

Safe Systems Summit

Redefining Transportation Safety

Enhancing Multi-modal Mobility in the Central Florida Region with a Complex Systems Approach

Prof. Naveen Eluru, Associate Professor, Civil, Environmental and Construction Engineering University of Central Florida

Safe Systems Summit 2019 | 4/23/2019

- Current paradigm of travel demand models in US are geared towards auto oriented mobility analysis
- In recent years, Florida is moving towards improving mobility by improving multimodal connectivity
- Several investments in non-auto alternatives have been made in recent years in the Central Florida region
 - SunRail
 - Juice bike system
 - Adding bicycle lanes to roadways
- With this growing emphasis in Florida's urban regions on nonauto mobility, we need methods that accommodate the potential adoption of non-auto modes within the planning process

- We examined mobility factors influencing the non-auto modes
 - Pedestrian
 - Bicyclist
 - Transit
- For pedestrian and bicyclist modes, we developed framework to evaluate mobility and safety outcomes
- For transit, we developed ridership models for Lynx and SunRail systems
- In this presentation, we focus on the non-motorized trnasprotation component.

- Safety risk posed to active transportation users in Florida is significantly higher compared to rest of the US
- Average pedestrian (bicyclist) fatalities per 1000 population is 2.56 (0.68) for Florida whereas for US it is 1.50 (0.24)

Pedestrian fatality rate per 100,000 population

Bicycle fatality rate per 100,000 population

- Improving safety for non-motorists needs to be pro-actively addressed at the planning level
- The planning analysis is typically based on developing Crash frequency models and Crash severity models
- Crash frequency models focus on identifying attributes that result in traffic crashes and propose effective countermeasures to improve the roadway design and operational attributes
- Crash severity models focused on examining crash events, identifying factors that impact the crash outcome and providing recommendations to reduce the consequences in the unfortunate event (injuries and fatalities) of a traffic crash

- Non-motorized exposure is an important determinant in crash models
 - Pedestrian and bicycling volumes
- However, rarely do we have accurate non-motorized exposure for consideration in crash models
- With growing non-motorized modes investments there is growing emphasis on studying the influence of these investments in increasing non-motorized activity and the corresponding safety outcomes
- To assess how recent investments in non-motorized transportation are influencing non-motorized mobility and safety, it is important to develop nonmotorized demand prediction models
- High-resolution modeling frameworks such as activity-based or trip-based approaches could be pursued for evaluating planning level non-motorist demand.
 - Travel demand models focus on generating vehicular demand (for automobile and transit).
 - Non-motorized demand is rarely considered

- Integrated framework of non-motorized demand and safety
- 3-step approach proposed

- Non-motorists demand is estimated at a zonal level by using aggregate trip information
- We develop four models:
 - Pedestrian generation model based on zonal level pedestrian origin demand
 - Pedestrian attraction model based on zonal level pedestrian destination demand
 - Bicycle generation model based on zonal level bicycle origin demand
 - Bicycle attraction model based on zonal level bicycle destination demand

- Predicted origin and destination trip counts are used from the exposure models to generate different zonal level trip exposure matrices for both pedestrian and bicycle modes to be considered as non-motorists exposure measures for safety evaluation.
- We estimate non-motorists safety models by employing predicted exposure matrices, generated from second step, along with other zonal attributes.
 - Zonal-level crash count model for examining pedestrian-motor vehicle crash occurrences
 - Zonal-level crash count model for examining bicycle-motor vehicle crash occurrences
 - Zonal-level crash severity model for examining pedestrian crash injury severity by proportions
 - Zonal-level crash severity model for examining bicycle crash injury severity by proportions

Study Area

- □ CFRPM v6.0
- □ 4,747 TAZs (Traffic analysis zones)
- □ 9 counties
- District 5, part of District 1 and 4
- Base year 2010

Data Preparation

Data Source

- Exposure Model- 2009 NHTS (National Household Travel Survey)
 - 2,749 Household, 5,090 individuals
 - 22,359 trips, Walk trips (8.8%), Bike trips (1.3%),
 - Person trip-weight considered
- Safety Model- FDOT Crash Analysis Reporting System (CARS) and Signal Four Analytics (S4A)
 - Base year 2010
 - 1,474 Pedestrian Crash
 - 1,012 Bicycle Crash

STEP 1: EXPOSURE MODEL

Safe Systems Summit 2019 | 4/23/2019

Zones with non-motorized O-D demand

Data Preparation

EXPOSURE MOI	DELS					
Models	Dependent	Definitions	Sample	Zon	al (weighted)	
widdels	variables	Definitions	size	Minimum	Maximum	Mean
Pedestrian generation model	Pedestrian origin trip count	Total number of daily pedestrian trips originated in TAZs	4747	0.00	39232.01	265.45
Pedestrian attraction model	Pedestrian destination trip count	Total number of daily pedestrian trips destined in TAZs	4747	0.00	39232.01	261.70
Bicycle generation model	Bicycle origin trip count	Total number of bicycle trips originated in TAZs	4747	0.00	7012.43	35.02
Bicycle attraction model	Bicycle destination trip count	total number of bicycle trips destined in TAZs	4747	0.00	7012.43	34.94
SAFETY MODEL	S (Crash Frequency)					
Pedestrian crash count model	Pedestrian crash counts	Total number of pedestrian crashes in TAZs	4747	0.00	9.00	0.31
Bicycle crash count model	Bicycle crash counts	Total number of bicycle crashes in TAZs	4747	0.00	8.00	0.21

Methodology

- More than 84% and 96% TAZs have 0 pedestrian and bicycle trip counts
- Hurdle Negative Binomial Regression Approach

$$P_i(y_i|,\mu_i,\alpha) = \frac{\Gamma(y_i+\alpha^{-1})}{\Gamma(y_i+1)\Gamma(\alpha^{-1})} \left(\frac{1}{1+\alpha\mu_i}\right)^{\frac{1}{\alpha}} \left(1-\frac{1}{1+\alpha\mu_i}\right)^{y_i}$$

 $\Box \mu_i = E(y_i | \mathbf{z}_i) = exp(\delta \mathbf{z}_i)$, function of explanatory variable \mathbf{z}_i $\Box \text{ where } \boldsymbol{\delta} \text{ is a vector of parameters to be estimated}$ $\Box \Gamma(\cdot) \text{ is the Gamma function and } \boldsymbol{\alpha} \text{ is the NB dispersion parameter}$

Weighted Loglikelihood,
$$LL = w_i * \begin{cases} ln(\pi_i) & y_i = 0\\ ln\left(\frac{(1-\pi_i)}{(1-e^{-\mu_i})}P_i(y_i)\right) & y_i > 0 \end{cases}$$

 $w_i = \sum_{j=1}^{J} \frac{Yearly \ person \ trip \ weight}{365}$

where, j (j = 1,2,3,...J) represents the index for trip.

Estimation Results

	Component	Likelihood o	f Walk Trips
	Component	Increases	Decreases
	Probabilistic	Land-use mix, Urban area and number of household	
Pedestrian Generator Count and	Proportion of 65+ aged population, proportion of arterial road, length of sidewalk, recreational, residential, office and institutional area	Average zonal speed, AADT, proportion of 3 or more lane roads, industrial area	
	Probabilistic	Land-use mix, Urban area and number of household	
Pedestrian Attractor	Count	Proportion of arterial road, length of sidewalk, number of business, entertainment, financial, shopping park and recreational center, recreational, residential, office and institutional area	AADT, proportion of 3 or more lane roads, number of restaurant, number of transit hub, industrial area

Estimation Results

	Component	Likelihood o	f Bicycle Trips
	Component	Increases	Decreases
	Probabilistic	Land-use mix, Urban area and number of household	
Bicycle Generator	Count	Proportion of arterial roads, length of sidewalk, industrial, residential, recreational and institutional area	Proportion of 65+ aged population, AADT, proportion of 3 or more lane roads, retail/office area
	Probabilistic	Land-use mix, Urban area and number of household	
Bicycle Attractor	Count	Proportion of arterial roads, length of sidewalk, number of educational, entertainment, restaurant, transit hub, park and recreational center, industrial, residential and institutional area	Proportion of 3 or more lane roads, number of commercial, financial and shopping center, recreational and office area

Validation

Models	Events	Observed	Predicted
	Total Zones with zero trip count	4007.00	4006.80
Pedestrian generator model	Total number of zonal trips	1260090.60	1255479.90
	Average zonal trips	265.45	264.48
	Total Zones with zero trip count	4010.00	4010.49
Pedestrian attractor model	Total number of zonal trips	1242270.50	1236690.70
	Average zonal trips	261.70	260.52
	Total Zones with zero trip count	4574.00	4573.82
Bicycle generator model	Total number of zonal trips	166248.45	165671.36
	Average zonal trips	35.02	34.90
	Total Zones with zero trip count	4581.00	4581.18
Bicycle attractor model	Total number of zonal trips	165845.77	171959.97
	Average zonal trips	34.94	36.22

STEP 2: EXPOSURE MATRICES

Safe Systems Summit 2019 | 4/23/2019

Destination Choice Model

- Examine the zonal attributes that influence the decision process of destination location
- Two different models: (1) Pedestrian destination choice model, and (2) Bicycle destination choice model
- A random utility maximization approach
- Offers the highest utility from the universal choice set of destination zone
- Generate the destination choice set by assuming that people will walk up to 2 miles and bike up to 6 miles in a trip
- **Objective:** forecast and/or evaluate policy implications for future year considering the real-world change
- Zonal level attributes only

Methodology

• Multinomial Logit Model (MNL)

$$R_{ij} = \frac{exp(\delta \mathbf{z}_{ij})}{\sum_{j \in C_i} exp(\delta \mathbf{z}_{ij})}$$

- \square R_{ij} is the probability of trip *i* representing the destination choice of trip makers z_{ij} is a vector of destination zonal attributes corresponding to destination zone *j*
- lacksquare lacksquare is a vector of parameters to be estimated
- \Box *j* (*j* = 1,2,3, ..., *J*) be the index to represent a destination zone among a set of C_i alternatives of trip *i*

□ trip *i* will have possibility of destined in zone *j* if $u_{ij}^* > \max_{\substack{d=1,2,3,\dots,J\\d\neq j}} u_{ij}^*$

Weighted Loglikelihood, $LL = \omega_i * (\sum_i Ln(R_{ij}))$

$$w_i = \sum_{j=1}^{J} \frac{Yearly \, person \, trip \, weight}{365}$$

Estimation Results

DESTINATION CHOICE	Likelihood of Destination Choice					
	Increases	Decreases				
Pedestrian	Population density, proportion of people aged 65+, traffic signal, number of commercial, educational, financial, restaurant and transit hub, urban, residential and institutional area.	Proportion of people aged 18 to 21, averag zonal speed, AADT, truck AADT, number of shopping center, industrial and recreationa area				
Bicycle	Proportion of 22-29 aged population, length of bike lane, average zonal speed, number of transit hubs ,commercial, educational, financial and shopping center, urban, residential, recreational, institutional and office area	Population density, number of restaurant, industrial area				

Trip O-D Matrices

- Generate zonal level trip origin demand matrices using predictions from non-motorists generator model
- Generate zonal level trip destination demand matrices using predictions from non-motorists attractor model
- Combine trip origin and destination matrices to compute total trip demand matrices
- Dimension of total trip demand matrices are [4747x1] with total trips counts across different rows.
- The total zonal level trip demand matrices are generated for pedestrian and bicycle modes separately

Trip O-D Matrices

	Number of		Pedestrian			Bicycle	
County	TAZs	Trip origin demand	Trip destination demand	Total trip demand	Trip origin demand	Trip destination demand	Total trip demand
Brevard	692	154936.5	149804.8	304741.3	21663.59	23172.9	44836.49
Flagler	141	26241.46	23153.66	49395.12	2940.338	2634.027	5574.365
Indian River	37	12066.78	11826.16	23892.94	1735.289	999.454	2734.743
Lake	350	67309.28	66545.88	133855.2	10784.29	9977.642	20761.94
Marion	422	95199.85	89602.94	184802.8	5238.246	4226.254	9464.501
Orange	781	348163.9	355169.8	703333.7	57661.94	64084.73	121746.7
Osceola	250	67651.62	65181.71	132833.3	4026.134	3875.623	7901.758
Polk	621	185959.9	195543.4	381503.4	10931.12	10687.68	21618.8
Seminole	230	75690.14	79212.17	154902.3	12179.38	11558.89	23738.27
Sumter	147	32272.77	26598.91	58871.68	553.048	817.907	1370.955
Volusia	1076	189987.7	174051.2	364038.8	37957.98	39924.86	77882.84
Total	4747	1255480	1236691	2492171	165671.4	171960	337631.3

STEP 3: SAFETY MODELS (CRASH FREQUENCY)

Crash Frequency Analysis

Total number of pedestrian and bicycle crashes for the year 2010

Data Preparation

	Zonal							
SAFETY MODEL (Severity)		Pedestrian		Bicycle				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Zone with no crashes		3798			4028			
Zones with crashes		949			719			
Proportion of property damage only crashes	0.00	1.00	0.11	0.00	0.12			
Proportion of minor injury crashes	0.00	1.00	0.24	0.00	1.00	0.32		
Proportion of non-incapacitating injury crashes	0.00	1.00	0.38	0.00	1.00	0.41		
Proportion of incapacitating injury crashes	0.00	1.00	0.18	0.00	1.00	0.14		
Proportion of fatal crashes	0.00	1.00	0.09	0.00	1.00	0.02		

Methodology

- Zonal level (TAZ level) pedestrian and bicycle crashes
- Count model for examining pedestrian and bicycle crash risks
- Negative Binomial (NB) model
- NB probability expression for random variable y_i

$$P_i(y_i|\mu_i, \alpha) = \frac{\Gamma(y_i + \frac{1}{\alpha})}{\Gamma(y_i + 1)\Gamma(\frac{1}{\alpha})} \left(\frac{1}{1 + \frac{\mu_i}{\alpha}}\right)^{\frac{1}{\alpha}} \left(1 - \frac{1}{1 + \frac{\mu_i}{\alpha}}\right)^{y_i}$$

where, $\Gamma(\cdot)$ is the Gamma function, α is the NB dispersion parameter and μ_i is the expected number of crashes occurring in TAZ *i* over a given period of time.

• The log-likelihood function for the NB model

 $LL = \sum_{i=1}^{N} log(P_i)$

Estimation Results

	Likelihood of Crash Counts					
	Increases	Decreases				
Pedestrian	Population density, traffic signal density, proportion of arterial road, length of sidewalk, AADT, number of educational, transit hubs, restaurant, park and recreational center, urban, residential and land use mix	Proportion of people aged 65+, pedestrian trip demand				
Bicycle	Population density, traffic signal density, proportion of arterial road, length of bike and bus lane, AADT, number of commercial, financial, restaurant, hospital, urban, residential and land use mix, bicycle trip demand	Proportion of people aged 65+,proportion of local road, truck AADT, recreational area				

Validation

- To evaluate the in-sample predictive measures
- Compute Mean Prediction Bias (MPB) and Mean Absolute Deviation (MAD)

$$MPB = \frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)}{n} \text{ and } MAD = \frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}$$

where, \hat{y}_i and y_i are the predicted and observed values for event i (i be the index for event (i = 1,2,3,...,N)) and n is the number of events.

Table: Predictive performance evaluation

Figure - Crash count model predictions

STEP 3: SAFETY MODELS (CRASH SEVERITY)

Severity Modeling Methodology

Severity Modeling Methodology

- We propose an alternative approach to examine crash frequency by severity
- We adopt a fractional split model
 - To examine the fraction of crashes by each severity level at zonal level
 - as opposed to modeling the number of crashes
 - by severity in a single probabilistic model system
 - while recognizing the inherent ordering in the severity outcome levels
- Specifically, we adopt an Ordered Probit Fractional Split (OPFS) model to study crash proportion by severity levels

Data Preparation

	Zonal						
SAFETY MODEL (Severity)		Pedestrian			Bicycle		
	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Zone with no crashes		3798			4028		
Zones with crashes		949			719		
Proportion of property damage only crashes	0.00	1.00	0.11	0.00	0.12		
Proportion of minor injury crashes	0.00	1.00	0.24	0.00	1.00	0.32	
Proportion of non-incapacitating injury crashes	0.00	1.00	0.38	0.00	1.00	0.41	
Proportion of incapacitating injury crashes	0.00	1.00	0.18	0.00	1.00	0.14	
Proportion of fatal crashes	0.00	1.00	0.09	0.00	1.00	0.02	

Zones with Severity Outcomes (Pedestrian Crashes)

Zones with Severity Outcomes (Bike Crashes)

Estimation Results

CRASH SEVERITY	Likelihood of Cr	ash Proportions	
	Increases	Decreases	
Pedestrian	VMT	Population density, proportion of people aged 22 to 29, number of commercial center, urban area, pedestrian trip demand	
Bicycle	Number of flashing beacon, school signal, park and recreational center, residential area	Population density, availability of bike lane, number of hospitals, urban area, total bicycle trip demand per household	

POLICY SCENARIO ANALYSIS

Safe Systems Summit 2019 | 4/23/2019

Policy Scenarios

- Compute aggregate level exogenous variable impact in demand and safety models
- All zones, Pedestrian and Bicycle separately
- Multiple CBDs considered in Central Florida region
- Compute effect as percentage change

Policy Scenarios

Geographics	Description of course inc	Chudurasian	Number of	Change in zonal demand		Change in crash count		Change in crash severity proportions	
Scenarios	Description of scenarios	Study region	zones					Fatal (Crash
				Walk	Bicycle	Walk	Bicycle	Walk	Bicycle
	50% reduction in traffic	All zones	4747	0.164	0.043	-0.63	3.144	-4.967	-0.066
Scenario 1 volume with 2 miles buffer area of different central business district (CBD)	Zones within 2 miles buffer of CBD	703	1.804	0.389	-3.266	-2.889	-4.687	-0.045	
Cooperie 2	30% reduction in traffic	All zones	4747	0.096	0.026	-0.437	3.622	-4.963	-0.066
Scenario 2	cenario 2 volume with 2 miles buffer area of different central business district (CBD)	Zones within 2 miles buffer of CBD	703	1.060	0.231	-2.120	-0.274	-4.664	-0.045
	15% reduction in traffic	All zones	4747	0.125	0.030	-0.482	3.554	-4.963	-0.066
Scenario 3 volur area busir	volume with 4 miles buffer area of different central business district (CBD)	Zones within 4 miles buffer of CBD	1375	0.498	0.090	-1.280	1.680	-4.55	0.003
	5% reduction in traffic volume	All zones	4747	0.071	0.013	-0.34	3.935	-4.96	-0.066
Scenario 4	with 6 miles buffer area of different central business district (CBD)	Zones within 6 miles buffer of CBD	1985	0.166	0.027	-0.589	3.281	-4.891	0.015

Policy Scenarios

	Description of scenarios	No. Study region of zones		Change in zonal demand		Change in crash count		Change in crash severity proportions	
									Fatal Crash
				Walk	Bicycle	Walk	Bicycle	Walk	Bicycle
Scenario 5	All zones have sidewalk and the new proposed sidewalk length = $\frac{(TAZ area)^{0.5}}{2}$ meter	All zones	4747	-0.438	0.108	-1.360	4.367	-1.013	-0.063
Scenario 6	50% increase in existing sidewalk length	All zones	4747	0.705	0.289	0.985	4.436	-1.111	-0.071
Scenario 7	15% reduction in zonal average maximum speed	All zones	4747	1.407	0.000	-0.143	0.000	-1.107	0.000
Scenario 8	25% reduction in zonal average maximum speed	All zones	4747	2.389	0.000	-0.150	0.000	-1.135	0.000
Scenario 9	15% reduction in zonal proportion of 3+lane road	All zones	4747	0.287	0.576	-0.138	4.436	-1.077	-0.068
Scenario 10	25% reduction in zonal proportion of 3+lane road	All zones	4747	0.484	0.337	-0.143	4.415	-1.085	-0.066

Acknowledgements

- My students
 - Dr. Shamsunnahar Yasmin
 - Dr. Moshiur Rahman
 - Mr. Tanmoy Bhowmik

Questions

- Project report -<u>http://www.people.cecs.ucf.edu/neluru/Reports/FinalReport_BDV2</u> <u>4-977-15.pdf</u>
- <u>http://www.people.cecs.ucf.edu/neluru/index.html</u>

Completed Research Projects

 "Evaluating the benefits of multi-modal investments on promoting travel mobility in Central Florida" Role: PI; Sponsor: Florida Department of Transportation; Project Duration September 2015 - August 2018. [Final Report] [Link to FDOT Report]