detail present in the dataset. 

How to Access the Database With PII 
Because Strava Metro data are anonymized and aggregated at road segment levels, no PII information is available in 
the data. 

Layers of the Database 
Strava Metro data has a single layer, which corresponds to street segments. While the street segment in Strava Metro 
data has a unique identifier, it does not match with agency’s street identifier. Given licensee’s requirements, the data 
may include an area identifier (e.g., city, county, and/or district) of the street segments.  
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Appendix B 
Five Case Studies on Data Integration 
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Case Study 1  
Evaluating Research on Data Linkage to Assess Underreporting Pedestrian and 
Bicyclist Injury in Police Crash Data 
 

Sarah Doggetta*, David Raglanda, Grace Felschundneff 
a Safe Transportation Research and Education Center (SafeTREC). University of California, 

Berkeley 

*Corresponding Author: doggett_sarah@berkeley.edu 
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Abstract 
Traffic safety decisions are based predominantly on information from police collision reports. However, a number of 
studies suggest that such reports tend to underrepresent bicycle and pedestrian collisions. Underreporting could lead 
to inaccurate estimates of crash rates and could under- or over-estimate the effects of road safety countermeasures. 
This review evaluated ten studies that used data linkage to explore potential underrepresentation in police collision 
reports of pedestrian and/or bicyclist injury. Due to variations in definitions of reporting level, periods of study, and 
study locations, it was difficult to directly compare the studies. Even among the six studies using the hospital link 
definition, estimates of reporting levels ranged from 44 to 75 for pedestrian crashes, and from 7 to 46 percent for 
bicycle crashes, suggesting a severe underreporting problem. However, most of the studies did not provide estimates 
of the error around their reporting level estimates, and as a result, it is difficult to determine the true level of 
underreporting. It may be that bicycle, and pedestrian crashes appear in both police and hospital datasets but are less 
likely to be linked. Due to linkage error, link rate can only be used to estimate reporting level. Without the variance of that 
estimate, the effect of underreporting on traffic safety analyses cannot be accurately determined. Future studies 
should include estimates of the error present in their data linkage process for greater accuracy of the underreporting in 
police data. Datasets should be designed for easier linkage with hospital data, and linkage with other datasets should 
be explored. 
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Introduction 
Traffic safety decisions are almost universally based on information from police collision reports. However, many 
researchers believe that police collision reports have limitations and fail to include all crashes that occur on the road. 
For example, a number reports suggest that police collision reports tend to underrepresent bicycle and pedestrian 
collisions.  

According to the Federal Highway Administration (FHWA), traditional crash data sources are insufficient because they 
exclude both crashes that take place in non-roadway locations (e.g., parking lots, driveways, and sidewalks) and bicycle 
crashes and pedestrian injuries that do not involve motor vehicles (Stutts and Hunter 1999). 

Ideally, the degree of bias in police collision reports could be measured and accounted for in analyses (Elvik and Mysen 
1999). This process requires both the reporting level and the uncertainty in the estimate of the reporting level to be 
known (Hauer and Hakkert 1988). Although researchers have estimated reporting level by linking police collision 
reports with hospital data, few have determined the level of uncertainty surrounding their estimates. 

This paper summarizes existing research using data linkage to study pedestrians and bicyclists, explores potential 
problems concerning linkage, and offers suggestions on how to improve the data linkage process. 

Methodology and Definitions 
Searches using Google Scholar and Science Direct were conducted to identify potentially relevant articles for the 
literature review. Search terms included record linkage, data linkage, crash data linkage, pedestrian underreporting, 
underreporting, crash injury assessment, and police crash data limitations.   

The abstracts of the articles returned through this search were evaluated to assess their relevancy to the general topic 
of crash reporting and health data linkage. Articles with relevant abstracts were read in full to determine whether they 
reported findings related to pedestrians and/or bicyclists.  

Through this process, articles were identified, published between 1999 and 2017. Five of the articles explored data 
linkage in general but mentioned findings specific to pedestrians and/or bicyclists. Two focused exclusively on 
bicyclists, two exclusively on pedestrians, and one on both pedestrians and bicyclists. 

Most of the studies included in the literature review defined underreporting as hospital records without counterparts in 
police crash reports. However, Janstrup et al. (2016) found that there are also police crash reports that do not have 
counterparts in hospital records. This expands the definition of underreporting to crashes that exist only in one 
dataset. This concept is illustrated in Figure 1.  

Some crashes may be reported in both datasets but cannot be linked due to errors in data recording—these crashes are 
misreported but cannot not be distinguished from underreported crashes using current linkage techniques. There are 
also crashes that are not reported to either the police or to hospitals (D in Figure 1), due to lack of serious injury or an 
unwillingness on the part of those involved in the crash to contact the authorities. To identify these unreported 
crashes, other datasets such as those collected by insurance companies can be analyzed. One of the studies 
addressed this and found that the use of only police and hospital injury data can result in a significant underestimation 
in the actual number and severity of crashes (Short and Caulfield 2016). 

Several different definitions of reporting level exist. Using the terminology described in Table 1, these definitions are 
explained as follows: 

• A: Cases only appearing in police crash reports 
• B: Cases appearing in both police crash reports and hospital records 
• C: Cases only appearing in hospital records 
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• D: Cases that do not appear in either police crash reports or hospital records 
 

 

 

Figure 1 Patterns of Reporting Pedestrian and Bicyclist Crashes by Source  

 

Several studies used the capture-recapture method to determine reporting level, which is not derived from those shown 
in Table 1. Originally, this method was used to estimate animal populations based on how many animals were captured 
and then later recaptured in a least two random samples (Tin Tin, et al. 2013). However, researchers have noted that 
this method may not be appropriate for estimating reporting levels because some of its underlying assumptions, such 
as a closed study population and an equal probability for each individual to be captured in each sample, may be 
violated (Tin Tin, et al. 2013, Janstrup, et al. 2016). 

The definition used can significantly affect the estimated reporting level (Elvik and Mysen 1999). As an example, 
assume that 50 cases only appear in police reports (A), 20 cases appear in both police and hospital reports (B), and 30 
cases only appear in hospital reports (C). In this scenario, hospital link rate would be 0.4, police link rate would be 0.29, 
police ascertainment rate would be 0.7, and hospital ascertainment would be 0.5. While definitions 3 and 4 are 
theoretically the most correct definitions of reporting level, few studies use it when estimating reporting level.  

Table 1 Definitions of Reporting Level 

 

 

 
 

Literature Review 
Due to the different definitions of reporting level, different periods of study, and different study locations, it is difficult 
to directly compare the ten studies. As shown in Table 2, six of the ten studies used hospital link rate as their definition 
of reporting level, while two used capture-recapture, two used police link rate, two used police ascertainment rate, and 

Definition of Reporting Level Formula	 Question Addressed	
1: Hospital Link Rate B/(B+C)	 Proportion of cases reported in hospital records for which a police crash report is 

found 
2: Police Link Rate B/(A+B)	 Proportion of cases reported in police crash reports for which a hospital record is 

found 
3: Police Ascertainment Rate (A+B)/(A+B+C)	 Proportion of identified cases accounted for in police crash reports 
4: Hospital Ascertainment Rate (B+C)/(A+B+C)	 Proportion of identified cases accounted for in hospital records 

 

A = Crashes 
reported by police 

C = Crashes reported 
by hospitals 

B = Crashes 
reported  
 by both 

D = Crashes 
reported by 
neither 
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one used hospital ascertainment rate (this adds up to more than ten because the article by Short and Caufield reported 
on four different definitions). Even among the six studies using the hospital link definition, estimates of reporting levels 
for pedestrian crashes range from 44 to 75 percent; for bicycle crashes, estimates range from 7 to 46 percent.  

However, the articles all agreed that police collision reports have limitations and underreport certain types of crashes, 
especially those involving pedestrians and bicyclists. For example, Stutts and Hunter (1999) found that police were 
unlikely to be contacted about pedestrian incidents not involving motor vehicles, although more than two-thirds of 
serious injuries fell into this category. Sciortino (2005) found that pedestrian injury victims who were African-American, 
male, or sustained minor injuries were more likely to be underreported in police crash records. The author suggested 
that such bias was likely due to the reluctance on the part of pedestrians to summon the police if the police were not 
initially present at the crash scene. Tarko and Azam (2011) found that pedestrians were less likely to be included in the 
linked database if they were struck by vehicles on state roads, at Y intersections, or on divided roadways. However, 
they were more likely to be included in the database if they were struck while crossing a road instead of walking along 
or standing outside of a roadway.  

Drivers are more likely to be included in crash reports than are cyclists (Conderino et al. 2017). Langley (2003) found 
that only 22 percent of bicyclist crashes on public roads could be linked to a crash report—the percentage increased to 
54 percent when it included crashes that also involved motor vehicles. Because crash reports are mainly focused on 
incidents that involve motor vehicles and which occur on public roadways, they likely capture fewer than one-third of 
bicyclist injury cases serious enough to require medical treatment (Stutts and Hunter 1999). According to Janstrup et 
al. (2016), the underreporting rate for crashes involving cyclists in Denmark was 14 percent for those resulting in 
serious injuries, and 7 percent for those resulting in slight injuries. 

The literature identified several possible reasons for underreporting. According to Langley (2003), motor vehicle 
crashes listed in hospital data are assumed to have occurred on roadways unless another location is specified. Thus 
hospital derived estimates may overstate the number of motor vehicle crashes on public roads and understate crashes 
that occur in other locations and those that do not involve motor vehicles. Another possible reason for underreporting 
is that pedestrian and bicycle crashes are less likely to result in insurance compensation than are motor vehicle 
crashes. Lujic et al. (2008) found that those entitled to insurance compensation had higher linkage rates than those 
who were not, presumably because police reports were required as a condition for receiving compensation. According 
to Watson et al. (2015), it is possible that the severity of injuries resulting from a collision with another vehicle is likely 
to be more serious, and therefore more likely to be reported. 

Several studies have shown that compared with hospital data, police crash reports do not accurately report injury 
severity. Injury classifications in crash reports are usually based on the KABCO scale, which is less nuanced than the 
Injury Severity Score that many hospitals use (CDPH 2015). Additionally, KABCO classifications are made at the scene 
of the crash by officers who typically lack medical training—therefore, less visible but life-threatening injuries such as 
internal bleeding may be misclassified as non-severe, while more obvious minor injuries such as “minor lacerations 
with profuse bleeding” may be misclassified as severe (13). Another problem related to estimation of injury severity is 
that the injury classification in police reports is static and does not necessarily reflect subsequent developments 

(WABA 2015). 

Potential Implications of Study Results 
Findings from these ten studies indicate that there is a severe underreporting problem in datasets based only on police 
collision reports. Underreporting can result in the “projection of false estimates pertinent to crash and fatality rates, 
and [the] detection of wrong parameters responsible for crash occurrence, thereby making the entire road safety 
exercise ineffective,” according to Ahmed, Sadullah, & Yahya (2017). When road safety is measured based on the 
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amount of crashes reported instead of the actual number of crashes that occurred, there is a tendency to mistake 
trends in crash reporting with trends in traffic safety (Hauer and Hakkert 1988). In addition, the authors found that 
inaccurate crash data can result in improper prioritization of funding and resources, and under- or overestimation of 
injury severity risk. For example, Abay (2015) found that estimates based on underreported police-reported crash data 
minimize the effectiveness of seat belt use in injury severity risk and could have serious policy implications. 

In cases of crash underreporting, analysis relying on police data may be biased, according to Janstrup et al. (2016). 
Reliance on hospital data may also be problematic, as Watson et al. (2015) reported that the level of underreporting 
varied depending on the data with which the police data was linked. Watson found that when hospital data was 
examined, approximately two-thirds of the data were not linked to police data. Similarly, when Short and Caulfield 
(2016) added injury claims data to their analysis, the total number of identifiable injuries was found to be more than 
three times greater than the number identified by police reports, and five times greater than the number hospitalized. 

Because of the inaccuracy of injury classifications in police collision reports, injury severity cannot be used to match 
datasets. In addition, by only using injury data from police reports, financial costs to crash victims or to the public for 
health care associated with a crash cannot easily and accurately determined (WABA 2015). 
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Table 2 Summary of Data Linkage Articles Relevant to Pedestrian and Bicyclist Safety 

Source	 Study	Period	 Study	Location	 Focus	 Definition	Used	 Findings/Conclusions	

Conderino,	Fung,	
Sedlar	&	Norton,	2017	

2009-2015	 New	York	City	 General	 Hospital	Link	Rate	 •	50%	of	hospital	reports	involving	a	pedestrian	crash	linked	to	a	
police	report	
•	45%	of	hospital	reports	involving	a	bicyclist	crash	linked	to	a	
police	report	
•	Sensitivity	-	74%	
•	Specificity	-	93%	

Janstrup	et	al.,	2016	2003-2007	 Funen,	Denmark	 General	 Capture-Recapture	 •	Compared	with	car	occupants,	pedestrians	are	more	likely	to	
appear	in	both	police	and	hospital	databases;	bicyclists	are	
more	likely	to	appear	in	either	
•	Only	7%	of	bicycle	crashes	resulting	in	slight	injury	and	only	
15%	of	bicycle	crashes	resulting	in	severe	injury	are	reported	by	
the	police	

Langley,	2003	 1995-1999	 New	Zealand	 Bicyclist	 Hospital	Link	Rate	 •	Only	22%	of	bicycle	crashes	on	public	roads	could	be	linked	to	
a	crash	report	
•	When	limited	to	bicycle	crashes	on	public	roads	involving	
motor	vehicles,	54%	could	be	linked	to	a	crash	report	

Lujic,	Finch,	Boufous,	
Hayen	&	Dunsmuir,	
2008	

2000-2001	 New	South	Wales	General	 Hospital	Link	Rate	 •	69%	of	road	traffic	crashes	were	linked	to	police	records	
•	Drivers	were	most	likely	to	have	their	hospital	records	linked	
to	police	records	(83%)	
•	46%	of	bicyclist	crashes	and	75%	of	pedestrian	crashes	were	
linked	to	police	records	
•	Authors	hypothesized	that	underreporting	for	cyclists	is	due	to	
"ambiguity	of…laws	and	regulations"	and	the	fact	that	cyclists	
are	"less	likely	to	cause	property	damage"	

Sciortino,	Vassar,	
Radetsky	&	Knudson,	
2005	

2000-2001	 San	Francisco	 Pedestrian	 Police	Ascertainment	Rate	•	Police	reports	underestimate	the	number	of	pedestrian	
injuries	by	21%	(e.g.,	reporting	level	is	79%)	
•	African-American	pedestrians	were	less	likely	than	white	
pedestrians	to	be	linked	to	a	police	report	
•	Women	were	more	likely	than	men	to	be	linked	to	a	police	
report	

Short	&	Caulfield,	2016	2005-2011	(Police	
and	Hospital	Data)	
2010-2011	(Injuries	
Board	Data)	

Ireland	 General	 Hospital	Link	Rate,	Police	
Link	Rate,	Hospital	
Ascertainment	Rate,	
Police	Ascertainment	Rate	

•	For	pedestrian	injuries,	28.9%	of	police	records	were	matched	
with	a	hospital	record;	44.3%	of	hospital	records	were	matched	
with	a	police	record	
•	For	bicyclist	injuries,	24.8%	of	police	records	were	matched	
with	a	hospital	record;	8.2%	of	hospital	records	matched	with	a	
police	record	
•Police	Ascertainment	Rate	was	73.4%	for	pedestrians	and	
26.4%	for	bicyclists	
•Hospital	Ascertainment	Rate	was	47.7%	for	pedestrians	and	
80.2%	for	bicyclists	
•	False	Positive	Rate	–	13%	
•	False	Negative	Rate	–	13%	

Stutts	&	Hunter,	1999	1995-1996	 Various	locations	in	
California,	New	York,	
and	North	Carolina	

Pedestrian	and	
Bicyclist	

Hospital	Link	Rate	 •	70%	of	bicyclist	injuries	reported	by	hospitals	did	not	involve	a	
motor	vehicle	
•	64%	of	pedestrian	injuries	reported	by	hospitals	did	not	
involve	a	motor	vehicle	
•	31%	of	bicyclist	and	53%	of	pedestrian	injuries	occurred	in	
non-roadway	locations	(e.g.,	sidewalks,	parking	lots,	trails)	
•	Police	crash	reports	capture	less	than	33%	of	serious	bicyclist	
injuries	

Tarko	&	Azam,	2011	2003-2008	 Indiana	 Pedestrian	 Police	Link	Rate	 •	Pedestrians	struck	on	a	state	road,	at	a	Y	intersection,	or	on	a	
divided	roadway	were	less	likely	to	be	included	in	both	police	
and	hospital	databases	
•	Pedestrians	struck	while	crossing	a	road,	as	opposed	to	
walking	along	or	standing	outside	of	the	roadway	were	much	
more	likely	to	be	included	in	both	databases	
•	Authors	hypothesized	that	more	severe	injuries	were	more	
likely	to	appear	in	both	databases	
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Source	 Study	Period	 Study	Location	 Focus	 Definition	Used	 Findings/Conclusions	

Tin	Tin,	Woodward	&	
Ameratunga,	2013	

2006-2011	 New	Zealand	 Bicyclist	 Capture-Recapture	 •	Police	reports	were	linked	to	insurance,	hospital,	and	
mortality	records	
•	13%	of	hospital	reported	crashes	and	64%	of	hospital	reported	
collisions	were	linked	to	police	records	
•	39%	of	police-reported	crashes	and	43%	of	police-reported	
collisions	were	linked	to	hospital	records		
•	When	compared	with	self-reported	data	from	the	cyclists,	the	
entire	linked	dataset	had	a	sensitivity	of	63.1%	and	specificity	of	
93.5%	
•	The	collision-only	dataset	showed	a	40.0%	sensitivity	and	a	
99.9%	specificity	

Watson,	Watson	&	
Vallmuur,	2015	

2009	 Queensland	 General	 Hospital	Link	Rate	 •	The	study	used	discordance	rates	between	police	data	and	
hospital	records	to	measure	underreporting	of	crashes	to/by	
the	police	
•	The	discordance	rate	was	44%	for	pedestrians	and	93%	for	
bicyclists	(e.g.,	a	reporting	level	of	56%	and	7%	respectively)	
•	Authors	hypothesized	that	bicyclist	injuries	are	not	reported	
to	the	police	because	injuries	are	generally	less	serious,	are	less	
likely	to	have	insurance	implications,	and	are	more	likely	to	
involve	young	people,	who	generally	have	high	discordance	
rates	

 

Limitations of Existing Studies 
Hauer and Hakkert (1988) have proposed methods that will account for underreporting in police crash reports. They 
argue that the variance of the estimated number of crashes that occur can be calculated if the reported number of 
crashes, the reporting level, and the variance of the reporting level are known. While the studies in this literature review 
have attempted to establish the reporting level associated with various types of crashes, few have reported on the error 
surrounding their estimates.  

In most real-world cases, true match status is unknown, and link status is used as a proxy. With a perfect matching 
process, link status and match status would be identical, and link rate would be equivalent to the reporting level. 
However, there are two sources of error in the process of data linkage—false positives and false negatives. False 
positives are records that do not belong to the same person/event that are linked (Bohensky 2016). False positives are 
more likely to occur when identifiers are not discriminative and when files are large (Harron et al. 2016). False 
negatives, also known as missed matches, are records that belong to the same person/event that are not linked 
(Bohensky 2016). These occur when records have inaccurate or missing data (Harron et al. 2016). 

Because linkage and analysis processes are often separated due to privacy concerns, researchers using linked 
datasets may be unable to determine the extent of bias that linkage errors has introduced into their study (Harron et al 
2017).  

It is difficult to predict the direction and magnitude of bias resulting from linkage errors due to the “the distribution of 
errors with respect to variables of interest” which is usually unknown (Harron et al 2017). Missed matches reduce 
sample size and statistical power and can lead to under-underestimates of exposures or outcomes if the linkage is 
informative (Harron et al 2017). Because missed matches do not necessarily occur at random, the linked data may not 
accurately represent the study population, reduce the viability of the research effort and may introduce bias (Harron et 
al 2017). Selection bias can occur if an individual’s presence in the linked dataset is related both to exposure and an 
outcome of interest (Harron et al 2017).  

When data for key variables are missing, cases that are linked are likely to be unrepresentative of the study population 
as they have less common values such as unusual zip codes (Bohensky 2016). Unfortunately, missing data is common 
in data linkage. The individual datasets used for linking—police, hospital, insurance, traffic—are generally not developed 
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for research purposes. The intended use of a dataset largely determines its collection method (Imprialou and Quddus 
2017). Therefore, the contents and details of their attributes and the application of various datasets for purposes other 
than those for which they were designed could result in decreased data quality. Additionally, many variables that would 
aid incorrectly linking the datasets are often redacted for privacy purposes (i.e., name, address, social security 
number). Data may be inaccurate due to misspellings or lack of information (i.e., staff might guess the age of an 
unconscious patient and set the birth month and day to ‘01’) (Christen 2012). Finally, the method of data collection can 
influence data quality because errors are more likely to occur when data is copied from handwritten forms or 
transcribed from conversations than when they are entered directly into a database (Harron et al. 2016). 

While there are statistical methods for managing data that are missing completely at random or missing at random, it 
is likely that missing data in crash and hospital data linkages are usually missing not at random, which introduces 
systemic bias into the analysis of the linked dataset (Bohensky 2016). Studies of linked databases may be significantly 
impacted by linkage errors, especially if certain types of people or events are more or less likely to have the outcome of 
interest (Bohensky 2016). Often, the bias introduced by these errors cannot be determined because the errors 
themselves are unknown.  

Linkage error can be estimated by using gold standard data, which is data with a known true match status. These data 
are rarely available in the real world, although sometimes synthetic datasets are used instead. To estimate the linkage 
error, the gold standard data is matched using the same process as the study datasets. This allows link status to be 
compared with match status and for the calculation of metrics such as sensitivity and specificity. 

Sensitivity, or the true positive rate, is the proportion of matches that are correctly identified as links. Specificity, or the 
true negative rate, is the proportion of non-matches that are correctly identified as non-links. High sensitivity reduces 
the number of false negatives, while high specificity reduces the number of false positives. Often, there is a tradeoff 
between sensitivity and specificity. 

Although sensitivity and specificity can be affected by the method of data linkage used, they are much more dependent 
on the quality of the data that is being linked. Data quality is affected by the accuracy, completeness, consistency, 
timeliness, accessibility, and believability of the variables used to link the databases (Christen 2012). 

Of the ten included studies, only two report the sensitivity and specificity of the data linkage process. Both showed a 
higher specificity than sensitivity, which indicates that there are more false negatives than false positives in their 
datasets. One reported the false positive rate and false negative rate, which is a similar though not interchangeable 
metric.  

Most of the studies do not provide an estimate of the error around their reporting level estimates, so it is possible that 
bicycle and pedestrian crashes are not as underreported as these studies suggest. It may be that bicycle, and 
pedestrian crashes appear in both police and hospital datasets but are less likely to be linked. Because of linkage error, 
link rate can only be used to estimate reporting level. Without knowledge of the variance of that estimate, the effect of 
underreporting on traffic safety analyses cannot be accurately determined. 

Suggestions for Improvement 
Prior to linking data, researchers should carefully examine the individual datasets to ensure data integrity and 
completeness. Bohensky (2016) recommends that direct, unique identifiers be included within datasets to reduce bias 
from incorrectly entered data or missing variables. Unfortunately, privacy concerns may prevent this method from 
being implemented in the United States. In the absence of direct identifiers, Bohensky (2016) suggests the use of 
financial incentives to encourage data custodians to improve data quality and consistency. Definitions of variables 
used for linking, such as injury severity, should be standardized at the national or international level so that datasets 
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from different sources can be reliably linked. Data linkage studies need to develop a clear and systematic method of 
reporting their methodology so that they can be easily repeatable by other researchers (Bohensky 2016). 

Additionally, data linkers must develop indicators to describe the linkage errors present in a linked dataset (Bohensky 
2016). Harron et al. (2017) suggests three approaches to evaluating linkage quality. The first approach is to use a gold 
standard dataset to directly measure missed and false matches—while this is the most accurate approach, it is difficult 
to apply this methodology in practice as gold standard data is often unavailable. The second approach is to compare 
the characteristics of linked and unlinked data to determine potential sources of bias—this approach requires a linkage 
design in which all records in at least one file are expected to link, as well as provision of characteristics of the unlinked 
records to the researchers. The third approach is to conduct a sensitivity analysis to evaluate how sensitive the results 
are in response to changes in the linkage method—this approach requires that researchers have access to match 
weights for each linked record. Match weights do not reveal any sensitive information and thus are more likely to be 
shared with researchers. However, the sensitivity analysis may be difficult to interpret as the effects of missed 
matches and false matches cannot be distinguished from each other (Harron et al. 2017). 

Further research must be conducted to identify the populations that are most likely to suffer from selection bias during 
data linkage, in addition to determining the effects that different linkage processes have on reducing such bias 
(Bohensky 2016). 

Additionally, researchers need to use a consistent definition of reporting level so that results can be compared. While 
hospital and police ascertainment rates are the most theoretically accurate definitions of reporting level, researchers 
may consider use of hospital link rate instead because it is the most common definition. Finally, linkage with other 
datasets should be explored. For example, the addition of linked traffic data could help account for exposure in crash 
safety analysis. 

Conclusions 
Research has argued that police collision reports tend to underrepresent bicycle and pedestrian crashes, especially 
when motor vehicles are not involved. To account for this bias when making traffic safety decisions using police data, 
the estimated reporting level and the uncertainty of the estimated reporting level must be known. Ten studies using 
data linkage to explore pedestrian and/or bicyclist safety were evaluated and summarized. Because of different 
definitions of reporting level, different periods of study, and different study locations, it was difficult to directly compare 
the studies. Even among the six studies using the hospital link definition, estimates of reporting levels for pedestrian 
crashes ranged from 44 to 75 percent, while for bicycle crashes, estimates ranged from 7 to 46 percent. 

These results indicate a severe underreporting problem in police collision reports, which could lead to inaccurate 
estimates of crash rates and could under- or over-estimate the effects of road safety countermeasures.  

However, most of the studies did not provide an estimate of the error around their reporting level estimates. Therefore, 
it is possible that bicycle and pedestrian crashes are not as underreported as these studies suggest. It may be that 
bicycle, and pedestrian crashes appear in both police and hospital datasets but are less likely to be linked. Because of 
linkage error, link rate can only be used to estimate reporting level. Without knowledge of the variance of that estimate, 
the effect of underreporting on traffic safety analyses cannot be accurately determined. 

Future studies must include estimates of the error present in their data linkage process so that the level of 
underreporting in police data can accurately be measured and accounted for. Additionally, datasets should be designed 
so that they can more easily be linked. This could involve standardizing the definition of common fields in each 
dataset, but could also involve the introduction of some type of individual identifier so that records can be linked 
automatically. Finally, linkage with other datasets should be explored. 
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Abstract 
A significant proportion of fatalities from motor vehicle collisions (MVC) could be prevented through better emergency 
medical service (EMS) care. Despite a lack of conclusive research, there is a consensus that prehospital time (the time 
between the MVC and the patient’s arrival at the hospital) must be reduced as much as possible. Many studies use 
response time (the time between EMS dispatch and arrival at the scene) as an indicator of overall prehospital time and 
a metric of EMS performance. However, there are other components of prehospital time that may be equally important, 
including the discovery time between the collision and EMS notification, the on-scene time, and the transport time 
between the scene and the hospital. In rural MVCs, the discovery time can be substantial if there are no witnesses or 
survivors capable of calling emergency services; technologies that automatically detect MVCs can shorten discovery 
times in such instances. Response times depend on the distance between the EMS vehicle and the scene; this time 
can be reduced through deployment strategies that place EMS vehicles close to where motor vehicle collisions are 
likely to occur. Transport times depend on the distance between the scene and the hospital; this time could be reduced 
by increasing access to trauma centers, especially in rural areas. On scene time is a component of the total time. 
However there is a trade-off between minimizing scene time to reduce total time, on one hand, and, on the other hand, 
providing optimal on-scene care. Increasing capacity of EMS personnel and/or utilizing technology such as 
telemedicine should be considered as part of this trade-off. Future research is needed to determine the relative benefits 
and costs of reducing any of these segments of prehospital time 

.  
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Introduction 
In 2016, there were 34,439 fatal motor vehicle collisions in the United States (NHTSA, 2018). It is possible that a 
significant proportion of these fatalities could have been prevented with faster response times and better emergency 
medical care. For this reason, the Towards Zero Deaths Steering Committee, comprised of representatives from various 
highway safety stakeholders, identified enhanced emergency medical services as a key area in its national safety 
strategy (Towards Zero Deaths Steering Committee, 2014). 

This paper explores the factors affecting prehospital time, recommends strategies for reducing this time and 
improving prehospital care, and summarizes areas in which further research is needed. 

Importance of Pre-Hospital Time 
There is widespread belief in the significance of the ‘golden hour’ immediately following an injury, during which time 
resuscitation, stabilization and transport to a medical facility offer the greatest chance of survival for the patient 
(Harmsen et al., 2015). By reducing prehospital time, more advanced medical care can be provided sooner, resulting in 
reduced mortality. However, there is a lack of conclusive research on whether the golden hour is important for all types 
of injuries. In some cases, in which patients need to be treated prior to transfer to a hospital or trauma center, reduced 
prehospital time may have a negative impact on patients’ health outcomes, especially if necessary treatment in 
deferred for the sake of getting the patient to the hospital as quickly as possible. Additionally, it is likely that reducing 
prehospital time below a certain threshold will lead to diminishing returns for patient survival. For example, patient 
outcomes may be similar for prehospital times below 15 minutes, meaning that a reduction in prehospital time from 15 
minutes to 10 minutes may not change patient outcomes enough to justify the cost of the reduction.  

Many studies use response time, the time between EMS dispatch and arrival at the scene, as an indicator of overall 
prehospital time and a metric of EMS performance. However, the literature disagrees about whether response time is 
an important factor in patient survival. For example, one study found that response times only improved survival 
chances when they were less than five minutes (Blackwell and Kaufman, 2002). A study of severely injured trauma 
patients in Korea found that longer prehospital times had no impact on mortality and that mortality decreased when 
scene times were longer than six minutes (Kim et al., 2017). However, another study found that increased EMS 
prehospital time was likely to be associated with higher mortality rates in rural areas in which the mean EMS response 
time was greater than 14 minutes (Gonzalez et al., 2009). A study of motor vehicle collisions in Spain found that when 
response times were reduced from 25 minutes to 15, the probability of fatality decreased by one third (Sánchez-
Mangas et al., 2010). In yet another study, the author cautioned that some options for decreasing ambulance service 
times not only have prohibitive costs, but increase the risk of safety to patients, emergency medical service personnel, 
and the public because ambulances have a high collision rate. The author further stated that patient outcome should 
be the main standard of EMS performance (Al-Shaqsi, 2010). 

In addition, response time may not be important for all types of patients. Reductions in prehospital time may have a 
greater impact on less severely injured patients since extremely severely injured patients are likely to die regardless of 
how soon they are treated (Gonzalez et al., 2009). Response time may also have different impacts depending on the 
type of emergency—most studies on the impact of response time have been focused on cardiac arrest patients (Wilde, 
2013). 

According to one study, previous research failed to account for the endogeneity (i.e., EMS personnel are usually aware 
of how serious an injury is and may adjust the speed of their response accordingly when determining the impact on 
patient outcomes) which may have resulted in biased estimates of the effect of response times downward toward 
finding no effect. When Wilde accounted for this endogeneity by using an instrument variable, which affects the 



 

 
www.roadsafety.unc.edu	 81	

www 

explanatory variable but has no independent effect on the dependent variable, the author found that a one-minute 
increase in response time led to an 8 to 17 percent increase in mortality (Wilde, 2013). 

There are other components of prehospital time that may be of equal, or greater, importance than response time. One 
study defined total prehospital time as the time between the emergency call and arrival of the patient at the hospital 
(Harmsen et al., 2015). The author further breaks this time down into activation time (the time between the call and 
EMS deployment), response time (the time between the call and EMS arrival at the crash scene), on-scene time (the 
time spent on scene by EMS), and transport time (the time between leaving the crash scene and arriving at the 
hospital). Other important segments of prehospital time include the discovery time between the crash and the 911 call, 
and the time between arriving at the scene and arriving at the hospital, which can be substantial if vehicle extraction is 
necessary. 

Factors Affecting Pre-Hospital Time 
Incident Detection and Dispatch 
Traditionally, EMS agencies are notified of a motor vehicle collision when a witness or someone involved in the 
collision makes a 911 call. If there are no witnesses and no one involved in the crash is capable of making an 
emergency call, the discovery time between the accident and EMS notification can be dangerously long. One study 
found that in the state of Texas this incident detection time is three times as long for rural motor vehicle collisions as it 
is for urban ones, probably due to the geographic isolation of rural areas (Lu and Davidson, 2017). 

There are also in-vehicle systems, known as Advanced Automatic Collision Notification (AACN) technologies, that can 
detect a crash occurrence and send its location to independent emergency call centers. Personnel at these centers 
then attempt to make voice contact with vehicle occupants, and if they determine it is not a false alarm, they make a 
911 call on the occupants’ behalf. These systems can also estimate the likelihood of severe injury in a crash—however 
the algorithms used for these estimates are not consistent across various technologies  (Towards Zero Deaths 
Steering Committee, 2014). 

Even when a 911 call is made directly after a crash occurs, there may still be a significant period of time before an EMS 
vehicle can be dispatched. Traditional 911 systems can identify a caller’s location automatically only when the call 
comes from a landline (Towards Zero Deaths Steering Committee, 2014). Otherwise, the EMS dispatcher must rely on 
information from the witness or victim, which may be unreliable or unavailable. Enhanced 911 systems have the ability 
to accurately locate calls made from cell phones and can identify the nearest emergency call center, however, this 
system has not yet been fully implemented nationwide. Recently, next generation 911 (NG911) systems have been 
developed. These systems can receive text messages, pictures, and videos from callers to provide responders with 
more accurate information about the crash scene (Towards Zero Deaths Steering Committee, 2014). As of 2017, a total 
of 6 states are completely covered and 13 states are partially covered by NG911 capable services (National 911 
Program, 2017). Using NG911, AACN technologies could directly contact EMS agencies, bypassing the need for 
independently operated emergency call centers. These systems reduce the time between the 911 call and EMS 
dispatch. 

Differences in Rural and Urban Accessibility 
While only 19 percent of the United States population resides in rural areas, over half of all traffic fatalities involve rural 
motor vehicle collisions. In 2011, a total of 75 percent of drivers who were injured in motor vehicle collisions and died 
during transport to the hospital were in rural areas (Towards Zero Deaths Steering Committee, 2014).  

Rural motor vehicle collisions are not intrinsically more deadly—one study found that rural and urban motor vehicle 
crashes result in similar injury severities (Gonzalez et al., 2009). Mortality rates are similar for severely injured patients 
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regardless of whether the incident occurs in a urban or a rural setting; this indicates that patients with lower injury 
severity contribute to the generally higher mortality rate in rural areas (Gonzalez et al., 2009). 

This discrepancy could be caused by the relative inaccessibility of trauma centers in rural areas. Although patients who 
are treated at Level 1 trauma centers within one hour of injury are 25 percent less likely to die as a result, more than 45 
million U.S. citizens live over an hour away from a Level 1 or 2 trauma center (Towards Zero Deaths Steering 
Committee, 2014). In a study of motor vehicle collisions in Texas, Lu and Davidson found that activation time, response 
time, and transport time were significantly longer for fatal motor vehicle collisions in rural areas than in urban areas (Lu 
and Davidson, 2017). 

Land Use 
According to one study, urban sprawl is associated with longer EMS response time (Trowbridge et al., 2009). The 
authors found that counties with characteristics of sprawl including low density construction, limited street 
connectivity, and distance between residential development and civic and commercial districts showed greater 
probability of delayed ambulance arrival than counties with smart growth features. The authors asserted that 
integrating more comprehensive land-use metrics, including measures of urban sprawl, into EMS dispatch algorithms 
could improve use of resources and potentially improve response reliability (Trowbridge et al., 2009).  

Factors Affecting Pre-Hospital Care 
Triage 
In the context of prehospital care, triage, the process of prioritizing actions in an emergency, begins when a 911 call is 
received, at which point dispatchers must decide which EMS crew to send to the scene. Triage continues when EMS 
responders decide whether the emergency requires the use of sirens and lights as they travel to the scene. Once at the 
scene, the responders must decide whether to stabilize the patient at the site or to rush the patient to the hospital. 
Finally, the responders must decide which trauma center is most appropriate and whether use sirens and lights is 
necessary for the trip.  

Without proper triage, EMS agencies cannot effectively prioritize which resources to provide to which patients. 
Unnecessary use of sirens and lights by EMS vehicles can result in harm to ambulance crews and the public (Al-Shaqsi, 
2010). EMS personnel may conclude that the use of such warning signals allow them to disregard stop signs or traffic 
signals and to drive against traffic. In addition, drivers are generally unclear on how to respond to visual and audible 
signals from emergency vehicles (Sanddal et al., 2010). EMS responders have fatality rates as high as those for police 
and firefighters, and 75 percent of these fatalities involve transportation (Towards Zero Deaths Steering Committee, 
2014). Ambulances are at least seven times more likely to crash than heavy trucks, and two-thirds of fatalities caused 
by ambulance collisions are among occupants of other vehicles or pedestrians (Towards Zero Deaths Steering 
Committee, 2014). When EMS vehicles use sirens and lights, these risks may be exacerbated. However, there is 
currently no evidence-based model that determines when the risk of using sirens and lights is justified; instead, 
individual EMS responders are responsible for this decision (Towards Zero Deaths Steering Committee, 2014).  

Furthermore, the EMS vehicle that is closest to the scene may lack the necessary equipment to address a particular 
emergency. Although sending the closest vehicle may result in the shortest response time, comprehensive telephone 
triage that identifies the tools needed for the situation prior to deciding which vehicle to send could improve patient 
survival, even while increasing prehospital times (Al-Shaqsi, 2010).  

Telemedicine 
Telemedicine is the provision of medical services via information and communication technologies to remotely located 
healthcare workers and patients. It is intended to extend the reach of medical specialty services and is of particular 
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benefit in the case of pre-hospital care in acute emergencies where treatment delays may negatively impact outcome 
(Amadi-Obi, Gilligan, Owens, & O’Donnell, 2014). 

Amadi-Obi notes that telemedicine has been most extensively studied in the area of stroke management. Telemedicine 
can provide remote access to a stroke specialist, which the author asserts is a promising solution in locations lacking 
qualified local medical experts. This is known as the “hub and spoke model,” wherein telemedicine links underserved 
areas (the spoke) with a centrally located stroke expert (the hub). The author further notes that telemedicine provides 
similar quality of care to in-person medicine, and contends that there is no statistical difference in short-term and long-
term mortality between telemedicine and face-to-face consultation. Telemedicine is also more expensive than 
traditional medicine although there is potential for significant cost savings as a result of reduced length of hospital 
stays (Amadi-Obi, Gilligan, Owens, & O’Donnell, 2014). 

There is less research on the impact of telemedicine on trauma management. According to Amadi-Obi, it is appropriate 
in addressing major incidents in which a significant deficit of healthcare professionals can be resolved via 
teleconsultation. For example, teleradiology has improved diagnoses and reduced the expense of transfer of trauma 
patients. Overall, the author recommends further research incorporating better study designs, larger sample size, and a 
focus on incorporating smartphone technology (Amadi-Obi, Gilligan, Owens, & O’Donnell, 2014). 

Another study also presented concerns about the effectiveness and cost-effectiveness of telemedicine, describing 
most telemedicine studies as “methodologically weak before-and-after studies that rarely examine patient-centered 
outcomes,” instead focusing on feasibility and convenience for patients (Kahn, 2015). Additionally, the author stated 
there may be potential unintended consequences related to the complex interpersonal and interprofessional 
relationships within the healthcare profession because telemedicine compels patients to accept medical advice 
without the benefit of in-person consultation, compromising patient trust and rapport. The study further suggested that 
research must examine the crucial issue of context—not only whether telemedicine works—but also how, when, and 
under which circumstances it works best (Kahn, 2015). 

Recommendations 
More research must be done to determine whether pre-hospital time is significantly related to patient outcome for 
motor vehicle collisions. If this research determines that pre-hospital time is important and should be reduced as much 
as possible, there are several ways to achieve that goal. 

The time between the incident and EMS notification can be reduced through the implementation of automatic crash 
detection technologies in vehicles with the ability to accurately estimate injury severity and directly communicate with 
EMS dispatchers. These technologies could also improve triage by notifying dispatchers when specialized services 
such as vehicle extraction are necessary (Towards Zero Deaths Steering Committee 2014). This would prevent 
dispatchers from sending ill-equipped EMS vehicles to the scene and would reduce overall prehospital time. Triage can 
also be improved by fully implementing Next Generation 911 throughout the nation so that more detailed information 
can be provided to EMS responders before they reach the scene. Telemedicine could also improve triage and on-scene 
patient treatment by allowing more specialized medical professionals to provide input on the proper course of patient 
care. However, more research is necessary before this can be determined. 

A number of strategies to reduce response time, the time between EMS dispatch and the arrival of the EMS crew at the 
scene, have been developed.  There are two main ways of reducing EMS response time: having more EMS vehicles in 
service at the same time or by positioning the existing vehicles so that they have better access to emergencies 
(Peyravi et al. 2015). Because the former involves substantial financial costs, research has focused on ways to locate 
EMS vehicles more efficiently. This research includes dynamic load-responsive ambulance deployment (Peleg & 
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Pliskin, 2004), discrete event simulations (Wei Lam et al., 2014), decision support systems (Repede & Bernardo, 1994), 
and geospatial-time analysis of ambulance deployment (Ong et al., 2010).  These strategies all involve using 
retrospective data, GIS information, and various models to determine where and when to locate ambulances. For 
example, Gonzalez found that when rural ambulance stations locations were moved from the area of highest 
population concentration to areas with high motor vehicle collision rates and/or major roads, EMS response times to 
motor vehicle collisions decreased (Gonzalez et al. 2011). 

Response time could also be decreased by making it safer for EMS vehicles to travel quickly using sirens and lights. 
This could be achieved by mandating that EMS vehicles have collision avoidance and other safety systems installed 
(Towards Zero Deaths Steering Committee 2014). The installation of vehicle-to-infrastructure communication 
technology, such as road condition warning systems, would allow EMS vehicle drivers to adapt their routes according 
to real-time traffic and avoid areas where a collision would be likely (Towards Zero Deaths Steering Committee 2014). 

Finally, the transport time between the scene and the hospital could be reduced. Making it safer for EMS vehicles to 
travel quickly could also reduce transport time. Another way of reducing transport time is by locating trauma centers 
so that there is a Level 1 or 2 trauma center within one hour of anywhere in the nation; this could be done through the 
regionalization of EMS agencies (Towards Zero Deaths Steering Committee 2014). Finally, transport time may become 
less important if treatment can be effectively administered during the trip through the use of telemedicine. 

Conclusion 
Although further research is necessary, reducing pre-hospital time may improve patient outcomes in motor vehicle 
collisions. Pre-hospital time consists of the time between the incident and EMS notification, the time between EMS 
dispatch and arrival on scene, the time spent at the scene, and the time between the scene and the hospital. Each of 
these time periods can be reduced, although the benefit relative to the cost of doing so is not yet determined.  
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Abstract 
Understanding relationships between the built environment, urban form, and road safety is an important part of the 
planning process. Transportation planning aims to increase access to destinations through improved mobility and land 
use strategies that enhance proximity. This study proposes an approach to link transportation accessibility data with 
home-based safety data to understand whether accessibility also has implications for safety. This approach relies on 
two main data elements. First, accessibility data from transportation planning is applied to fine-geographic resolution 
data in an urban area – in this case Census block groups. Next, police crash data is geocoded to the residential 
location (corresponding block group) of the crash victim. Crash generation models (e.g., negative binomial count 
models) can be developed at the block group level to assess the extent accessibility influences crash counts of 
residents of a neighborhood. This method was applied to data from Charlotte, North Carolina, using work, non-work, 
and population auto accessibility metrics generated from a gravity model utilized in Charlotte’s long-range planning 
efforts. Similarly, demographic data from the Census was included in the modelling effort. Two predictive negative 
binomial regression models were estimated for total crash counts and injury crash counts. Controlling for 
demographics, we found that increasing work and non-work accessibility decreased crash counts (for both total and 
injury crashes). We found that increasing population accessibility increased crash counts. We speculate that increased 
population accessibility results in concentrated travel demand and ultimately increased crash exposure, overcoming 
individual-level reductions in crash exposure from lower VMT. Despite data limitations, this work illustrates the 
importance of including planning-level data in safety analysis and presents areas for improvement of the approach.  
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Introduction 
The built environment can influence both the likelihood and the severity of a crash occurring at a particular location. 
There are several studies and literature reviews on the influence of the built environment on crashes (Ewing & 
Dumbaugh, 2009; Retting, Ferguson, & McCartt, 2003; Rothman, Buliung, Macarthur, To, & Howard, 2014; Stoker et al., 
2015). Studies to date have addressed issues such as where hot spots of crashes occur (Wier, Weintraub, Humphreys, 
Seto, & Bhatia, 2009), the influence of the built environment on the severity of pedestrian and bicycle crashes (Chen & 
Shen, 2016), and how various roadway design characteristics affect roadway crash rates (Abdel-Aty et al., 2009). 

The effect of a traveler’s residential location on their crash risk has not been studied as thoroughly. Historically, most 
crash analysis focuses on crash location because of proximate causes present at the crash site and crash data 
generally includes details of the crash location. The link between the built environment at a traveler’s residential 
location and the likelihood of traffic crashes may not be obvious at first since the residential location of a person is not 
necessarily or even frequently where their crashes occur. However, there is extensive literature on how the residential 
built environment influences travel behavior (Ewing & Cervero, 2010; Stevens, 2016), and travel behavior may in turn 
influence crash risk. We take a “home based approach” (HBA) to safety analysis in this paper. This approach assigns 
crashes to the home location of the crash victim, rather than the location of the crash that is usually employed in a 
crash location-based approach. This is done by geocoding victim address locations and aggregating those crashes to 
small geographic analysis units, like Census block groups or Traffic Analysis Zones (TAZs). While ours is not the first 
paper to take a HBA approach, here we point out that a more systematic analysis of the built environment and 
demographic features of residential locations is possible and is relevant to the study of traffic safety. This particular 
paper focuses on the implications of auto accessibility to population, to work, and to non-work destinations as an 
exemplar of this home-based approach. 

Ewing and Dumbaugh (Ewing & Dumbaugh, 2009) posit that one of the ways that the residential built environment may 
influence crash risk is via exposure. Certain residential built environments are associated with increased travel 
exposure, i.e. higher vehicle miles traveled (VMT), and therefore increased crash risk. Indeed, the divergence in crash 
fatalities per capita and crash fatalities per mile illustrates that countries with more vehicular travel experience a higher 
number of crash fatalities in part due to higher rates of vehicular travel (OECD & ITF, 2016). For example, even though 
the US is only 1.86 times riskier on a per-mile basis than the UK, it is 3.52 times riskier (or about 1.89x more) on a per-
capita basis, due to the larger amounts of per-capita vehicular travel in the US. Therefore, greater vehicular travel in the 
US is associated with higher probability of being in a crash at the national level; it is logical to extrapolate this trend 
and assume that greater vehicular travel would be associated with higher probability of being in a crash on the 
subnational level as well, with high-VMT residential locations being associated with more crashes while low-VMT 
residential locations would be associated with fewer. 

Several papers examine the relationship between sprawl or compactness and crash risk. Presumably, those who live in 
more sprawling environments drive more and are therefore more likely to be subject to a crash. Ewing and Hamidi 
(Ewing, Hamidi, & Grace, 2016) find that sprawling counties are associated with more fatal crashes, but fewer injury 
crashes, than more compact counties. Mohamed et al. (Mohamed, vom Hofe, & Mazumder, 2014) find that greater 
jurisdictional sprawl is inversely related to the number of fatal and injury crashes, though they do not take into account 
the potential spillover effect, i.e. that residential locations are not necessarily crash locations. That is, crash locations 
rather than residential locations are their object of analysis. Lucy (Lucy, 2003) conducts an interesting study 
comparing the risk of death in a traffic crash with the risk of death by murder, examining data at city, county, state, and 
federal levels. He finds that traffic fatality rates are highest in exurban areas and outer counties as compared with 
inner counties. Yeo et al. (Yeo, Park, & Jang, 2015) conduct a path analysis of the relationship between sprawl, VMT, 
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traffic fatalities, income, and fuel cost for 147 urbanized areas in the US. They find that sprawl has both a direct effect 
on increasing traffic fatalities and an indirect effect on increasing traffic fatalities through VMT. In summary, the 
literature suggests that built environments associated with higher VMT are associated with more traffic fatalities; 
however, these environments are not consistently associated with more traffic injuries as well. 

While most of the literature on the relationship between residential built environment and traffic risk has focused on 
the complex and multidimensional construct of sprawl, the literature on the relationship between the built environment 
and travel behavior distinguishes between several different measurable dimensions of the built environment that each 
influence travel behavior: density, design, diversity, and destination accessibility (Ewing & Cervero, 2010). The 
advantage of focusing on these individual dimensions is that they are more readily measurable and less abstract than 
multi-dimensional sprawl. They can also be measured at finer scales than the county level, such as the Census Block 
Group or Traffic Analysis Zone. This allows for neighborhood-level scales of spatial analysis.   

The literature on travel behavior and the built environment strongly suggests that the single most important variable 
related to reduced vehicle miles traveled is destination accessibility, hereafter referred to simply as accessibility (Ewing 
& Cervero, 2010; Stevens, 2016). Therefore, this paper examines the relationship between accessibility (as measured at 
a person’s residential location) and crashes, based on the hypothesis that those who live in areas of high accessibility 
will engage in less vehicular travel and therefore experience reduced rates of vehicular crashes on a per-capita basis. 

In comparison with previous papers on sprawl and crash risk, this paper proposes a method, using new safety data 
approaches, to examine the role of the built environment on crashes. Our approach has two main contributions. First, 
the method allows a level of analysis on a much finer scale, the Census block group. Second, we analyze the effect of 
particular built environment variables, accessibility and density, rather than an aggregate sprawl index. This makes the 
analysis more transparent and replicable for future research and analysis efforts. Furthermore, this paper examines the 
relationship between three measures of accessibility: accessibility to the metropolitan population, accessibility to all 
jobs, and accessibility to non-work related jobs. This paper also controls for the characteristics of the resident 
population to identify any relationship between the accessibility of a person’s residential environment and their 
vehicular crash risk. We rely on a crash database from Mecklenburg County (Charlotte) North Carolina to illustrate the 
capability of this approach in identifying the effect of accessibility at the block group level on crash prediction for that 
geographic unit.  

Methodology 
The method proposed here requires two key pieces of information. First, to examine whether the accessibility of a 
crash victim’s residential location is correlated with their crash rates, we require accessibility data from each 
residential location, i.e., how many destinations can a resident access from their home within reasonable travel time. 
Residential locations are geocoded and then identified by the crash victim’s home Census block group, a scale of 
analysis that preserves the confidentiality of crash victims. Therefore, Census block groups are the unit of analysis for 
all built environment and demographic variables. Next, we generate accessibility metrics for each Census block group 
based on its regional location. Destinations often considered in accessibility analysis includes number of jobs, 
population, or other non-work destinations that attract trips (e.g., retail).  The network travel time from every origin and 
destination is calculated, generally using the travel time matrix generated from regional travel demand modeling 
efforts. Accessibility can be defined by the number of destinations reached in a certain travel time, or it can be 
represented through a gravity-based approach, where the attractiveness of destinations from an origin diminished 
based on travel time impedance. The gravity approach is used here, described later in this paper. Census data also 
includes a trove of socioeconomic control variables to assist in model generation.  
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Application  
Mecklenburg County is the setting to illustrate this analysis. This geographic area includes urban and suburban areas 
of the Charlotte, North Carolina, metropolitan area, and includes about one million residents. The county population is 
densest in the central business district and in the southeast quadrant of the county. Accessibility on many metrics 
varies between block groups.  

University of North Carolina’s Highway Safety Research Center (HSRC) provided comprehensive data on crashes that 
occurred on surface streets in Mecklenburg County in 2013. Since crash data are limited to Mecklenburg County, only 
residents of Mecklenburg County are included in this analysis (i.e., crash victims who live outside the county, but 
experienced crashes in the county were excluded). Unfortunately, this dataset does not include crashes that occurred 
on the Interstate highway system in the county. This omission possibly skews the results of the analysis, but we still 
are able to demonstrate the method with this dataset. There are 555 Census block groups in the county, and after 
removing block groups with no households, 550 Census block groups remained. In addition to accessibility, we 
collected demographic and built environment data for each block group to analyze patterns in total and injury crashes. 

HSRC matched crash data to crash victim residential locations, removing identifiers. In 2013, there were 20,899 total 
crashes in the county, including 241 pedestrian crashes, and 101 bicyclist crashes. HSRC matched each person in 
control of a crashed vehicle (including pedestrians and cyclists) to their residential block groups (where they live). A 
total of 29,161 vehicle drivers and 269 pedestrians were matched to the 20,899 crashes (no cyclists remained after the 
matching process), 23,829 of those drivers and 250 of the pedestrians live in Mecklenburg County (refer to Figure 1). 
Note that the number of drivers is larger than the number of crashes because more than one vehicle may be associated 
with each crash. These drivers were associated with 29 fatal crashes and 5,804 injury crashes. The dependent 
variables analyzed were total crash counts and injury crash counts by Census block group, as there were not enough 
fatal crashes for statistical analysis. 

 

Figure 1. Total crashes by Census block group in Mecklenburg County, North Carolina, 2013. 
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We also examined related demographic and built environment data for each Census block group. The five-year (2009-
2014) American Community Survey provided demographic data. Demographic variables included race/ethnicity (black 
and Hispanic), age (age 5 -17, and age 65+), educational attainment (no high school degree), and household poverty 
status. Built environment data included population density, employment density, and accessibility (accessibility to 
work, accessibility to non-work locations, and accessibility to population). Vehicle Miles Traveled (VMT) in each block 
group was also examined to control for the amount of driving on freeways and arterials within each Census block 
group.  

Accessibility was calculated using gravity models (see equations below). Three types of destinations were considered: 
work, nonwork, and population. LEHD Origin-Destination Employment Statistics, or LODES (US Census Bureau, 2016), 
were used to determine work and nonwork locations for the 12-county Charlotte metropolitan area. Calculations for 
work accessibility included all jobs as potential destinations, whereas calculations for nonwork trips only included 
employment sectors associated with nonwork travel:  Retail Trade (NAICS 44-45); Health Care and Social Assistance 
(NAICS 62); Arts, Entertainment, and Recreation (NAICS 71); Accommodation and Food Services (NAICS 72); Other 
Services (NAICS 81). Population counts for each destination in the 12-county metropolitan area were obtained from the 
2010 United States Census. The 2010 Charlotte Regional Transportation Planning Organization (CRTPO, 
https://www.crtpo.org/) provided zone-to-zone travel time data for auto travel, both peak and off-peak.  

The Gamma function was utilized as the impedance function for calculating accessibility, as this function is used 
within the region’s travel demand model for trip distribution (Kimley-Horne and Associates, 2016). Likewise, parameters 
were adopted from the region’s trip distribution model. Specifically, the impedance for non-work trips had a Beta of 
2.14 and a Gamma of 0.36, while the impedance function for work trips and population had a Beta of 1.18 and a 
Gamma of 0.15.  
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The above formulae illustrates three equations for accessibility of a given Census block group i. For each accessibility 
formula, the accessibility of residential zone i is the sum over all other zones j of the number of destinations in zone j 
(jobs, nonwork jobs, population) times the impedance of travel for traveling from zone i to zone j. The impedance of 
travel is in turn a function of travel time tij, where tij is peak-hour auto travel time for work and population formula and 
off-peak auto travel time for non-work. 

Model Specification 
Negative binomial models were used to separately predict total and injury crashes as a function of demographics and 
built environment variables. All variables were standardized to facilitate the comparison of effect size across variables. 
The analysis began with a base model of just demographic variables. Subsequently, we add density and accessibility 
variables to determine if the residential built environment potentially influences the number of crashes residents 
experienced. 
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Results 
Table 1 lists the results of negative binomial models for total crashes and Table 2 lists the results for injury crashes. In 
the base model, an increase of total population, percent black, and percent Hispanic populations predicted more total 
crashes. It is expected that as the population of a given area increases, the number of crashes involving people from 
that area would also rise. An increase in the percentage of people between the ages of 5 and 17 was associated with 
fewer crashes. Other variables such as people 65 and up, no high school degree, and poverty status were not 
statistically significant in the base model. 

Density and Accessibility (Model 1 to 6) 
Model 1 to 6 offered a comparison between accessibility and density as measures of the residential built environment. 
In all these models, total population, black, and Hispanic populations were statistically significant and have a positive 
correlation with the number of crashes. In model 1 and model 2, the percentage of people between the ages of 5 and 17 
has a negative relationship that was statistically significant. An increase in the percentage of people with no high 
school degree was correlated with fewer crashes in model 3. In model 3, 4, 5, and 6 an increase in the percentage of 
households in poverty predicted fewer crashes. Population density is not statistically significant in model 1, while 
employment density is associated with fewer crashes in model 2 (β=-0.047). Accessibility to population, work, and non-
work locations is significant in model 3 (β=0.196), model 4 (β=0.005), and model 5 (β=0.069), respectively.  In terms of 
effect size, a one standard deviation increase in population was associated with 48.3% more crashes, while a one 
standard deviation increase in accessibility is associated with 21.6% more crashes, so the effect size of population 
accessibility is quite large. In model 6, all accessibility measures were examined together in a single regression. In this 
model, an increase in accessibility to population predicted more crashes (β=0.465), while accessibility to work 
locations (β=-0.006) and accessibility to non-work locations (β=- 0.172) predicted fewer total crashes, with all 
accessibility variables being statistically significant. 

Model 7 controlled for vehicle miles traveled (VMT) in the resident’s home block group as a measure of localized 
exposure to traffic. There was no change in the statistical significance of demographic variables with the addition of 
local VMT. Accessibility to population (β=0.213) remained positively correlated with total crashes even after controlling 
for localized VMT. An increase in VMT in freeways was statistically significantly correlated with fewer total crashes 
(β=-0.074), while VMT on arterials was not statistically significant. 

Injury Crashes 
The same patterns found for total crashes generally held for injury crashes as well. In the base model, an increase total 
population, black, and Hispanic populations was associated with a rise in injury crashes. An increase of people 
between the ages of 5 and 17 predicted fewer injuries. Other variables such as people 65 and up, no high school 
degree, and poverty status were not statistically significant.  

Model 8 to 13 examine the association of the built environment variables of accessibility and density on injurious 
crashes. In all these models, total population, black, and Hispanic populations were statistically significant and had a 
positive correlation. In model 8, 9, 11, and 12 the percentage of people between the ages of 5 and 17 has a negative 
and statistically significant relationship with crashes. Percent of people aged 65 and up and percent of people without 
a high school education are not statistically significant in models 8 to 13 (in contrast with the total crash model where 
no high school degree was negatively associated with crash counts in model 3). Poverty status was correlated with 
fewer injury crashes in model 10 (similar to total crash models 3, 4, 5, and 6). In model 8, population density is not 
statistically significant and in model 9 employment density is not statistically significant (this differs from total crash 
models where employment density was negatively associated). Accessibility to population and to work are associated 
with an increase in injuries in model 10 (β=0.180) and model 11 (β=0.004), respectively. Accessibility to non-work 
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locations was not statistically significant in model 12 (differing from total crash models where accessibility to non-
work locations was statistically significant in model 5).  

In terms of effect size, a one standard deviation increase in population was associated with 48.1% more injury crashes, 
while a one standard deviation increase in accessibility to population was associated with 19.7% more injury crashes. 
In model 13, all accessibility measures were tested in conjunction. Accessibility to population predicted an increase in 
injury crashes (β=0.523). While accessibility to work locations (β=-0.008) and non-work locations (β=-0.201) predicted 
fewer injury crashes. 

Model 14 controlled for vehicle miles traveled (VMT) within the Census block group in the prediction of injury crashes. 
All demographic variables maintained their statistical associations after controlling for localized VMT. Accessibility to 
population (β=0.197) remained statistically significant in model 14 even after controlling for local VMT. An increase in 
VMT in freeways was correlated with fewer injury crashes (β=-0.083), while VMT in arterials was not statistically 
significant.  
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Total Crashes 
 Demographics Density Accessibility VMT Control 
 Base Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
 Estimate Estimate Estimate Estimate Estimate Estimate Estimate Estimate 
Intercept 3.697 *** 3.697 *** 3.696 *** 3.688 *** 3.453 *** 3.696 *** 3.972 *** 3.686 *** 
Demographic Variables                 
Population 0.352 *** 0.350 *** 0.346 *** 0.394 *** 0.375 *** 0.370 *** 0.381 *** 0.407 *** 
Black 0.245 *** 0.247 *** 0.239 *** 0.223 *** 0.233 *** 0.254 *** 0.181 *** 0.229 *** 
Hispanic 0.104 *** 0.099 *** 0.102 *** 0.132 *** 0.127 *** 0.124 *** 0.092 *** 0.125 *** 
Age 5 to 17 -0.051 ** -0.048 * -0.059 ** -0.002  -0.022  -0.032  -0.014  -0.006  
Age 65 and Up -0.007  -0.003  -0.014  0.017  0.007  0.004  0.006  0.014  
No H.S. Degree -0.014  -0.014  -0.014  -0.059 * -0.045  -0.030  -0.044  -0.054 . 
Poverty Status -0.036  -0.041  -0.035  -0.078 ** -0.062 * -0.056 * -0.053 * -0.082 ** 
Built Environment Variables                 
Population Density   0.026              
Employment Density     -0.047 *           
Access to Work         0.005 ***   -0.006 *   
Access to Non-Work           0.069 ** -0.172 ***   
Access to Population       0.196 ***     0.465 *** 0.213 *** 
Vehicle Miles of Travel (VMT)                 
VMT Arterials               -0.014  
VMT Freeways               -0.074 *** 
Estimate indicated with level of significance (<0. 1, *<0.05, **<0.01, ***<0.001) 
All variables have been standardized 

  

Table 1. Final negative binomial models for total crashes in Mecklenburg County, North Carolina. 
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Injury Crashes 
 Demographics Density Accessibility VMT Control 

 Base Model Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 
Variables Estimate Estimate Estimate Estimate Estimate Estimate Estimate Estimate 
Intercept 2.228 *** 2.228 *** 2.228 *** 2.221 *** 2.046 *** 2.228 *** 2.638 *** 2.218 *** 
Demographic Variables                 
Population 0.355 *** 0.353 *** 0.357 *** 0.393 *** 0.371 *** 0.366 *** 0.377 *** 0.404 *** 
Black 0.350 *** 0.351 *** 0.352 *** 0.322 *** 0.337 *** 0.354 *** 0.279 *** 0.330 *** 
Hispanic 0.142 *** 0.138 *** 0.143 *** 0.164 *** 0.157 *** 0.154 *** 0.116 *** 0.155 *** 
Age 5 to 17 -0.078 *** -0.075 ** -0.075 ** -0.031  -0.056 * -0.066 ** -0.045 . -0.035  
Age 65 and Up -0.012  -0.009  -0.010  0.011  -0.001  -0.005  -0.004  0.009  
No H.S. Degree -0.001  0.000  -0.001  -0.043  -0.025  -0.011  -0.017  -0.036  
Poverty Status -0.028  -0.031  -0.028  -0.063 * -0.045  -0.039  -0.037  -0.068 * 
Built Environment Variables                 
Population Density   0.020             *** 
Employment Density     0.016            
Access to Work         0.004 **   -0.008 **   
Access to Non-Work           0.044  -0.201 ***   
Access to Population       0.180 ***     0.523 *** 0.197  
Vehicle Miles of Travel (VMT)                 
VMT Arterials               -0.002  
VMT Freeways               -0.083 *** 
Estimate indicated with level of significance (<0. 1, *<0.05, **<0.01, ***<0.001) 

All variables have been standardized 
 

Table 2. Final negative binomial models for injury crashes in Mecklenburg County, North Carolina. 
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Discussion 
The hypothesis for this study was that higher accessibility areas require less vehicular travel and therefore residents 
would experience fewer crashes. Our results indicate the opposite; residents of higher accessibility areas, in particular 
residents of areas with high accessibility to population, experience more crashes. Accessibility to population, work, and 
non-work locations are each associated with an increase in total crashes (refer to Table 1). The same pattern was 
observed for injury crashes (refer to Table 2), with the exception of accessibility to non-work locations, which is not 
statistically significant though positively associated with crashes.  

Residents of high accessibility areas are located in concentrations of urban activity.  Those living in high population 
accessibility areas live within the commute sheds of many other urban residents.  Therefore, when driving they are 
exposed to more of other people’s driving—high accessibility essentially predicts the overall level of traffic in the 
surrounding environment. As a result, there is a higher rate of crashes for such residents even if they drive less overall 
than in areas with lower accessibility (refer to diagram 1). As our findings indicate, accessibility to population had the 
largest effect on total and injury crashes out of all the accessibility measures (refer to Table 1 and 2). This is intuitive 
because accessibility to population is the best proxy for exposure to the overall levels of traffic in the surrounding 
environment. 

 

 

 

 

 

 

 

 

 

The model with all three accessibility variables suggests an even more nuanced interpretation.  When accessibility to 
the population is controlled for, accessibility to work and nonwork destinations has a negative and statistically 
significant correlation with total crashes and injury crashes.  If accessibility to population is a proxy for exposure to 
other people’s driving in the urban environment, then accessibility to work and nonwork may be associated with lower 
crash risk because they predict lower VMT for the                                                   own driving. In other words, the original 
hypothesis that high accessibility environments are associated with lower crash risk via lower VMT may be true in part, 
but only after controlling for accessibility to the overall metropolitan population. 

Density is the most studied built environment variable, but it may not capture important safety-related effects. Our 
findings show quite different results for accessibility and density variables. In general, density at a person’s residential 
location showed weak or no relationship with their likelihood of being in a traffic crash. Population density was not 
statistically significant in total crash and injury crash models. Employment density was only statistically significant in 
injury crash models, and with a small coefficient (β=-0.047). In contrast, accessibility measures had significant 
relationships in both total crash and injury crash models. Accessibility to population, as mentioned before, had the 
largest effect size of all built environment variables examined.  

Diagram 1. Conceptual framework: Crashes in high accessibility areas. A positive sign 
indicates a positive relationship and a negative sign indicates a negative relationship.  
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Areas with higher accessibility to population, such as new infill development in close proximity to the central city, are 
associated with a higher rate of crashes in our results. A one standard deviation increase in accessibility to population 
is associated with 21.6% more crashes and 19.7% more injury crashes (refer to Table 1 and 2). Although we are not 
certain of the external validity of these results, it may be the case that when residential development is promoted in high 
accessibility areas traffic safety may be unintentionally diminished as a result. One implication is that efforts to 
increase accessibility should be matched with efforts to improve the safety performance of the transportation network.  

Limitations and Further Research 
The most significant limitation is the lack of data on interstate crashes. It is possible that residents of low accessibility 
areas travel more and experience more crashes on the interstate system. We undercount crashes that occur on 
populations that likely generate higher VMT per capita, those that rely on the interstate highway system. If this is the 
case, then the higher crash counts associated with high population accessibility areas might be overstated in these 
results. 

We only examine the relationship between crashes and residential location for a single urban county. As such, we miss 
spillover effects where a resident lives towards the edge of the county and experiences a crash in another county. Since 
all of the crash data obtained is from Charlotte-Mecklenburg County, we are not able to capture these out-of-county 
crashes, and there may be a systematic undercount of traffic crashes for residents living towards the edge of the 
county. 

Likewise, the range of accessibility analyzed is truncated because the scope of the analysis is limited to a single urban 
county. The larger metropolitan statistical area (MSA) includes ten counties. Other research finds fatal crash risk 
increases in exurban and outlying counties (Lucy, 2003).  It is possible that accessibility is associated with decreased 
crash risk and/or decreased injury crash risk when moving from low accessibility locations in exurban counties to inner 
counties, and is then associated with increased crash risk or injury crash risk within inner urban counties as one moves 
towards the center of these counties. Since the data here is limited to a single urban county, the full range of 
accessibility effects may possibly not be captured. However, the positive association of crashes with accessibility is a 
novel result and should be considered in future analysis concerning the built environment and crashes. Extending this 
research to a multicounty metropolitan or urbanized area might provide greater insight into the relationship between 
accessibility and crash rates. 

Conclusion 
This paper examined the relationship between accessibility, measured at a person’s residential location, and their 
likelihood of being in a crash in Mecklenburg County, North Carolina. The literature review indicated that built 
environments with higher VMT are associated with more crashes. As a result, our hypothesis was that those who live in 
areas of high accessibility would engage in less vehicular travel and therefore experience reduced rates of vehicular 
crashes on a per-capita basis.  

We identified the residential Census block group of crash victims with data from the University of North Carolina’s 
Highway Safety Research Center (HSRC). After the residential match was performed no pedestrians and cyclists 
remained, so the analysis proceeded with only vehicular crash victims. The five-year (2009-2014) American Community 
Survey provided demographic data (race/ethnicity, age, educational attainment, and household poverty status) to add to 
our built environment data as controls for the analysis. Negative binomial models separately predicted total and 
injurious crashes as a function of demographics and built environment variables at the Census block group level.  

Our results indicate that residents of higher accessibility areas, in particular residents of areas with high accessibility to 
population, experience more crashes. This contradicts the original hypothesis that residents of high accessibility areas 
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would experience fewer crashes. All of the accessibility measures (accessibility to population, work, and non-work 
locations) were associated with an increase in total and injury crashes (with the exception of accessibility to non-work 
locations which did not have a significant relationship in injury crash models). One potential explanation for these 
findings is that people located in high accessibility areas are exposed to other people’s driving. Consequently, there is 
an increase in the rate of crashes for residents even if they drive less than residents of areas with lower accessibility. 
Although the external validity of the positive association between residential accessibility and crash rates is uncertain, it 
may be the case that promoting residential development in high accessibility areas diminishes traffic safety as an 
unintentional byproduct. 

The study has significant limitations, however it demonstrates a method to analyze crashes in the context of home-
based crash analysis and accessibility. The results are suggestive and more research is required to generate more 
definitive outcomes. This work does not allow us to investigate a full range of modes or injury severities. Also, the 
geographically broad accessibility effects may also not have been captured by the single-county analysis which 
contrasts with previous research that was conducted across multiple counties. Future research should extend the study 
area to a multicounty metropolitan area with more complete crash data to gain greater insight into the relationship 
between residential accessibility and crash rates.  
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Abstract 
Current practice of road safety attributes traffic crashes to the location of traffic crashes (i.e., Location-Based Approach 
–LBA), hence it is challenging to measure individuals’ likelihood of involvement in traffic crashes based on where they 
live. To measure likelihood of involvement in traffic crashes, we introduced Home-Based approach (HBA) as the 
expected number of crashes that road users who live in a certain geographic area have during a specified period, 
following epidemiological spatial risk approaches. Census tract and police report crashes were used to extract the 
location of the traffic crashes (n = 694,276) and home-address of road users (n = 1,113,830) in Tennessee, and 
accompanying socioeconomics. A Poisson model and a geographically weighted Poisson regression (GWPR) model 
were used to predict the association between sociodemographic variables and HBA/LBA crash frequency. Results 
indicate that GWPR models are more suitable than traditional models and all the independent variables have substantial 
local effects. Findings indicate that residents of areas with higher share of active mode of transportation, higher income 
and more population of white race are less likely to be involved in the traffic crashes. The HBA approach could be used 
to identify geographic areas where their residents have a higher likelihood of involvement in traffic crashes and can 
focus interventions on those populations. The findings are discussed in line with road safety.  

Keywords: Macroscopic Crash Prediction Method; Home-Based Approach; Location-Based Approach; Geographically 

Weighted Regression; Spatial Analysis 
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Introduction 
Traffic crashes are a large negative externalities of the transportation system and are listed as one of the leading cause 
of early death (Winston Harrington et al. 2006, World Health Organization and Organization 2014). World Health 
Organization reports on road safety demonstrate the variation of the crash fatality rates (i.e., fatality per 100,000 
populations) across countries focusing on crash rates per capita. A large body of the road safety literature examined the 
differences in crash fatality rate and factors influencing it at country level (Koornstra et al. 2002, Hermans 2009, Holló et 

al. 2010, Chen et al. 2016). This spatial variation reflects the role of exogenous factors such as demographics, economy, 
infrastructure, culture, safety measures and safety performance indicators (Koornstra et al. 2002, Chen et al. 2016). 
Bearing in mind the spatial variation of the crash fatality rate, one may expect that road users’ likelihood of involvement 
in traffic crashes also varies across the space. Knowing about the groups or geographical areas where their residents 
are more prone to traffic crashes or burden of traffic crashes enable researcher to assign resources or proper 
countermeasures to improve their safety. Still, less is known about the likelihood of involvement in traffic crashes and 
its spatial distribution within a country or at fine geographical level such as a neighborhood level or traffic analysis 
zone. 

There are road safety disparities across road user type, income, race, and ethnicities; for example, the crash fatality rate 
is approximately double in low- and middle-income countries compared to high-income countries (21.5, 19.5, and 10.3 
per 100,000 respectively) (WHO 2015). This trend also holds within a country; for example, several studies in the US 
reported that vulnerable road users (i.e., pedestrians and bicyclists), lower income neighborhoods have higher fatality 
rates compared to motorized road users and wealthier neighborhoods, respectively (Marshall and Ferenchak 2017). This 
is also the case for the rural areas where the fatality rate is several times higher than majority of urban areas (Marshall 
and Ferenchak 2017). In addition, ethnicities such as Hispanic, African-American, and American Indian are more prone 
to traffic crashes –i.e., higher crash rate (Mayrose and Jehle 2002, Braver 2003, Campos-Outcalt et al. 2003, McAndrews 

et al. 2013); this trend also holds for the fatality rate (Schiff and Becker 1996, Baker et al. 1998, Harper et al. 2000). 
Bearing in mind that overall road safety burden does not impact population equitably, we may expect the likelihood of 
involvement in traffic crashes also impacts population inequitably.  

Measuring individuals’ likelihood of involvement in traffic crashes is challenging. Particularly, due to the current practice 
of road safety, which attributes traffic crashes to the location of traffic crashes (i.e., Location-Based Approach). The 
current practice of road safety is best described as "the number of accidents (crashes) by kind and severity, expected to 

occur on the entity during a specified period.” (Hauer 1997 p. 24) This definition enables researchers to estimate the 
likelihood of occurrence of traffic crashes (kind and severity) for an entity for a specified period. As a results, a large 
body of the road safety literature is dedicated to the geographic distribution of traffic crashes, identifying the pattern of 
traffic crash disparities (e.g., hotspots), and evaluating the changes in traffic characteristics, geometry design on road 
safety outcome –i.e., crash modification factors (HSM 2010). Bearing in mind that human factors contribute in 90% of 
traffic crashes (Evans 1996, Petridou and Moustaki 2000), we may conclude that this definition overlooks the role of the 
person involved in the crash compared to other factors.  

To accentuate the role of the person involved in the analysis as well as considering the role of environmental factor in 
the analysis, in this study, we are proposing a new approach to measure road safety at a zonal level that does not rely 
on locations of traffic crashes, but rather the residential location of the individuals with added information from 
surrounding demographics. The Home-Based Approach (HBA) is a proposed method to complement the Location-Based 
Approach (LBA). Additionally, HBA enables researchers and practitioners to identify hotspots where residents have a 
higher likelihood of involvement in traffic crashes for targeted educational purposes, focusing resources on populations 
that could benefit most. This approach tends to follow norms associated with spatial epidemiological risk or disease 
burden studies, where the burden of disease is spatially analyzed and correlated with proximate factors.  
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The ultimate goal in this study is to scrutinize the road users’ likelihood of involvement in traffic crashes at fine 
geographic level and examine the association between sociodemographic factors surrounding home-address of 
individuals who were involved in traffic crashes with HBA crash frequency. We use Macroscopic Crash Prediction 
Models (MCPM) to achieve these goals. We also estimate the LBA crash frequency models for the study area. Above all, 
we do not have the intention to compare the goodness of fit of LBA and HBA models; our intention is to present these 
models side by side and discuss the association between sociodemographic variables and crash frequency in each 
approach.  

The remainder of this paper provides a literature review of Macroscopic Crash Prediction Models. In the next sections, 
we present methodology –including HBA definition, geocoding process, data sources, and the regression model– 
results, and the discussion of the findings.  

Macroscopic Crash Prediction Models 
MCPM is one set of methods that explore the relationship between road safety at a macroscopic level with 
sociodemographic and transportation infrastructure. By using locations of the traffic crashes at the zonal level, 
researchers identified several factors that associate with crash frequency at the zonal level; including 
sociodemographic factors such as population density (Huang and Abdel-Aty 2010), age cohorts (Aguero-Valverde and 
Jovanis 2006, Hadayeghi et al. 2010b, Pirdavani et al. 2012b, Dong et al. 2015), incomes (Pirdavani et al. 2012b, Xu and 
Huang 2015), and employment (Quddus 2008, Hadayeghi et al. 2010b). Travel behavior (Naderan and Shahi 2010, Abdel-
Aty et al. 2011, Dong et al. 2014, Dong et al. 2015) and road network characteristics such as road lengths with different 
speed limit (Abdel-Aty et al. 2011, Siddiqui et al. 2012), road functional classification (Quddus 2008, Hadayeghi et al. 
2010b), intersections density (Huang and Abdel-Aty 2010, Xu and Huang 2015), and traffic patterns (Quddus 2008, 
Hadayeghi et al. 2010b, Pirdavani et al. 2012b) also had association with safety at zonal level.  

Heterogeneity is one of the issues that may affect the inferences of the MVPM models where exogenous variables do 
not vary identically across observations (Xu et al. 2017). Heterogeneity could be attributed to the presence of factors 
(i.e., unknown or known) that are not likely to be available for the analysis and their exclusion from the estimation 
process may yield biased parameters, which eventually lead to drawing incorrect inferences (Mannering et al. 2016). 
This phenomenon impacts the association among dependent variables and exogenous variables. This issue could be 
addressed by either spatial or non-spatial methods; each of them has their own advantages. In the non-spatial 
approach, parameters are drawn from some random distribution and are assumed to vary randomly across observations 
(Anastasopoulos and Mannering 2011, Chen and Tarko 2014, Xu and Huang 2015). On the other hand, spatial models 
consider the spatial relationship of the observations to address this issue (Aguero-Valverde and Jovanis 2006, Pirdavani 
et al. 2013b, Xu and Huang 2015).  

Methodology 
Home-Based Approach Crash Definition 
The home-address of the road users who were involved in a traffic crash is one of the data elements that police officer 
records in crash reports at the crash scene (MMUCC 2012). Using home-address to collect information of the road users 
to collect data element regarding sociodemographic and travel behavior is a common practice in urban travel demand 
analysis (Kanafani 1983). In consideration of this practice, we will use the collected home-address of individuals as a 
basis for further analysis. To tie traffic crashes to the home addresses of the individuals in this study, we define the HBA 
crash frequency as the expected number of crashes that road users who live in a certain geographic area have during a 

specified period. This definition attributes traffic crashes to individuals and their residential addresses.  
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To account for individuals who directly contributed to the crashes, we only included drivers, bicyclists, motorcyclists, 
and pedestrians in this study. We excluded other road users type from our analysis (e.g., vehicle occupants, witnesses) 
since they did not have a direct role in the traffic crash occurrence.  

Data Source and Geocoding Process 
The data in this study was provided by Tennessee Integrated Traffic Analysis Network (TITAN), a portal provided by 
Tennessee Highway Patrol (THP) as a repository for traffic crash and surveillance reports completed by Tennessee law 
enforcement agencies. For the years 2014, 2015, and 2016, the TITAN records include 694,276 crashes and information 
of 2,026,506 individuals who were involved in traffic crashes. Each record includes information about the road user type, 
coordinates of the crashes and addresses of the individual who were involved in traffic crashes.  

After obtaining the address of the pedestrians, bicyclists, motorcyclists, and drivers (n= 1,203,887), we used the Bing 
application program interface (API) services to geocode the addresses. The quality of the geocoding was checked by 
controlling for the locality of the addresses. Only those records that had an accuracy level of premises (e.g., property 
name, building name), address level accuracy, or intersection level accuracy was used for the analysis. After controlling 
for the address quality, 1,113,830, (92.5%) records met the minimum address quality filter. Of those, 1,002,362 had a 
Tennessee home-address (90.0% of geocoded addresses); there were 111,468 out-of-state addresses.  

In this study, one goal was to investigate the relationship between sociodemographic variables and crash frequency at 
the zonal level. For that reason, we used census tract as the geographic unit. Census data from US survey in 2010 was 
also used to obtain sociodemographic data elements in each census tract in Tennessee. Table 1 presents the 
descriptive statistics of the sociodemographic variables. Additionally, we used Highway Performance Monitoring 
System data for Tennessee in 2015 to obtain Average Annual Daily Traffic for each road segment and calculate total 
Daily Vehicle Miles Travelled (DVMT) at the census tract level.  

Modeling Approach 
To evaluate safety at zonal level, traditionally, count data models are commonly utilized owing to the nature of traffic 
crashes that are usually measured as non-negative integers in a specific period of time (Anastasopoulos and Mannering 
2009). Similar to LBA crash frequency, HBA also has non-negative integers. Hence the models that would be used to 
evaluate HBA crash frequency must follow the nature of counts model. Using the analogy between HBA and LBA crash 
frequency, and considering the spatial heterogeneity, in this study, we will use Poisson Regression model and the 
Geographically Weighted Poisson Regression Model (GWPR) to explore the correlation between crash frequency and 
census tract characteristics.  

Poisson Model 

In the Poisson regression, the probability that crash frequency at zone i equals to n could be written as (Greene 2003): 

! "# =
%#
&' exp −%#

"#!
		 

(1) 

where %# (Poisson parameter) is the expected crash frequency (i.e., HBA or LBA crash frequency) for zone i in a three-
year period. In order to fit the regression model, the Poisson parameter, %# , can be written in a logarithm format (Greene 
2003):  

ln %# = 34#	 (2) 

where 4# is the vector of the sociodemographic data element extracted from census tract and 3 is a vector of the 
estimated coefficients.  
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Notably, in cases where the mean and the variance are not equal, applying the Poisson regression might lead to 
inappropriate results. In order to statistically test the existence of over-dispersion in the Poisson model, the Lagrange 
multiplier method was performed (Greene 2003): 

66 = 	
( 7# − 8# 9 − 7#)

:
#;<

2 8#
9:

#;<

9

		 
4  

where 7# is the observed crash frequency at zone >, 8# is the predicted crash frequency at zone >, and ? is the number of 
zones. 

Geographically Weighted Poisson Regression Model 

GWPR can be used to examine whether the association between exogenous variables and crash frequency substantially 
varies across space (Fotheringham et al. 2003). The model can be written as: 

ln %# = 3@ A#, C# + 3< A#, C# ln	(EF#) + 3G A#, C# H#I

J

G;<

+ K#											 
(5) 

where A#, C#  denotes the coordinates of zone >. It should be noted that in the GWPR, 3G A#, C#  is a function of the 
coordinates of the center of census tract >. The following equation can be used to estimate	3G A#, C# : 

β uO, vO = XRW uO, vO X T<XRW uO, vO Y			 (6) 

where β uO, vO  is the vector of estimated coefficients at zone >, X is the matrix of exogenous variables, Y is the n×1 
vector of the dependent variable (crash frequency), and W uO, vO  is n×n spatial weight matrix. : 

W uO, vO =

wO<
0

0
wO9

…
…

0
0

… … … …
0 … … wO[

	 

	(7) 

 

where wO] is the weight of variable j at location i. In this approach, a regression equation is estimated for each location 
based on observations at nearby areas. Based on the distance from the regression point each area is weighted (areas 
that are closer have a higher weight than ones that are farther). There are several methods for estimating the W matrix. 
In this study, we will use the adaptive bi-square kernel to construe the weight matrix. 

wO] =
(1 −

dO]
9

θO a
)9								dO] < θO a

0																												dO] > θO a

 
(8) 

where dO] is the Euclidean distance between observation i and j and θO a is an adaptive bandwidth size defined as the 
k– th nearest neighbor distance. The best bandwidth is the one with the lowest AICc score (Fotheringham et al. 2003, 
Hadayeghi et al. 2010a, Nakaya 2014) and we used golden search method to identify the best bandwidth size. For more 
details about the golden search please see Nakaya (2014). Moran’s I (Moran 1950) was also used to test whether the 
model residuals are spatially correlated. Moran’s I values range between -1 to +1. The extreme values are indicators of 
significant spatial autocorrelation where value close to 0 indicates a random pattern between residuals.  

The non-stationarity test was used to evaluate the existence of variation in the estimated coefficients across space (Liu 
and Khattak 2017). By comparing the upper and lower quartile of the estimated coefficients from GWPR model (h =
	3ijjkl − 3mnokl), we can write:  

h > 1.96 ∗ sE	t"u,																																																																	
	1.96 < max x# 											!tyy	zℎ|	z|yz	 }~�t}	�~|ÄÄ>�>|"z
	>Ä	"~z																							Ät>}|u	z~	Åtyy	 Ç}~Ét}	�~|ÄÄ>�>|"z

	 				(9) 
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where sE is the standard error of the coefficient in the global Poisson model, and x#  is the absolute value of the 
significances-score of the GWPR model at census tract >. If the value of h meet the condition in equation 9, we can 
conclude there is substantial variations among the estimated coefficients across the space. Otherwise, the coefficient 
is considered as the global coefficient, which does not have a substantial spatial variation. In order to estimate GWPR 
model, GWR4.0 software which is developed by Nakaya et al. (2012) was used. 

Measures of Goodness of Fit 
To evaluate and compare the performance of traditional Poisson regression, and GWPR, three statistics were utilized to 
measure estimation accuracy.  

1- R-squared for the Poisson model: this statistic assesses the overall goodness of fit based on standardized 
residuals. Larger values of ÑÖn#ÜÜn&9  (max is 1) indicate better fit. It is defined as (Cameron and Windmeijer 1996): 

ÑÖn#ÜÜn&
9 = 1 −

á# − áà
9
/áà

&
#;<

á# − á 9/á&
#;<

																																													(10) 

2- where á# and áà are the observed and crash frequency at location i respectively, and 7 is the average number of 
crashes.  

3- AIC: a lower AIC represents the better goodness of fit (Bozdogan 1987). A three-point decrease in an AIC value 
indicates a significant improvement in the goodness of fit (Bozdogan 1987). We can write: 

4- äãå = 	ç + 2é																																																														(11) 
where ç denotes the model deviance, and é is the number of parameters. In the GWPR, due to the non-parametric 
framework of the model, the number of parameters is meaningless. Therefore, an effective number of parameters 
should be considered, which can be written as (Nakaya et al. 2005): 

è = zêt�| s 																																																																	(12) 

where s is the hat matrix. For more details, please see (Nakaya et al. 2005). 

5- Mean Absolute Deviation: a smaller value of MAD implies a better model estimation. It can be defined as: 

6- ëäç = 	
|ì'Tì'|

î
'ïñ

:
																																																										(13) 

We use the abovementioned goodness of fit to compare models within each approach (i.e., Poisson vs. GWPR).  

Results 
After assigning the crashes to the crash location and individuals’ home-addresses and assigning them to corresponding 
census tracts, we calculated the crash frequency at the zonal level. The average of HBA crash frequency at the census 
tract level is 243.28 (SD = 164.17). The average of the crashes that occurred at census tract is 134.40 (SD = 171.46). The 
correlation between crash frequencies at the census tract level of the two approaches was 0.27 which indicated a weak 
linear relationship. The overall rate is calculated as crashes per 1000 population. Figure 5 and Figure 6 respectively map 
the LBA crash rate (i.e., number of crashes occurred in a census tract per 1000 population) and HBA crash rate (i.e., 
number of crashes that residents of a census tract had per 1000 population) for the period 2014-16. The correlation 
between the two approaches’ risk is 0.33 which also indicates a weak linear relationship. Noticeably, as Figure 5 
presents, the concentration of the areas with higher crash frequency are along the freeway corridors (e.g., I-40 and I-70) 
and rural highways. Individuals with a higher likelihood of involvement in traffic crashes are more concentrated around 
metropolitan areas (e.g., Nashville, Memphis, Knoxville). The comparison of the HBA crash rate over metropolitan areas 
(Table 2) shows that Middle Tennessee (i.e., Nashville metropolitan area) and Chattanooga respectively have the 
highest HBA crash rate. The Tri-cities and Greater Knoxville have the lowest HBA crash rate. In addition, Greater 
Chattanooga and Jackson have the highest LBA crash rate. Alternatively, Knoxville and Tri-cities have the lowest LBA 
crash rate.  

Table 1 Descriptive statistics of the census tract variables 
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Variable	 Mean	 Std.	Dev.	 Max	
Total	Population	 1531.99	 784.97	 9281.00	
Age	Cohort	Proportion	 	 	 	
16	Years	and	Younger	 0.23	 0.08	 0.71	
16-42	Years	Old	 0.32	 0.11	 1.00	
43-59	Years	Old	 0.25	 0.07	 1.00	
60	Years	Old	and	More	 0.20	 0.10	 1.00	
White	Race	Proportion	 0.77	 0.29	 1.00	
Means	Of	Transportation	to	Work	Proportion	 	 	 	
Personal	Vehicle	 0.92	 0.10	 1.00	
Carpool	 0.10	 0.08	 0.82	
Active	Mode	 0.03	 0.07	 1.00	
Average	Travel	Time	To	Work	(Minute)	 25.18	 6.45	 65.85	
Education	Degree	Proportion	 	 	 	
High	School	and	Lower	 0.52	 0.20	 1.00	
Some	College	Degree	 0.20	 0.08	 1.00	
Bachelors’	Degree	 0.20	 0.12	 1.00	
Others’	Degrees	 0.08	 0.08	 0.73	
Median	Household	Income	(1,000	$)	 45.85	 25.05	 249.38	
Household	Vehicles’	Ownership	Proportion	 	 	 	
No	Vehicle	 6.94	 9.34	 73.35	
One	Or	Two	Vehicles	 0.70	 0.13	 1.00	
Three	Or	More	Vehicles	 0.22	 0.13	 1.00	
Daily	VMT	(10,000)	 5.71	 6.88	 4.94	

 

 

Table 2 Crash Frequency and Crash Rate in Metropolitan areas (2014-16 Crashes) 

MPO	 Population	
Crash	Frequency	 Crash	Rate	(per	1000	population)	
HBA	 LBA	 HBA		 LBA		

Chattanooga	 405,026	 76,828	 55,195	 189.7	 136.3	
Knoxville	 972,667	 136,510	 81,344	 140.3	 83.6	
Jackson	 102,711	 15,224	 11,620	 148.2	 113.1	
Memphis	 1,008,864	 171,440	 89,082	 169.9	 88.3	
Nashville	 1,582,462	 312,987	 159,049	 197.8	 100.5	
Tri-Cities	 346,106	 48,579	 30,106	 140.4	 87.0	
Non-Metropolitan	Areas	 1,880,155	 240,629	 125,474	 128.0	 66.7	
Average		 	 	 	 159.1	 87.6	
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Figure 5 Location-Based Approach Crash Rate 
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Figure 6 Home-based approach crash rate 

 

Comparison of the Poisson and GWPR models  
Table 3 and Table 4 present the results of estimated negative Poisson regression and GWPR model for both HBA and 
LBA models. Considering the Lagrange multiplier, we can conclude that the over-dispersion is not an issue in both 
models. Comparison of the GWPR models and Poisson models by using MAD, ÑÖn#ÜÜn&9 , and corrected AIC values indicate 
that GWPR models are more suitable compared to the global models. Moran’s I of residuals in both models indicate that 
spatial autocorrelation is not an issue in the GWPR models. 
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Table 3 Results of Poisson and GWPR model for LBA results 

	 Estimate	 Standard	Error	 z(Est/SE)	 Mean	 STD	 Min	
Lower	
Quartile	 Median	

Upper	
Quartile	 Max	

Intercept	 3.956	 0.025	 158.781	 3.697	 4.038	 -18.294	 1.083	 3.760	 6.397	 17.028	
Population	 0.177	 0.001	 126.602	 0.226	 0.259	 -0.958	 0.083	 0.213	 0.397	 1.452	
Age	cohorts	proportion	 	 	 	 	 	 	 	 	 	 	

Under	16	years	 -0.935	 0.021	 -45.545	 -1.225	 2.327	 -10.305	 -2.642	 -1.152	 0.224	 6.550	
between	16-42	 0.188	 0.017	 11.119	 -0.207	 1.943	 -8.032	 -1.634	 -0.192	 1.180	 6.176	
between	43-59	 -0.339	 0.025	 -13.612	 -0.862	 2.434	 -13.003	 -2.372	 -0.604	 0.826	 7.871	

White	Race	Proportion	 0.200	 0.006	 32.099	 -0.013	 1.893	 -10.070	 -0.826	 -0.055	 0.716	 10.462	
Average	Travel	Time	to	Work	 -0.025	 0.000	 -99.451	 -0.021	 0.034	 -0.187	 -0.043	 -0.017	 0.000	 0.103	
Household	Income	 -2.15E-03	 8.60E-05	 -24.944	 -4.08E-03	 1.25E-02	 -5.78E-02	 -1.21E-02	 -2.54E-03	 3.97E-03	 4.78E-02	
Vehicle	Ownership	 	 	 	 	 	 	 	 	 	 	

Household	With	No-Vehicle	 1.709	 0.018	 96.098	 1.278	 3.236	 -16.932	 -0.501	 1.519	 3.286	 12.571	
Household	With	1	or	2	vehicles	 0.858	 0.012	 69.457	 0.690	 1.642	 -7.321	 -0.267	 0.592	 1.632	 6.787	

Daily-VMT	(10,000	Miles)	 0.005	 0.000	 482.648	 0.007	 0.004	 -0.004	 0.005	 0.007	 0.009	 0.025	
Travel	Model	To	work	 	 	 	 	 	 	 	 	 	 	

Personal	Vehicle	 0.047	 0.019	 2.539	 0.872	 2.906	 -8.966	 -0.812	 0.789	 2.425	 16.626	
Active	More	 1.100	 0.028	 38.701	 1.349	 5.889	 -29.868	 -1.899	 1.085	 4.488	 38.338	

Education	 	 	 	 	 	 	 	 	 	 	
College	Degree	 0.862	 0.018	 48.644	 0.420	 1.733	 -6.645	 -0.681	 0.398	 1.461	 7.921	
Bachelor	Degree	 0.441	 0.016	 28.430	 0.250	 1.889	 -5.514	 -1.108	 0.262	 1.609	 6.258	

Classic	AIC:	 281805.3	 	 	 78007.81	 	 	 	 	 	 	
AICc:	 281805.5	 	 	 80603.01	 	 	 	 	 	 	
Percent	deviance	explained	 0.46	 	 	 0.86	 	 	 	 	 	 	
Deviance:	 281775.3	 	 	 74508.61	 	 	 	 	 	 	
MAD	 73.6	 	 	 35.8	 	 	 	 	 	 	
!"	Poisson	 0.59	 	 	 0.92	 	 	 	 	 	 	
Lagrange	Multiplier	 0.28	 	 	 0.04	 	 	 	 	 	 	
Moran’s	I	of	residuals	 0.08	 	 	 -0.01	 	 	 	 	 	 	
Bandwidth	 Not	applicable	 	 70.00	 	 	 	 	 	 	
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Table 4 Results of Poisson and GWPR model for HBA results 

	 Estimate	
Standard	
Error	 z(Est/SE)	 Mean	 STD	 Min	

Lower	
Quartile	 Median	

Upper	
Quartile	 Max	

Intercept	 3.044	 0.024	 127.830	 3.871	 1.942	 -10.303	 2.864	 4.020	 5.027	 9.430	
Population	 0.337	 0.001	 390.872	 0.503	 0.125	 0.180	 0.422	 0.501	 0.582	 0.909	
Age	cohorts	proportion	 	 	 	 	 	 	 	 	 	 	

Under	16	years	 0.218	 0.016	 13.678	 -0.457	 0.816	 -3.816	 -0.999	 -0.425	 0.091	 2.625	
between	16-42	 0.583	 0.014	 41.992	 -0.179	 0.902	 -5.505	 -0.704	 -0.128	 0.420	 3.776	
between	43-59	 0.736	 0.020	 36.364	 0.244	 0.938	 -3.313	 -0.361	 0.282	 0.784	 4.155	

White	Race	Proportion	 -0.203	 0.005	 -44.791	 -0.010	 1.037	 -3.758	 -0.429	 -0.112	 0.290	 12.610	
Average	Travel	Time	to	Work	 0.010	 0.000	 56.306	 0.005	 0.014	 -0.052	 -0.003	 0.005	 0.013	 0.075	
Household	Income	 0.001	 0.000	 14.479	 0.001	 0.005	 -0.016	 -0.002	 0.000	 0.003	 0.021	
Vehicle	Ownership	 	 	 	 	 	 	 	 	 	 	

Household	With	No-Vehicle	 1.56E-04	 1.73E-04	 0.903	 0.001	 0.011	 -0.059	 -0.005	 0.001	 0.008	 0.049	
Household	With	1	or	2	vehicles	 0.278	 0.010	 27.266	 0.287	 0.647	 -2.177	 -0.091	 0.285	 0.680	 3.775	

Daily-VMT	(10,000	Miles)	 5.69E-03	 1.30E-04	 43.770	 0.005	 0.011	 -0.059	 -0.001	 0.004	 0.010	 0.064	
Travel	Model	To	work	 	 	 	 	 	 	 	 	 	 	

Personal	Vehicle	 0.857	 0.020	 43.346	 0.422	 1.245	 -4.234	 -0.276	 0.330	 1.072	 7.583	
Active	More	 0.018	 0.029	 0.609	 -0.520	 2.230	 -8.374	 -1.933	 -0.540	 0.801	 8.372	

Education 	 	 	 	 	 	 	 	 	 	
College	Degree	 0.865	 0.014	 63.390	 0.281	 0.802	 -2.160	 -0.218	 0.206	 0.725	 3.768	
Bachelor	Degree	 0.499	 0.012	 42.024	 0.117	 0.713	 -3.130	 -0.293	 0.117	 0.537	 2.749	

Classic	AIC:	 118441.6	 	 	 29716.08	 	 	 	 	 	 	
AICc:	 118441.7	 	 	 32681.39	 	 	 	 	 	 	
Percent	deviance	explained	 0.66	 	 	 0.92	 	 	 	 	 	 	
Deviance:	 118411.6	 	 	 26044.5	 	 	 	 	 	 	
MAD	 64.53	 	 	 29.06	 	 	 	 	 	 	
!"	Poisson	 0.74	 	 	 0.94	 	 	 	 	 	 	
Lagrange	Multiplier	 0.07	 	 	 0.01	 	 	 	 	 	 	
Moran’s	I	of	residuals	 0.16	 	 	 -0.005	 	 	 	 	 	 	
Bandwidth	 Not	applicable	 	 72.00	 	 	 	 	 	 	
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Figure 7 Local visualization of parameter estimates obtained from GWPR model for predicting LBA crash frequency  
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Figure 8 Local visualization of parameter estimates obtained from GWPR model for predicting HBA crash frequency 
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Figure 7 and Figure 8 present the estimated local coefficients of the GWPR models. The white census tracts 
present the areas where the local estimated coefficient is not significant. Visual inspection of the figures 
reveals the presence of the spatial patterns of the estimated coefficients. Likewise, non-stationary test results 
indicate that all the coefficient in both models has substantial local effects. Considering the range of the 
estimated coefficients, we learn that all the local estimated coefficient except for population variable in the HBA 
models includes both negative and positive values. The counterintuitive signs of the local coefficients in the 
GWPR model is a common issue, and many studies report this issue (Chow et al. 2006, Hadayeghi et al. 2010b, 
Pirdavani et al. 2013b, Xu and Huang 2015). This issue could arise due to local multicollinearity; however, by 
controlling for local multicollinearity we realized that the maximum VIF values in the areas with counterintuitive 
signs is unsubstantial; VIF values range between 1.01 to 3.95. Furthermore, overdispersion of the crash data 
also could affect the counterintuitive signs. In general, the Poisson regression model may underestimate the 
variance of the parameters (Lord and Mannering 2010), hence, it produces more significant variables (Xu and 
Huang 2015).  

To discuss the impact of estimated coefficients, we use the mean of the local coefficients of the GWPR models 
to deliberate the relationship between independent variables and crash frequency at the zonal level. 
Nevertheless, one needs to consider the magnitude and counterintuitive signs of the local coefficients in the 
interpretation of the results.  

In the LBA model, average travel time to work has a negative sign which indicates that fewer crashes occur in 
the areas where their residents have to travel longer distances. Areas with longer travel time may be used as a 
proxy for suburban and rural areas, which usually have a lower crash rate compared to urban areas (Zwerling et 

al. 2005). Cheng et al. (2018) explored the association between mean travel time and crash frequency of various 
road users; their findings indicated the different mean of travel time could have a positive or negative effect on 
crash frequency for different road users. On the other hand, in the HBA model, as average travel time increases, 
the HBA crash frequency increases as well. Average travel time to work is a proxy for the exposure to traffic. 
Considering the sign of average travel time, we may conclude that those who live in the suburban or rural areas 
(i.e., higher travel time) are engaged in more traffic crashes; however, their crashes may occur in the areas with 
lower travel time (i.e., urban areas).  

In line with previous studies, daily-VMT in the census tract has a positive significant association with both LBA 
crash frequency (e.g., Lee et al. 2015, Cai et al. 2017, Cheng et al. 2018) and HBA crash frequency. This implies 
that as traffic exposure increases, the likelihood of involvement in traffic crashes increases; this is also the case 
for the census population. By setting families with 3 or more vehicles as a base in both models, the proportion 
of families with no-vehicle and 1 or 2 vehicles have a positive significant association with LBA and HBA crash 
frequency. The positive sign of vehicle ownership is in agreement with previous research (Lee et al. 2015, Xu and 
Huang 2015).  

As expected, travel modes also have a direct impact on both models; the proportion of personal vehicles has a 
positive impact on both LBA and HBA crash frequency. The positive sign implies that as number of personal 
vehicle increases, the frequency of HBA and LBA crash frequency increases. Increase in the proportion of 
personal vehicles has a direct impact on VMT and eventually traffic exposure. Percent of active mode use has 
varying signs in both models. In the HBA models, active modes have a significant negative sign, which indicates 
that areas where their residents use active modes more often have better safety records, while, the positive sign 
of active modes in the LBA model implies that more crashes occur in the areas with active mode users. The 
positive sign is in agreement with previous studies (Lee et al. 2015, Dong et al. 2016, Cai et al. 2017).  



 

 
www.roadsafety.unc.edu	 115	

www 

Household income also has varied signs in both models. In the LBA model, the mean of estimated coefficient 
has a negative sign; this negative sign indicates that as median household income in a census tract increases, 
the LBA crash frequency decreases. The negative sign also implies that as median income in one area increase, 
the safety (i.e., LBA crash frequency) improves. This finding is in agreement with the previous literature 
(Pirdavani et al. 2012a, 2013a, Cai et al. 2017, Gomes et al. 2017). In contrast, in the HBA model, the sign of 
median household income has a positive association with HBA crash frequency, this sign implies that as 
median household income in a census tract increases, census residents are more involved in traffic crashes. 
The positive association could be explained by the trip rate, household travel survey studies in the study area 
reveal that as household income levels increase, trip rate for a family increases (KRTPO 2008, Lee et al. 2013); 
higher trip rates associated with higher exposure to traffic and eventually increase in the HBA crash frequency.  

In line with previous models, in the LBA model, age cohorts have a significant impact on LBA crash frequency. 
By setting the proportion of population over 60-year-old as the base group, we find that the proportion of other 
groups have a significant negative impact on LBA crash frequency. This finding is consistent with Dong et al. 
(2016). The estimated coefficients in the GWPR model implies that areas with a higher population of seniors, are 
more prone to traffic crashes, which is similar to Gomes et al. (2017) but contradicts Cai et al. (2017). In the HBA 
model, a positive sign of the group's age between 43-59 years old, and negative sign of groups aged between 16-
42 and below 16-year-old implies that the former group has a higher likelihood of involvement in traffic crashes.  

Considering race, the parentage of the white population has a negative association with the HBA and LBA crash 
frequency, which implies that census tracts with higher white population are less likely to be involved in traffic 
crashes, or have traffic crashes on roadways that intersect their neighborhood. The positive sign agrees with 
previous research; for example, Gomes et al. (2017) reported that an increase in the proportion of the minority 
races increases crash frequency. Lee et al. (2015) also reported that an increase in the proportion of African-
American and Hispanic populations increase the crash frequency of vehicle, bicycle, and pedestrian crashes at 
the zonal level.  

Summary and Conclusion 
In this study, we introduced a new approach to evaluate road safety that focuses on the home address of 
individuals (i.e., home-based approach) who were directly involved in traffic crashes instead of the location of 
the crashes (location-based approach). While LBA explores the geographical distribution of traffic crashes by 
focusing on the location of traffic crashes, HBA considers the socioeconomics associated with the location of 
the person involved in the crash. This approach could be used to explore the road safety disparities by 
considering the factors surrounding home-address of the crash victims.  

Comparing of the metropolitan areas exhibited the spatial variation in both approaches’ crash rate. The LBA 
crash rate could be attributed to the activity and infrastructure quality in each metropolitan area. In addition to 
the activity and infrastructure quality, HBA crash rate also reflects the safety culture. The difference in the 
safety culture (e.g., drunk driving, seatbelts) of residents of different metropolitans could be investigated in 
future studies.  

In this study, we used GWPR model to address the unobserved heterogeneity in both approaches. The 
difference between model specifications in HBA and LBA and weak correlation between crash frequency and 
crash rate in both approaches demonstrated the merits of HBA as a complementary solution in addition to the 
LBA method as an index to evaluate road safety and identify areas where their residents have a higher likelihood 
of involvement in traffic crashes.  
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GWPR model findings indicate that residents who live in the neighborhoods with higher income, higher white 
race population, more use of an active mode of transportation are less likely to be involved in a traffic crash. 
Proper safety campaigns could be used to address the safety concerns in the HBA hotspots, particularly by 
focusing on behavioral interventions that contribute to higher crash risk and injury burden (e.g., speeding). HBA 
may also be used in road safety campaign design as a solution to prioritize neighborhoods for allocating 
educational resources.  

One shortcoming of this study was that the true value of the exposure of the residents in census tracts is not 
known. As a result, we used VMT, average travel time to work, and census population as a substitute for the true 
value of the exposure. These three variables had a significant association with crash frequencies while their 
magnitude and sign differed in both models. One solution to acquire a better estimate of exposure is to use a 
travel demand model as an input for the HBA model. Unfortunately, in this study travel demand model was not 
available. Moreover, in this study we only had access to individuals’ traffic crashes in Tennessee. As a result, it 
is possible that we underestimate individual HBA crash frequency and the crash rate at a geographical level. 
This issue could be challenging in the areas that individuals have more out-of-state trips. 

Future directions 
In this study, we only considered sociodemographic variables for the analysis and did not consider the effect of 
the built environment (e.g., transportation system) in both approaches. Although the causality of the built 
environment in the LBA is known, we need to scrutinize the association between the built environment, network 
characteristics and HBA crash frequency. This problem should be addressed in the future studies. Bearing in 
mind that HBA attributes safety to the home address of the individual, and travel demand model reveals 
individuals’ travel behavior at their origin TAZ that includes home address of travelers, we expect close 
association between HBA and planning models. As a result, one may imagine HBA integration to travel demand 
planning frameworks. The HBA could be used in transportation planning process to evaluate the impact of 
accessibility to activities and transportation modes, as well as trip generation at zonal crash frequencies. 
Moreover, the HBA could be used in the design of the safety campaigns and prioritizing areas where road users 
have a higher likelihood of involvement in traffic crashes.  

In this study, in order to construe the weighting matrix, we used four different kernel option offered by GWR 
software namely, fixed Gaussian, fixed bi-square, adaptive bi-square, and adaptive Gaussian. The comparison of 
four models by using corrected AIC indicated that adaptive bi-square had the lowest value of corrected AIC and 
therefore is more suitable for presentation purposes. We found that the results were largely consistent with 
different kernel options and in order to maintain concision, we only included the adaptive bi-square model.  

It is also worth mentioning that there are difficulties in accessing the crash data with identifiers and it is not 
possible to obtain this data in some cases. One possible direction for future research could be to develop a 
methodology to identify areas where road users have a higher likelihood of involvement in traffic crashes based 
on the conventional police crash databases that may not have identifiers, or partnering with data owners to 
assist in matching crashes with spatial datasets.  
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Abstract 
Despite well-known safety benefits of seat belt use, some vehicle occupants still choose to not wear them. This is a 
challenge in Tennessee, which has a lower seat belt use rate compared to the national average. Road side observations 
and interviews are two main sources for estimating seat belt use rate; however, they have several limitations (e.g., small 
sample size, social desirability bias). In this study, we used police crash reports to address these limitations. At 
aggregate levels, 88.0% of persons over 16 years who were involved in traffic crashes in Tennessee in 2016 properly wore 
their seat belts. In general, young, male individuals, and rear-seat passengers had lower seat belt use rate. A unique 
aspect of this study is that home addresses of individuals who were involved in a traffic crashes (N = 542,776) were 
retrieved from police crash reports. Those addresses were geocoded and assigned to their corresponding census tract 
revealing added information about spatial distribution of seatbelt use. The average seat belt use rate in the metropolitan 
area was 88% and for the non-metropolitan area it was 87%. A Tobit model was used to evaluate the relationship between 
seat belt use rate for both drivers and passengers over 16 years old, with neighborhood sociodemographic variables. 
Population, age cohorts, race, household vehicles’ ownership, household size, and education were among the predictors 
of the seat belt use rate. Results of this analysis could be used in safety campaigns designed to reach geographic area 
groups with lower seat belt use rates (i.e., seat belt hotspots).  

Keywords: Seat Belt Use Rate; Tennessee; Census Data; Tobit Model; Home Address; Seat Belt Hotspots  
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Introduction 
Approximately 1000 individuals die on Tennessee’s roads every year most of them vehicle occupants. One known 
solution that reduces the fatality rate of the vehicles’ occupant is proper use of a seat belt. Several studies have reported 
the merits of wearing a seat belt in reducing crash fatalities and injury rate. Appropriate use of seat belts increases the 
chance of vehicle occupants surviving potential fatal crashes by 44% - 73% depending on seating position and the type of 
vehicles involved in traffic crash (Blincoe et al. May 2015). Despite the proven effectiveness of these devices, some 
individuals still do not wear them.  

In Tennessee, seat belt use is a primary law and it is mandatory for all the vehicle occupants to be restrained by a seat 
belt (i.e., secured shoulder and lap belts) when riding in the front seat of a vehicle. Licensed passengers 16 years old or 
older are responsible for their own conduct. Nevertheless, a ten-year trend of traffic crashes shows that 30% of 
Tennesseans who died in traffic crashes failed to wear their seat belt properly at the time of the crash. This rate was 54% 
and 70% for incapacitating injuries and non-incapacitating injuries, respectively (TITAN 2017). NHTSA reports an 88.9% 
seat belt use rate, based on direct observation, for the front row passengers in 2016 in Tennessee, which was 1.2% lower 
than the national average (NHTSA 2017). Road side observations of 27,000 vehicles’ occupants at 190 sites revealed that 
females had a seat belt use rate of 93.8% and males had an 85.0% seat belt use rate. Moreover, freeways showed the 
highest usage rate (91.2%) of all roadway types, while those observed on local roadways had the lowest usage rate 
(86.1%) (THSO 2016). In addition, another phone interview in Tennessee reported that 90% of respondents always wore 
their seat belt, females also had higher seat belt use rate than males (Hezaveh et al. 2018a).  

Not wearing a seat belt could be attributed to personality traits such as forgetfulness, laziness, perceived low risk of 
injury, and discomfort (Begg and Langley 2001); attitudes, beliefs, and intentions (Fhaner and Hane 1975, Jonah and 
Dawson 1982, Chliaoutakis et al. 2000, Şimşekoğlu and Lajunen 2008); habits (Knapper et al. 1976, Chliaoutakis et al. 
2000, Calisir and Lehto 2002); and lack of enforcement (Jonah et al. 1982, Farmer and Williams 2005). Proper 
countermeasures could target each of these factors through enforcement and education. 

Sociodemographic of those who wear their seat belts less frequently is also helpful for identifying and reaching the 
group(s) with higher risk. Generally, males have lower seat belt use rate in comparison to females (Preusser et al. 1991, 
Reinfurt et al. 1997, Nelson et al. 1998, Calisir and Lehto 2002, Wells et al. 2002, Glassbrenner et al. 2004, Gkritza and 
Mannering 2008, Pickrell and Ye 2009). This is also the case for younger drivers in comparison to older adults (Reinfurt et 

al. 1997, Calisir and Lehto 2002, Glassbrenner et al. 2004). Those with higher education and/or income tend to have 
higher seat belt use rates (Preusser et al. 1991, Reinfurt et al. 1997, Wells et al. 2002, Houston and Richardson 2005). 
Studies in the United States have also shown that African-Americans compared with Whites or Hispanics are less likely 
to use a seat belts (Vivoda et al. 2004, Gkritza and Mannering 2008, Pickrell and Ye 2009). Several studies have reported 
that occupants of pickup trucks have the lowest seat belt use rate compared to occupants of other vehicle types [see, 
e.g., (Boyle and Vanderwolf 2004, Glassbrenner and Ye 2007, Gkritza and Mannering 2008)].  

All of these studies tend to focus on direct observation, self-reported survey responses, or investigation of demographics 
within crash datasets. Although these methods are easy to conduct and can provide information at low cost; they have 
their limitations that could negatively affect the analysis. A fundamental limitation of self-reported behavioral 
questionnaires and interviews is that self-report instruments are often vulnerable to socially desirability bias (Lajunen 
and Summala 2003, Nordfjærn et al. 2015, Hezaveh et al. 2017, Hezaveh et al. 2018b). In the case of road observations, 
the amount of data that researcher records are very limited; mainly due to the short amount of time that the observers 
have to record the data and conspicuity challenges. In roadside observations, usually observed data elements are limited 
to the vehicle type, number of front row occupants, gender, and age group. Also, the number of observations sites are 
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usually limited, and they usually take place within daylight or in the nighttime in the areas with sufficient lighting to 
observe inside of the vehicles.  

Police crash reports are the main source of evaluating road safety especially for analyzing crash severity and frequency. 
However, using police crash reports for studying seat belt use has its limitations. The main limitation is possible 
incorrect assignment of seat belt use or crash severity to individuals by a responding officer. Some studies reported that 
“some car occupants who survived a crash may falsely claim to police that they were belted in order to avoid a fine.” 
(Cummings 2002). In contrast, several studies of police reports show that reported seat belt use is consistent with 
roadside observations (Li et al. 1999) and National Accident Sampling System Crashworthiness Data System (CDS) 
(Schiff and Cummings 2004). On the other hand, using police crash reports have several advantages in comparison to the 
road side observations and interviews. First, it provides a nearly comprehensive dataset of all serious traffic crashes. 
Second, it covers a vast geographic area with hundreds of thousands of the observations.  

While the literature on road safety provides information about the groups with lower seat belt use rate or other factors 
affecting seat belt use, it does not provide a solution for matching geographical areas where road users with lower 
compliance rates live. This is one of the main challenges in designing an effective and geographically targeted safety 
campaign. To date, most safety campaigns provide blanket coverage of regions with lower seatbelt rates, rather than 
precise and targeted messaging. Targeted education could be more cost effective at increasing overall seatbelt rates.  

This study aims to propose a new method to measure seat belt use rate at the neighborhood level and evaluate the 
relationship between seat belt use rate and socio-demographic variables based on the home address of the individual 
(i.e., home-based approach) who were involved in traffic crashes at zonal level. Although some studies used police crash 
reports to evaluate seat belt effectiveness and seat belt use rate, to the best of our knowledge no studies used this 
dataset for investigating the relationship between sociodemographic data elements and seat belt use rate based on 
home-address of individuals involved in traffic crashes (i.e., drivers, passengers). Using the home-address of the 
individuals in a large database of the traffic crashes enables researchers to identify the geographic and surrounding 
socioeconomic factors that affect seat belt use and neighborhoods where their residents have lower seat belt use rate. 
Additionally, we will compare the seat belt use rate extracted from police crash reports with other sources of the seat belt 
use rate in Tennessee. Our findings are not only limited to the front row occupants but include all the vehicle occupants 
in different times of the day, context, weather, light conditions, and road types. In the next section, we discuss the 
proposed database, the geocoding process, and the analytical methods. The rest of the paper presents the results and 
discusses the findings of this study.  

Methodology  
Database  
The data in this study was provided by Tennessee Integrated Traffic Analysis Network (TITAN), a portal provided by 
Tennessee Highway Patrol (THP) as a repository for traffic crash and surveillance reports completed by Tennessee law 
enforcement agencies. The traffic crash records from January 1, 2016, through December 31, 2016, were retrieved from 
TITAN. Each crash record includes information about road user type (e.g., pedestrian), geographic coordinates of the 
crashes, addresses of the individuals who were involved in traffic crashes, and dozens of other variables related to the 
crash. The police crash reports database contained 246,777 crashes and information of 580,767 individuals who were 
involved in traffic crashes in 2016. Data included different road users’ classifications; namely driver, motorcyclist, 
passenger, pedestrian, bicyclist, person in the building, vehicle’s owner, witness, and property owner, including 577,131 
vehicle occupants (i.e., driver or passenger); 73% of the vehicles occupant were drivers and the rest were passengers. 



 

 
www.roadsafety.unc.edu	 125	

www 

Geocoding Process 
Bing API was used in this study for geocoding the residential addresses of the individuals. Only those addresses with an 
accuracy level of premise (e.g., property name, building name), address level accuracy, or intersection level accuracy was 
used in the study. A sample of addresses were verified by manual inspection. After geocoding the home addresses, we 
were able to retrieve coordinates of 542,776 individuals (94% success rate) which met address-quality-filter criterion. 
Among geocoded addresses, 62,741 individuals lived out of state. After controlling for age, vehicles’ occupants 16 years 
old and older were selected for the analysis. Census data from 2010 was also used for obtaining sociodemographic data 
elements. Table 1 provides a summary of the sample characteristics of the variables considered as an input for model 
estimation for Tennessee. 

Tobit Model  
Tobin (1958) proposed the Tobit model or censored regression model. In this model, the regression is obtained by making 
the mean in the preceding correspond to a classical regression model. The general form of the model which is usually 
given in terms of index function is as following:  

!"∗ = %"&' + )", 

Where !"∗defined as: 

!"∗ =
!"	,-	. < !" < 0
.	,-	!" ≤ .
0	,-	!" ≥ 0

 

)" assumes that the error term is normally distributed with mean 0 and variance equals to 34. In this study, the seat belt 
use rate is the dependent variables, and ' are the variables presented in Table 1. The dependent variable is a proportion 
confined between 0 and 1.  

Model Performance 
Veall and Zimmermann (1996) concluded that Maddala pseudo-r-squared is a valid measurement for evaluating the 
goodness of fit of censored regression. The general form of Maddala pseudo-r-squared displayed below (Maddala 1986):  

54 = 1 − [9::;<==>::?<==]4/B 

where, CCBDEE and CCFDEE	are log likelihoods of the null and full model respectively, and N is the number of observations. The 
likelihood function of the Tobit model is:  

C = 1 − Φ 'H
3 3IJ

J
ϕ[(M" −

N

'H
3 )] 

where,	Φ is the standard normal distribution function, and ϕ is the standard normal density function (Anastasopoulos et al. 
2008). 

We also used the Akaike Information Criterion (AIC) as a measure of the relative goodness of fit for identification of the 
models with a better fit in the sample. AIC is a function of the number of parameters in the model (k) and log-likelihood of 
the model specification ln	(C ); STU = 2W − 2ln	(C). As a rule of thumb, a three-point change in an AIC value indicates a 
significant improvement in the goodness of fit (Bozdogan 1987). 0 

Table 1. Sample statistic for state of Tennessee at census tract 

	 Mean	 Std.	Err.	 [95%	Conf.	Interval]	
Total	Population		 1530.02	 12.26	 1505.98	 1554.06	
Area	(Square	Km)	 25.89	 0.72	 0.93	 516.94	
Age	Cohort	Proportion	 		 		 		 		

16	Years	And	Younger	 0.23	 0.00	 0.22	 0.23	
16-42	Years	Old	 0.32	 0.00	 0.32	 0.33	
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42-60	Years	Old	 0.25	 0.00	 0.24	 0.25	
60	Years	Old	and	More	 0.20	 0.00	 0.20	 0.20	

Age	Median		 39.01	 0.13	 38.75	 39.27	
Race	Proportion	 	 	 	 	

%	Race	White		 0.77	 0.00	 0.76	 0.78	
%	Race	Black		 0.18	 0.00	 0.18	 0.19	
%	Race	Indian		 0.00	 0.00	 0.00	 0.00	
%	Race	Asian		 0.01	 0.00	 0.01	 0.01	
%	Race	Hawaiian		 0.00	 0.00	 0.00	 0.00	

Means	Of	Transportation	To	Work	 	 	 	 	
Personal	Vehicle	 0.92	 0.00	 0.92	 0.93	
Carpool	 0.10	 0.00	 0.10	 0.11	
Bus	 0.01	 0.00	 0.01	 0.01	
Motorcycle	 0.00	 0.00	 0.00	 0.00	
Bicycle	 0.00	 0.00	 0.00	 0.00	
Walk	 0.02	 0.00	 0.01	 0.02	
Other	Means	 25.16	 0.10	 24.96	 25.36	
Number	Of	Children		 316.08	 3.79	 308.65	 323.50	

%	Children		 0.20	 0.00	 0.19	 0.20	
Household	Number		 597.47	 4.58	 588.49	 606.44	
Household	Size		 2.73	 0.08	 2.57	 2.89	
Education	Degree	Proportion	 	 	 	 	

%	Educated		 1021.62	 7.99	 1005.96	 1037.29	
High	School	and	Lower	 0.52	 0.00	 0.51	 0.53	
Some	College	Education	 0.21	 0.00	 0.20	 0.21	
Bachelors’	Degree	 0.20	 0.00	 0.19	 0.20	
Others’	Degrees	 0.08	 0.00	 0.07	 0.08	

Median	Household	Income	($)	 45900	 389.89	 45200.00	 46700.00	
Number	of	Housing	Unit		 679.38	 5.02	 669.54	 689.21	
%	Occupied	Household		 0.88	 0.00	 0.87	 0.88	
%	Vacant	Household		 0.12	 0.00	 0.12	 0.12	
Household	Vehicles’	Ownership	Proportion	 	 	 	 	

No	Vehicle	 0.07	 0.00	 0.07	 0.07	
One	Vehicle	 0.33	 0.00	 0.33	 0.33	
Two	Vehicles	 0.37	 0.00	 0.37	 0.38	
Three	Or	More	Vehicles	 0.22	 0.00	 0.22	 0.23	

Results 
Seat Belt Use Rate 

Tennessee residents had a higher compliance rate (88.2%) than those with out-of-state addresses (86.9%) (t=8.615, P-
value = 0.000). The average age of the male occupants (16 years old and older) was 39.4 (SD = 17.5) and for females was 
39.2 (SD = 17.7). In addition, the average age of those who wore seat belts properly (i.e., lap and shoulder) was 39.4 (SD 
17.6) and those who did not wear seat belt was 38.8 (SD = 17.1). Moreover, females (89.1%) had a higher seat belt use 
rate in comparison to the males (87.2%). Table 2 shows more details on the gender, age, and seat belt use rate among 

the vehicles’ occupants. In general, the average age of those who wore seat belts was higher than who did not (t=-8.278, 
P-value = 0.000).  

Table 3 also presents the seat belt distributions of the occupants over 16 years old. The highest seat belt use rate was 
for front passenger (90.0%) followed by driver (88.4%). Seat belt use rate dropped as passengers seating position row 

number increased ( 

Table 3).    

 

Table 2. Age and Gender distribution of the vehicles’ occupants over 16 years old 

		 Female	 Male	 Total*	
	 Mean	 SD	 Obs	 Mean	 SD	 Obs	 Mean	 SD	 Obs	
No	seat	belt	 38.70	 17.22	 25285	 38.76	 16.97	 32178	 38.76	 17.09	 57708	
Wear	Seat	belt	 39.24	 17.74	 205296	 39.52	 17.54	 220700	 39.39	 17.64	 425999	
Total	 39.18	 17.69	 230581	 39.42	 17.47	 252878	 39.31	 17.58	 483707	
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* Including the unknown observations 

 

Table 3. Seat belt use rate (number of observations) among vehicles’ occupants over 16 years old regarding seat position 

Row		 Left	 Middle	 Right	 Other/Unknown	
Front	 0.88	(395641)	 0.55	(912)	 0.89	(66464)	 0.2	(55)	
Second	 0.84	(6647)	 0.65	(1101)	 0.85	(8913)	 0.38	(216)	
Third	 0.74	(424)	 0.67	(143)	 0.71	(438)	 0.12	(54)	
Fourth	 0.45	(127)	 0	(33)	 0.50	(166)	 0.04	(128)	
Other	Seats	 	 	 	 0.40	(2203)	
	 	 	 	 	
	 	 	 	 	

Table 4 shows the seat belt use rates under different circumstances. Considering the weather condition, occupants seat 
belt use rate was higher during the harsh weather, and at its lowest rate during clear weather. Regarding the daylight, 
occupants wore seat belts at higher rates during the daylight and less during night. Seat belt use rates at night was lower 
when there was no lighting on the road. Regarding the route signing, Interstate and US routes had a higher seat belt use 
rate than other route types. In addition, seat belt use rate was lowest on frontage and urban roads.  

Seat Belt Hot Spot Identification 
Using crash data, 480,035 (7.2% of state population) individual addresses in Tennessee were assigned to their 
corresponding census tracts. The average seat belt use rate at census tracts for the driver’s seat was 0.88 (SD = 0.06) 
and for the passengers’ seat was 0.86 (SD = 0.12); the correlation between driver’s seat and passengers’ seat was 0.32 (P 
value < 0.000) which indicated a weak positive linear relationship. Figure 1 and Figure 2 presents the number of 
observations and the seat belt use rate for drivers and passengers over 16 years old at zonal level. Each point represents 
a seatbelt use rate in a census tract (number of seat belted drivers or passengers divided by total number of participants 
in crash) and the number of observations reflects the total number of crashes in each census tract. In cases of driver 
crashes, the range of rates span 60-100% for tracts with reasonably large crash counts (Figure 1). For passenger seatbelt 
use rate, there are fewer observations in the dataset, and more observations below 60% seatbelt use rates (Figure 2).  

Figure 3 and Figure 4 present average seat belt use rate for the drivers and vehicle passengers at zonal levels in 
Tennessee; the red color in the figures indicates census tracts with low seat belt use rate and green color indicates a 
high seat belt use rate.  Visual Comparison of the Figure 1 and Figure 2 indicated the passengers’ seat belt use rate has 
more variation in Tennessee compared to drivers.  

Table 5 presents the average seat belt use rate in metropolitan areas. Average seat belt use rate for vehicle occupants in 
the metropolitan area was 88% (SD = 0.06), which was slightly higher than the non-metropolitan area (87% SD = 0.06). 
Moreover, comparison of the six metropolitan areas in Tennessee indicated that drivers’ seat belt use rate was the 
highest among residents of Knoxville, followed by Jackson and Tri-cities. This trend was also the case for passenger’s 
seat belt use rate. The Chattanooga metropolitan area also had the lowest seat belt use rate for both passenger and 
driver seat. In addition, Chattanooga was the only metropolitan that passenger seat belt use rate was higher than the 
driver seat belt use rate.  

 

Table 4. Seat belt use rate regarding weather, lighting, and route signage 

Variables	 Mean	 SD	 Number	of	observation	
Weather	 	 	 	
	 Clear	 0.868	 0.338	 395975	
	 Cloudy	 0.889	 0.314	 58743	
	 Fog	 0.868	 0.339	 1377	
	 Smog/Smoke	 0.934	 0.249	 196	
	 Rain	 0.884	 0.321	 54611	
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	 Sleet/Hail	 0.895	 0.307	 1181	
	 Snow	 0.909	 0.287	 4749	
	 Blowing	Snow	 0.912	 0.284	 272	
	 Severe	Cross-Winds	 0.902	 0.297	 123	
	 Blowing	Sand/Soil/Dirt	 0.922	 0.269	 51	
	 Other	 0.883	 0.321	 342	
	 Unknown	 0.025	 0.157	 24318	
Lighting	 Mean	 SD	 Count2	
	 Daylight	 0.879	 0.326	 389436	
	 Dark-Not	Lighted	 0.843	 0.364	 39391	
	 Dark-Lighted	 0.860	 0.347	 69524	
	 Dark-Unknown	Lighting	 0.787	 0.409	 1499	
	 Dawn	 0.875	 0.330	 6821	
	 Dusk	 0.864	 0.343	 10632	
	 Other	 0.865	 0.342	 429	
	 Unknown	 0.033	 0.106	 25044	
Route	Signage	 Mean	 SD	 Count2	
	 Interstate	 0.885	 0.319	 45397	
	 US	Route	 0.871	 0.335	 43581	
	 State	Route	 0.868	 0.338	 68086	
	 County	Route	 0.823	 0.382	 36707	
	 Municipal	Route	 0.850	 0.357	 138721	
	 Frontage	Road	 0.826	 0.379	 317	
	 Other	 0.789	 0.408	 14054	
	 Unknown	 0.796	 0.402	 195913	

0 

 

Figure 1. Number of observations and corresponding seat belt use rate at census tract level for drivers 
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Figure 2. Number of observations and corresponding seat belt use rate at census tract level for passengers (over 16) 
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Figure 3 Driver seat belt use rate distribution in Tennessee  
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Table 5. Mean and Standard Deviation of The Seat Belt Use Rate in Metropolitan Areas 

MPO	 Driver	 Passenger	 Overall	
Metropolitan	 Mean	 SD	 Mean	 SD	 Mean	 SD	
Knox	MPO	 0.92	 0.04	 0.90	 0.10	 0.91	 0.04	
Middle	TN	 0.89	 0.05	 0.87	 0.11	 0.88	 0.05	
Jack	 0.90	 0.04	 0.87	 0.11	 0.90	 0.04	
Tri-cities	 0.89	 0.05	 0.88	 0.13	 0.89	 0.05	
Chattanooga	 0.77	 0.07	 0.81	 0.14	 0.77	 0.06	
Memphis	 0.87	 0.06	 0.83	 0.12	 0.86	 0.06	
Non-metropolitan	area	 0.87	 0.06	 0.86	 0.12	 0.87	 0.06	
Grand	Total	 0.88	 0.06	 0.86	 0.12	 0.87	 0.06	

 

Model Estimations 
Table 6 presents the results of the Tobit models for predicting seat belt use rate at census tract for drivers’ seat belt use 
rate (DSBUR) model, passengers’ seat belt use rate (PSBUR), and their corresponding elasticity values. The chi-square 
results for all models indicate that both models are significantly different from the null model (DSBUR: !" = 328; PSBUR: 
!" = 233). The variables that are presented in Error! Reference source not found. have a significant correlation with both 
dependent variables. The mean VIF value for DSBUR model and PSBUR are respectively 1.31 (max = 1.59) and 1.34 (max 
= 1.71).   

Findings of estimated models in Table 6 indicate that population size, the percentage of white race and child percentage 
at zonal level have a positive association with seat belt use rate in both models. In the DSBUR model, elasticity values 
indicate that 1% increase in population, child percentage, and portion of white race increase average seat belt use rate by 
1.0%, 0.5%, and 0.3% respectively; the corresponding elasticity values for the PSBUR model are higher, 0.8%, 3.7%, and 
1.9%, respectively.  

Vehicle ownership variables also have a significant association with seat belt use rate; however, the sign of the 
coefficients are dissimilar in both models. In the DSBUR model, the proportion of household with vehicle (i.e., 0, 1, 2) has 
a negative association with seat belt use rate. The elasticity values for the proportion of households with one or two 
vehicles (-2%) is greater than proportion of households with no-vehicles (-0.6%). In the PSBUR model, the proportion of 
households with one or two vehicles has a positive correlation with passenger seat belt use, whereas proportion of 
households with no-vehicles has a negative association with passenger seat belt use. The elasticity values for the 
proportion of families with one or two vehicles is 3% and the corresponding value for households with no-vehicle is -0.3%.  

Education-related variable signs are dissimilar in DSBUR model. Percentage of individuals with a college degree has a 
negative association with drivers’ seat belt use rate. On the other hand, the percentage of bachelor degree has a positive 
association with seat belt use rate in both models. Elasticity values indicate one percent increase in the portion of 
population with bachelor degree increases seat belt use rate by 0.4% and 1.3%, respectively for DSBUR and PSBUR 
model.   

The metropolitan indicator variable in both models has a positive association with seat belt use rate, which indicates that 
seat belt use in the metropolitan area is higher than non-metropolitan area. The magnitude and elasticity value of the 
metropolitan coefficient in the DSBUR model is greater than PSBUR model. Alternatively, the population density variable 
has a negative correlation with PSBUR variable; the elasticity values indicate that one percent change in population 
density results in 1.1% reduction in seat belt use rate in the PSBUR model. Household size also has a negative significant 
association with passenger seat belt use; the elasticity value for this variable is -0.4%. 
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Figure 4 Passengers’ seat belt use rate (over 16) distribution in Tennessee  
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Table 6. Estimated Tobit model for prediction of the seat belt use rate for drivers and passengers 

Variable	

DSBUR	 PSBUR	

Coef.	
Standard	

Error	
Elasticity	 Coef.	

Standard	

Error	
Elasticity	

Population	(1,000)	 0.006
***
	 0.001	 0.010	 0.005

*
	 0.003	 0.008	

%	Children	 0.023
*
	 0.012	 0.005	 0.085

***
	 0.024	 0.037	

%	Race	White	 0.036
***
	 0.004	 0.031	 0.042

***
	 0.008	 0.019	

Vehicle	Ownership	 	 	 	 	 	 	

%	Household	with	no	Vehicle	 -0.078
***
	 0.013	 -0.006	 -0.041

*
	 0.025	 -0.003	

%	Household	with	One	or	Two	Vehicles	 -0.025
***
	 0.008	 -0.020	 0.036

**
	 0.016	 0.029	

Education	 	 	 	 	 	 	

%	College	degree	 -0.032
**
	 0.013	 -0.007	 	 	 	

%	Bachelor	Degree	 0.016
*
	 0.009	 0.004	 0.058

***
	 0.018	 0.013	

Metropolitan	Indicator	 0.007
***
	 0.002	 0.005	 0.015

***
	 0.005	 0.012	

Household	Size	 	 	 	 -0.001
***
	 0.000	 -0.004	

Density	(1,000	population	per	square	km)	 	 	 	 -1.46E-06
***
	 2.24E-07	 -0.011	

Constant	 0.863
***
	 0.008	 	 0.773

***
	 0.016	 	

Scale	parameter	 0.004
***
	 7.97E-05	 	 0.014

***
	 3.03E-04	 	

!"	 328.37	 	 	 233.50	 	 	

##0 	 5,563.87	 	
	

2,841.95	 	
	

##% 	 5,728.06	 	
	

2,958.70	 	
	

Maddala	Pseudo-R
2
	 0.077	 	 	 0.056	 	 	

N		 4,114	 	 	 4,103	 	 	

AIC	 -11,436.12	 	 	 -5,897.41	 	 	

*	p<.10;	**	p<.05;	***	p<.01	 	 	 	 	 	 	

Source:	Authors’	analysis	of	TITAN	data	and	the	US	Census	 	 	 	

 

 

Discussion and Conclusion 
In this study, we used a police crash database coupled with census data as a source for evaluating the relation between 
seat belt use rate and sociodemographic variables on a zonal level. Analysis of the vehicles’ occupants over 16 years old 
indicated that seat belt use rate for drivers and the front passenger was approximately 88.2% which was close to 
roadside observations (88.5%) in Tennessee (CTR 2018). Comparison of the driver and front row passenger seat belt use 
rate indicated that front row passenger had higher compliance rate which was also in line with the roadside observation 
in Tennessee (CTR 2018). Generally, the seat belt use rate of the passengers (including back rows) was lower than the 
driver, which is due to the significantly lower seat belt use rate for passengers in back rows. This lower seat belt use rate 
for passengers in back rows could be attributed to the current seat belt law in Tennessee which only cover front row 
passengers.  

On average, males and younger individuals were more prone to lower seat belt use rates. Findings also indicated that 
seat belt use rates were higher in daylight and harsh weather which was consistent with road safety literature (NHTSA 
2016). Additionally, the seat belt use rate on interstates was higher than other classes of roads. These findings indicated 
that police crash reports database is in agreement with roadside observations in Tennessee (CTR 2018) and road safety 
literature. Variation in seat belt use rate in different circumstances could be attributed to the perception of safety. For 
instance, those who drive in harsh weather [e.g., rainy or high-speed routes (e.g., interstates)] may perceive more hazard, 
and as a result, they have a higher seat belt use rate.  

Comparison of the driver and passenger seat belt use rate in different metropolitan areas indicated that drivers’ seat belt 
use was higher than other passengers, except for the Chattanooga metropolitan area. Overall, Chattanooga metropolitan 
area had the lowest seat belt use rate among both metropolitan and non-metropolitan areas. The spatial variation in seat 
belt use in metropolitan areas reflects different traffic cultures and social psychological factors within Tennessee. 
Identifying social psychological factors (e.g., attitudes, beliefs, and intentions) that affect seat belt use and using them 
for educational purposes in safety campaigns would increase seat belt use. Moreover, seat belt use rate distribution map 
in Tennessee indicated that passenger seat belt use had more spatial variation than driver seat belt use. Spatial variation 
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in seat belt use could be attributed to both traffic laws in Tennessee and cultural differences which need to be 
investigated in the future studies.  

A Tobit model was used to investigate the association between seat belt use for the drivers and passengers 16 years or 
older who were involved in traffic crashes and sociodemographic variables of the occupant’s home location, at the 
aggregate level. This is the first time, to the authors’ knowledge, that this type of analysis has been conducted. Results 
indicate that the percentage of white race in the neighborhood had a positive impact on seat belt use rate for both 
models; this finding parallels previous research (e.g., Gkritza and Mannering 2008, Pickrell and Ye 2009, Bhat et al. 2015). 
Using a safety campaign in neighborhoods with a high percentage of non-white populations could be used as an 
effective method for improving seat belt compliance rates. Consistent with other road safety literature, 
sociodemographic variables have a significant impact on seat belt use rate (Preusser et al. 1991, Reinfurt et al. 1997, 
Wells et al. 2002, Houston and Richardson 2005). Different neighborhood education levels also have a different effect on 
seat belt use rate for both models. Percentage of bachelor’s degree have a positive impact on the seat belt use rate for 
both DSBUR and PSBUR models. On the other hand, in the drivers’ model, the percentage of a college degree has a 
negative association with the driver’s seat belt use rate. The motive for not wearing a seat belt for lower education driver 
could be different; perhaps lower seat belt use of drivers with lower-education could be attributed to their subjective 
norm and attitude toward wearing a seat belt. On the other hand, for higher education and higher income portion of 
society lower seat belt use rate could be attributed to perceived behavioral control or over-confidence. This may also 
explain the negative sign of average neighborhood vehicle ownership for the driver seat belt use. Using social 
psychological tools to investigate how attitudes, beliefs, and values influence seat belt use for different road users would 
be beneficial for designing a better safety campaign and targeting human factors that predict seat belt use.  

Quite the opposite, passengers with higher education and higher vehicle ownership have higher seat belt use rate. This 
behavior may be attributed to the fact that passengers (particularly front row passengers) have little or no control over 
the driver’s behavior (i.e., perceived behavioral control), and as a result, passengers tend to wear their seat belt more 
frequently when they are not in the driving position. Psychological factor that affects lower seat belt use rates of the 
back rows passengers needs to be investigated in the future studies. The home-address environment also has a 
significant effect on seat belt use rate in both models. Results indicate metropolitan indicator has a positive impact on 
seat belt use rate for both models. Metropolitan indicator could be used as a surrogate for urban areas, which 
traditionally have a higher seat belt use rate (NHTSA 2017a).  

Future implications  
Analysis indicated that using home addresses of the individuals extracted from police crash report was consistent with 
other source of data for evaluation of seat belt use in road safety literature (e.g., roadside observations). The result of 
this analysis could be used in the safety campaign design in the programs such as “Click It or Ticket” to efficiently reach 
neighborhoods with lower seat belt use rate and identify the groups (e.g., lower education, income) that have higher risk. 
This could be more effective than blanket campaigns that tend to show small population-level effects. There is also a 
need for developing a methodology that enable researchers and safety practitioners to identify seat belt hotspots. 
Increase in the enforcement mainly by covering back rows passengers under the primary seat belt use law in Tennessee 
also could be a practical solution for increasing seat belt use rate of rear seat passengers. 

It is also worth mentioning that there are difficulties in accessing the crash data with identifiers and it is not possible to 
obtain this data in some cases. One possible direction for future researchers could be to develop a methodology to 
identify seat belt hotspots based on the conventional sources of the data (i.e., temporal and spatial transformation of the 
models). The sample in this study represents individual who had reported traffic crash in Tennessee in 2016 and careful 
consideration needed in order to apply the findings to all residents of the state. 
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