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Introduction 
Overview 
Connected and automated vehicle (CAV) technologies can dramatically improve safety by reducing 
human errors, which contribute substantially (an estimated 94 percent) to roadway crashes. CAVs can 
eventually operate effectively on roadways without experiencing decreased performance due to 
distraction or fatigue. However, technological advances will not uniformly decrease crash risks. Some 
environments, crash types, and user groups will continue to experience elevated risks, particularly 
vulnerable road users such as pedestrians. This project addresses these critical safety issues by:  

 Assessing the current and future landscape of pedestrian and vehicle conflicts. 
 Identifying how vehicle technology, planning policies, and data analytics can provide systemic 

solutions to pedestrian-vehicle conflicts. 
 Using data analytics to identify dangerous pre-crash behaviors. 

 

This trans-disciplinary and multimodal approach is critical because solutions require insights from multiple 
fields. For example, data science provides ideas on how to use data from CAVs to manage the system 
and identify conflict situations; travel behavior provides insights into how travel patterns will change in the 
future and how this will affect risk profiles; and planning offers lessons about how to design transportation 
infrastructure to reduce risks that technology alone cannot ameliorate. 

The specific tasks include literature reviews on current patterns of pedestrian-vehicle conflicts, 
assessment of how planning and physical design strategies can reduce pedestrian-CAV conflicts. 
Furthermore, risk analysis was conducted based on Fatality Accident Reporting System (FARS) data, and 
SHRP2 Naturalistic Driving Study data. An assessment of how automated vehicle technology will impact 
crash risk and how future countermeasures may change with the adoption of emerging technologies is 
provided. The team has analyzed safety data from diverse sources and propose a framework to link 
automation technology to human error/crash typologies. Overall, the study applies innovative statistical, 
artificial intelligence, and visualization tools to extract valuable information from studies and data, with the 
purpose of improving safety across modes, especially for vulnerable road users. 

Research questions 
This project investigates how to improve road safety outcomes for vulnerable road users in an era of 
connected and automated vehicles. To do this we address five related research questions: 

1. What are the research issues related to walkability in the CAV era? 
2. What are the current types of fatal vehicle-pedestrian crashes? 
3. How can we establish limits on reductions in pedestrian fatalities if all vehicles on the road today 

were replaced by CAVs? 
4. What strategies can reduce pedestrian-vehicle conflicts in an era of CAVs? 
5. What emerging naturalistic driving data can be harvested to identify risky behaviors prior to 

unsafe outcomes in pedestrian and bicycle crashes and near misses? 
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Multi-pronged approach 
This report describes work performed in several distinct efforts under this overall project. Each effort is 
listed under its own chapter heading, as follows: 

Chapter 2. “Walkability in the Connected and Automated Vehicle Era: A U.S. Perspective on Research 
Needs” considers the concept of walkability in light of the approaching transition to connected and 
automated vehicles, considering literature in engineering, information technology, built environment, land 
use, and public health, to support a discussion on research needs. Text analytics were used to identify 
major themes. The paper discusses research issues related to walkability in the CAV era. 

Chapter 3. “Automated vehicles and pedestrian safety: exploring the promise and limits of pedestrian 
detection” presents the results of an analysis using FARS data to estimate theoretical best case scenario 
reductions in pedestrian fatalities if all vehicles on the road today were replaced by fully automated 
versions using current state-of-the-art pedestrian detection technology. This research effort establishes 
an upper limit on expectations for the ability of automated vehicles to reduce loss of life for vulnerable 
road users. The paper explores how we can establish limits on reductions in pedestrian fatalities if all 
vehicles on the road today were replaced by CAVs? 

Chapter 4. “Analysis of Crashes Involving Pedestrians across the United States: Implications for 
Connected and Automated Vehicles” also uses FARS data to explore how pedestrians can be better 
protected as connected and automated vehicles diffuse through the transportation system using Vehicle-
to-pedestrian (V2P) connectivity. The paper discusses the types of fatal vehicle-pedestrian crashes and 
what strategies can reduce pedestrian-vehicle conflicts? 

Chapter 5. “Exploring injury severity correlates of vulnerable roadway users involved crashes” further 
explores the potential role for V2P applications to reduce injury severities of pedestrian- and bicyclist-
involved crashes.  

Chapter 6. “Using Driving Volatility as a Leading Predictor of Unsafe Events Involving Vulnerable Road 
Users - A Naturalistic Driving Environment Study” uses the SHRP2 Naturalistic Driving Study data to 
explore how intentional driving volatility well before a crash or near-crash can serve as a leading indicator 
of pedestrian and bicycle crashes. Such information can be used to alert and warn in advance drivers of 
connected and automated vehicles about the potential pedestrian crashes. The study harvests naturalistic 
driving data to identify risky behaviors prior to unsafe outcomes in pedestrian and bicycle crashes and 
near misses. 

Collectively, these studies contribute to a better understanding of research issues related to pedestrian 
safety and walkability in the future and typologies of crashes among vehicles and vulnerable road users. 
They shed light on the ways in which current and future technologies might be deployed to detect 
vulnerable road users. They also provide guidance on how new V2P technologies might be tested and 
what their limits are in terms of addressing pedestrian-involved collisions.  

Research outputs 
Publications 
Shay E., Khattak A., & Wali, B. Walkability in the connected and automated vehicle era: A U.S. 

perspective on research needs, Transportation Research Record: Journal of the Transportation 
Research Board, Vol 2672, Issue 35, https://doi.org/10.1177/0361198118787630, 2018. 
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Combs, T.S., Sandt, L., Clamann, M., McDonald, N.C., Automated vehicles and pedestrian safety: 
exploring the promise and limits of pedestrian detection. American Journal of Preventive 
Medicine. DOI: https://doi.org/10.1016/j.amepre.2018.06.024, 2018.  

Presentations 
Zhang M., A. Khattak, & E. Shay, Analysis of Crashes Involving Pedestrians across the United States: 

Implications for Connected and Automated Vehicles, 18-04721, Presented at Transportation 
Research Board annual meeting, National Academies, Washington, D.C., 2018. 

Combs, T.S., Sandt, L., McDonald, N.C., Clamann, M., Limitations in Detection Technologies for 
Automated Driving Systems and Implications for Pedestrian Safety. Presented at the 
Transportation Research Board Annual Meeting, Washington D. C., United States, 2018. 

Combs, T.S. Hidden equity challenges of an AV-dominant transport system: tradeoffs between access to 
opportunity and safety for vulnerable pedestrians. Breakout session at the Automated Vehicles 
Symposium, San Francisco CA, 2018. 

Lester, T.W.; Combs, T.S.; Zhang, W. How can planning theory inform the challenges of planning for 
automated vehicles? Roundtable discussion at the Association of Collegiate Schools of Planning 
(ACSP) Conference, Buffalo NY, 2018. 

Mussah, AR., Khattak, A., Wali, B., Using Driving Volatility as a Leading Predictor of Unsafe Events 
Involving Vulnerable Road Users - A Naturalistic Driving Environment Study, TRB Paper 19-
02947, Presented at the Transportation Research Board Annual Meeting, Washington D. C., 
United States, 2019. 

Thesis 
Mussah, A.R., What Effect Does Driver Maneuvers Have on The Safety of Pedestrians and Cyclists? An 

In-Depth Descriptive Analysis of Vulnerable User Crashes and Near-Misses, MS Thesis, The 
University of Tennessee, December 2017. 
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Walkability in the Connected and 
Automated Vehicle Era: A U.S. 
Perspective on Research Needs 
Authors 
Elizabeth Shay1, Asad J. Khattak2, Behram Wali2 

This chapter presents an extended abstract of CSCRS-sponsored research, based on a paper with the 
same title presented at the 97th Annual Meeting of Transportation Research Board. The paper is 
published in Transportation Research Record, Journal of the Transportation Research Board, National 
Academies, Washington, D.C. and it is available online. DOI: https://doi.org/10.1177/0361198118787630 

Walkability and walking activity are of interest to planners, engineers and health practitioners for their 
potential to improve safety, promote environmental and public health, and increase social equity. 
Connected and automated vehicles (CAVs) will reshape the built environment, mobility, and safety in 
ways we cannot know with certainty—but which we may anticipate will change the meaning of 
‘walkability.’ The CAV era may provide economic, environmental and social benefits, while potentially 
disrupting the status quo. This paper considers the concept of walkability in light of the approaching 
transition to CAVs, considering literature in engineering, information technology, built environment, land 
use, and public health, to support a discussion on research needs. Text analytics were used to identify 
major themes. 

Author affiliations: 

1Department of Geography and Planning, Appalachian State University, Boone NC 

2Tickle College of Engineering, Civil & Environmental Engineering, University of Tennessee, Knoxville TN 

Introduction 
Walking and walkability are key elements of communities that are active, accessible, livable, efficient, 
safe and just. In the US, a recent surge of interest in walking represents a paradigm shift—a re-
examination of a mode once undervalued, now promising to support human and environmental health, 
promote economic prosperity, and advance social equity. After decades advocating for walkability, 
planners are buoyed by renewed demand for walkable environments, as individuals, governments, and 
businesses increasingly recognize the potential benefits for physical and mental health, economic 
development, and efficient use of land (Litman, 2017). 

At the same time, several early-21st-century trends coexist in some degree of tension: walkable urbanism 
as an explicit goal for planning and economic development; the emergence of a sharing economy that 
alters travel choice sets and behaviors; and rapid technological advances that promise a transition to 
driverless vehicles and networked systems—sooner rather than later. 

Recent literature on walkability was considered within the context of a rapidly changing transportation 
landscape where CAVs will mix with—and eventually largely supplant—manually driven vehicles. This 
supports ongoing inquiry into the most promising technology, designs and policies to reduce risk to 
vulnerable road users, better understand and influence behavior of drivers and walkers, and identify 
moral dilemmas and grey areas that may arise in the CAV era.  
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This paper reviewed literature on walkability and urban form, travel behavior, traffic safety, public health, 
information technology, and engineering, searching on a controlled list of 14 terms in four knowledge 
bases (TRID, ScienceDirect, Web of Science, Google Scholar). Of several hundred empirical papers, 
technical reports, book chapters and reviews scanned, a subset relating to walkability and CAVs were 
inventoried and subjected to text analysis. The rapidly changing transportation landscape, where 
emerging CAV technology intertwines with a push for walkable communities and mobility equity, 
motivated our examination of literature from diverse fields in order to illuminate points of intersection and 
gaps in knowledge. The resulting network visualization and frequency counts support a discussion of the 
state of knowledge about technology and vulnerable road users and inform a research agenda. 

Methods 
A cost/benefit framework (Figure 0-1), listing automation mechanisms on the right, shows pedestrian and 
bicycle safety impacts of CAVs as potential reductions in harm costs (sum of crash costs in a year) for a 
region. Notably, crash avoidance technology (vehicle-pedestrian communication) may lower crash risks 
and costs (blue bars). However, potential VMT increases in CAVs may offset these gains and increase 
the risk and cost of collisions with pedestrians and bicyclists (red bars). Rough estimates of safety costs 
range from a 50% decrease to a 30% increase. This highlights uncertain-ties about whether net CAV 
impacts on pedestrian and bicycle safety will be positive or negative, and the need to identify 
mechanisms for enhancing safety for all these modes.  

To probe views on walkability and CAVs, we performed statistical pattern learning analysis on 70 
research and technical papers. This involved extracting key topics and graphically representing them 
based on proximity/conception distances among them. Frequency analysis identified common keywords, 
from which an inclusion dictionary was manually constructed to define categories and group similar words 
together. To refine that dictionary, a combination of natural language processing and statistical (factor 
analysis) techniques was applied on the otherwise random textual data in the collection (Joliffe, 1986).  

Table 0-1 presents the results of topic extraction, in broad categories: vehicle-related, energy 
consumption, technology and applications, safety, built-environment, walking, government 
assistance/subsidy, outreach. 

Appearing 5762 times in 66 articles (94% of the collection), the factor ‘automated vehicles; driving’ has 
the highest Eigen-value at 6.15, and explains 1.85% of the variance in the collection. Next most frequent 
is ‘vibrant suburban,’ with an Eigen-value of 4.23, explaining 1.40% of the variance, and appearing in 
47% of the articles. All key topics shown in Table 0-1 have an Eigen-value greater than 1, indicating the 
topics are worth analyzing (Provalis, 2015). Interestingly, ‘liability, security, and privacy’ and ‘moral and 
ethics’ also appeared prominently. However, cyber-security, insurance, and attitudes toward automation, 
encouragement and enforcement fell beyond this paper’s scope.  

Concept maps to visualize the co-presence of keywords were constructed with proximity values computed 
on all key topics in Table 0-1, using constrained multi-dimensional scaling (Breiger et al., 1975). Topics 
that plot closer tend to occur together in text. The network visualization (Figure 0-2Figure 0-2) shows 
clustering of words that are significantly connected. Broader concepts are written next to the clusters. 
Technology-related key-words and topics cluster to the right, while planning-related keywords cluster to 
the left. 

Some keywords serve as bridges in the visual network, e.g., the broader concept of ‘wireless 
communications’ appears between ‘automation’ and ‘collision avoidance systems; adaptive cruise 
control,’ suggesting that ideas related to wireless communications are discussed in close proximity to 
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automation or collision avoidance systems. Shared automated vehicles and market penetration, adoption, 
and scenario development appear near the concept of automation. Finally, planning concepts, i.e., built 
environment, walkability and government subsidies, cluster together. Concept maps are useful for 
revealing how key topics are connected through their keyword distribution and relate to walkability and 
CAVs. Note that the output reflects the selection of documents analyzed; results are illustrative, not 
determinative. 

 

 
Figure 0-1. Framework for technology and mechanisms that can affect harm cost 
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Table 0-1. Results of Text Mining via Factor Analysis Procedure for Topics Extraction 
Broader 
Category Topic Keywords 

Eigen-
value 

% 
Variance Frequency Cases  

% 
Cases 

Vehicle-related  

Automated Vehicles; 
Driving 

Driving; Automation; Driver; Vehicle; Human; 
Vehicles; Task; Systems; Society of Automotive 
Engineers; Automotive; Control 6.15 1.85 5762 66 94.29 

Shared Automated 
Vehicles 

AV; Shared Automated Vehicles; Scenarios; 
Adoption; Shared; Scenario; Penetration. 2.90 1.59 571 24 34.29 

Liability, Security, & 
Privacy Liability; Privacy; Legal; Security; Law; Insurance 1.55 1.08 1674 59 84.29 
Moral & Ethics Moral; Ethics; Ethical; Machine; Algorithms 1.54 1.01 1628 52 74.29 

Energy 
Consumption 

Truck Platooning & 
Fuel Consumption 

Platoon; Trucks; Platooning Consumption; Energy; 
Emissions; Fuel 2.17 1.19 0 0 0.00 

Electric Power & Oil 
Electric; Electric Vehicles; Power; Cars; Oil; 
Driverless 1.65 0.99 2974 63 90.00 

Technology & 
Applications 

Wireless 
Communications; 
Mobile Applications 

Applications; Communications; Wireless; Mobile; 
Connected; Dedicated Short Range 
Communication; Smart 2.01 1.21 878 47 67.14 

Adaptive Cruise 
Control; Controls 

Cruise; Adaptive; Adaptive Cruise Control; Control; 
Lane 1.89 1.41 1627 59 84.29 

Collision Avoidance 
Systems Collision; Avoidance; Warning; Collisions 1.80 1.23 2868 63 90.00 

Safety 
Pedestrian Injuries; 
Bumper Bumper; Injuries; Hood; Injury; Crashes; Pedestrian 2.27 1.24 1363 57 81.43 
 Safety Pedestrians; Users; Traffic; Drivers; Safety 1.38 1.06 467 26 0.371 

Built-
Environment 

Built Environment & 
Physical Activity 

Environment; Physical; Built; Activity; Walking; 
Cycling; Health; Active 2.46 1.25 11913 65 92.86 

African Americans, 
Submarkets 

African; Americans; Town; City; Suburbs; Family 
Submarket; Sub-markets; Central Business District; 
Costar; Markets; Downtown; Office 1.42 0.93 896 48 68.57 

Parking Space, 
Shared Space; Parking; Shared; Sharing; Ownership 1.35 0.93 490 47 67.14 

Walking 

Walkable Urban 
Metros 

Metros; Walkups; Metro; Rental; Drivable; 
Urbanism; Walkup; Family; Walkable 2.65 1.60 1294 56 80.00 

Vibrant Suburban Vibrant; Centers; Suburban; Center; Town 4.23 1.40 698 33 47.14 

Walking Trips 
Trips; Trip; Mode; Transit; Travel; Vehicle Miles 
Travelled; Walking; Distance; Station 2.12 1.36 623 29 41.43 

Walkability Score 
Score; Walk; Properties; Retail; Property; Office 
Neighborhood; Walkable; Neighborhoods; 
Walkability; Social; Capital; Residents 1.77 1.07 3427 62 0.886 

Exercise & 
Motivation 

Intrinsic; Motivation; Motives; Exercise Med; Activity; 
Physical 1.52 0.89 423 26 37.14 
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Government 
Assistance 

Government 
Programs 

Low-Income Housing Tax Credit (LIHTC); 
Subsidized; Households; Voucher 1.73 1.29 1309 56 80.00 

Project-Based Rental 
Assistance; Housing 
Units 

Project-Based Rental Assistance (PBRA); Units; 
Poverty; Tenants; Housing; Voucher; Rental 3.40 1.39 1749 45 64.29 

Outreach 
International 
Conferences  

Conference; IEEE; International; Intelligent; 
Systems; Journal 1.76 1.03 872 38 0.543 

Notes: % variance shows the percentage of variance explained by each topic. Note that the smaller the text phrases in each topic, the lower the 
percentage of variance explained, at least theoretically; Eigen-value are calculated and used in deciding how many “text phrases” to extract for a 
specific topic. In factor analysis, “the topic” with largest Eigen value has the most variance, and topics with Eigen-values greater than 1.00 are 
traditionally considered worth analyzing.  
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Figure 0-2. Co-Presence Structure of Words Across Key Topics 
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Findings 
The review of CAVs and walkability was grounded in the broad call for more walkable communities, in 
part to address congestion and mobile-source pollution. Planners and health professionals increasingly 
view the physical environment as an intervention opportunity in the U.S., where over three-quarters of 
adults are obese or overweight (NCHS, 2017) and only 20% of adults meet physical activity guidelines 
(CDC, 2015). This review considered technology that may impact walkability and walking, and describes 
how walkability discourse is changing on the cusp of a transition to CAVs. 

In practice and research, the term walkability applies to a variety of settings displaying a range of 
features, particularly relating to accessibility, connectivity, safety, aesthetics, and comfort. The walkability 
literature deals largely with networks (paths, sidewalks, crossings), connectivity (connections, directness), 
security, density, and access. Tools such as inventories, checklists and audits are used by planners, 
engineers, advocates, consultants, and citizens to assess whether an environment promotes efficient, 
safe, comfortable, and pleasant walking. Beyond the economic, public health and equity arguments, 
walkability has interconnections with engineering and planning, as well as also economics, housing and 
design.  

An array of emerging technologies that suffuse the travel landscape range from personal devices to 
retrieve information and support decision-making, to IT systems like incident management, to in-vehicle 
technology—from simple driver assists through full automation. Smart travel technology may reduce cost, 
time and emissions; it also may introduce additional risks—for both drivers and walkers—of distracted 
travelers (Siuhi and Mwakalonge, 2016). While increased safety is a primary claim of CAV advocates, 
understudied potential negative safety impacts merit scrutiny (Cavoli et al., 2017).  

Travel safety is deeply personal—but increasingly impacted by forces beyond the control of the individual 
traveler. That the looming CAV era will challenge pedestrian safety is nearly certain—but murky in the 
details. Moreover, the rising profile of walkability—in research and practice, as well as in public 
discourse—exists in apparent tension with growing acceptance and penetration of CAVs.  

The CAV era may rewrite established relationships among congestion, VMT, travel time, and auto 
ownership, changing fuel consumption and emissions, and uncertain impacts on land use, safety, health 
and equity. The technical challenges of designing, operating and controlling CAV systems raise human 
factor and socioeconomic questions that demand attention if CAVs are to deliver the safety, equity, and 
efficiency gains they promise (Schwartz et al., 2013).  

With several decades of research and practice in walkable environments and active travel yielding 
evidence of effective design, the paradigm of walkable, livable, efficient and equitable urban form faces 
uncertain threats from the CAV transition, with thorny questions about the walking/CAV relationship. 
Questions include: 

Vehicles—owned, rented, shared 

If vehicle ownership fades in favor of access, will shared mobility delivered through CAVs make 
walkability less or more valued? Will stratified ownership models (private, shared, mixed) change 
propensity to walk? 

Built environment 

How will CAV infrastructure impact pedestrian comfort and safety? The promised space-efficiency of CAV 
fleets may alter parking demand and amount of driving and walking. Excess infrastructure could be 
reclaimed for other uses, but who would design, site, and control that process? Will the advent of CAVs 
dampen, reverse, or change the trend toward compact active walkable cities? 
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Trip-making 

How might CAVs change the mix and character of trips for utilitarian and recreational purposes? Will 
general and special (underserved) populations increase walking to access CAVs—or demand door-to-
door service that dampens walking? 

Safety 

What safety gains do CAVs offer—for drivers and pedestrians? Safety claims rest on deep penetration of 
IT to support communications among vehicles, infrastructure and non-drivers. Will walkers be required to 
be connected to a network? Will walking become criminalized in some environments? What data should 
be collected—by and from whom, and for whose consumption and action? How have causes of crashes 
changed over time—and what role do distraction and technology failure play?  

Engineering 

The CAV transition requires a foundation of sophisticated technology. How will it account for human 
behavior, and support safe convenient mobility and equitable accessibility to travelers of multiple modes? 
How might expectations for communication among vehicles, environment and pedestrians affect 
walkability? 

Conclusion 
Many planning, engineering, and public health professionals value walkability that promotes safe mobility. 
While evidence shows that walkability increases walking, it is not a complete response to safety threats, 
congestion, physical inactivity, and other economic, environmental and social problems in highly 
motorized societies. Local context and shared goals should guide planning, with solutions found in 
technology, markets, and behavior. The literature for walkability and walking is necessarily broad, given 
the complex interactions between human behavior and richly diverse environments. Future research 
should continue to build links among engineering, planning, policy, public health, and other fields, and 
account for the emergence and penetration of CAVs. Open questions include how human-driven vehicles 
will interact with AVs; how CAV penetration will influence walking behavior; and how CAVs will respond to 
pedestrians’ changing behavior as they challenge CAVs in dynamic environments.  

Given the high cost of mobility—in dollars as well as lives and health, the nation should prioritize safety 
and accessibility for all modes, with strategically selected technology. In particular, research is needed on 
new connected and automated technologies that can avoid crashes and meet the mobility needs of 
diverse users and stakeholders. Crosscutting safety and technology-oriented research, development and 
deployment efforts should encompass CAVs and infrastructure, and safety technologies and strategies to 
promote safe and smart communities. A comprehensive research agenda should use partnerships among 
academia, public sector agencies, and leaders in the private sector, to identify innovative life-saving and 
community-strengthening models for safe and walkable environments.  
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Abstract 
U.S. pedestrian fatalities have risen in recent years, even as vehicles are equipped with increasingly 
sophisticated safety and crash avoidance technology. Many assert that advances in automated vehicle 
(AV) technology can reduce fatalities, including pedestrian fatalities, by eliminating the estimated 94 
percent of traffic fatalities caused by human error. This paper explores this assertion by analyzing nearly 
5,000 pedestrian fatalities recorded in 2015 in the Fatality Analysis Reporting System (FARS) under a 
hypothetical scenario in which the involved vehicles were replaced with automated vehicles equipped with 
state-of-the-art detection technology.  
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Introduction  
Many proponents of self-driving vehicles laud the safety potential of such vehicles, claiming that replacing 
fallible human drivers with autonomous driving system will lead to substantial reductions in traffic 
fatalities, including pedestrian fatalities. With pedestrian fatalities on the rise in recent years, the promise 
of dramatic improvements in pedestrian safety is a tantalizing aspect of automation (McCauley, 2017; 
Thune et al., 2017). However, some experts have pointed to shortcomings in current technology for 
pedestrian detection as an unexamined weak link in autonomous driving systems with respect to 
pedestrian safety (Barnard, 2016; Dollar et al., 2012; Zhang et al., 2017). In this paper, we evaluate state-
of-the-art pedestrian detection technology, virtually testing whether or not the technology would have 
been capable of detecting pedestrians in real life crashes. The result of the analysis is an estimated 
maximum percentage of transportation-related pedestrian fatalities in 2015 that potentially could have 
been avoided had the striking motor vehicle been replaced with a fully-automated vehicle equipped with 
state-of-the-art pedestrian detection technology. 
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Methods 
We use data from the Fatality Analysis Reporting System (FARS) for 2015. This publicly-available dataset 
is administered by the National Highway Traffic Safety Administration and provides detailed information 
about every reported vehicle-related fatality in the United States. In our analysis, we crosscheck the 
conditions of each fatality with known functional limitations of each of the three most common types of 
pedestrian detection technology, visible light cameras, Lidar, and radar. Based on reports from 
manufacturers and independent laboratories, even the most advanced versions of each of these 
technologies have limitations that render them ineffective under certain circumstances. Specifically, 
cameras function poorly in low-light situations and during adverse weather conditions such as heavy rain, 
snow, or fog (Barnard, 2016; Sandt and Owens, 2017). Lidar also functions poorly in adverse weather, 
and often fails to detect objects at very close range. Radar has difficulty detecting small or partially-
occluded pedestrians and cannot detect stationary objects (Manston, 2011; Turnbull et al., 2017). 
Crashes that take place under these conditions are considered outside of the respective technology’s 
functional range. 

We estimate the maximum potentially pedestrian fatalities that could have been avoided by fully-
autonomous vehicles equipped with the three technologies individually and in combination via a fairly 
straightforward process in which we apply increasingly restrictive filters to the data. All filters were created 
using data included in the FARS dataset.  

First, we remove all crashes that do not directly result in a pedestrian fatality as part of the crash’s first 
harmful event, as well as those pedestrian fatalities that occurred during non-transportation-related 
crashes, such as domestic disputes, disabled or unoccupied vehicles, and other “unusual circumstances” 
as categorized by the FARS dataset. Second, we filter out fatalities resulting from crash situations that 
are likely to be unavoidable, no matter how advanced the detection or self-driving technology. We include 
in this category fatalities associated with crashes occurring on impaired or slick road surfaces and those 
due to obscured pedestrians darting out into traffic (“dart-outs”). In these sorts of situations, appropriate 
evasive action is assumed to be beyond vehicles’ physical limits. Finally, we remove fatalities arising from 
conditions unlikely to be present with autonomously operated vehicles: distracted/impaired drivers and 
police pursuits. After filtering out the unavoidable and obsolete fatalities, all remaining fatalities should—in 
theory—be able to be addressed through autonomous vehicle technology. These are the fatalities 
considered candidates for avoidance.  

The next step is to identify the crash conditions under which each detection technology is expected to 
function effectively (based on the known limitations described above) and create filters that allow us to 
distinguish between fatalities resulting from crashes occurring within each technology’s functional range 
and those resulting from crashes occurring outside those conditions. We apply filters for each technology 
independently, as well as for camera + Lidar and camera + Lidar + radar combinations, to all candidate 
fatalities. The fatalities caught by each technology’s or technology combinations’ filters are presumed to 
be detectable, and thus preventable. Fatalities not caught by a technology’s or technology combination’s 
filter are undetected (they occurred outside the technology’s or technology combination’s functional 
range, so the technology was incapable of detecting the pedestrian and sending appropriate signals to 
the vehicle to take evasive action) and are therefore unavoidable.  

Using information provided in the FARS data, we create filters for low-light conditions (dusk-to-dawn), 
adverse weather (fog or precipitation), wet or reflective road surfaces, pedestrians becoming visible only 
just before impact (as is often the case when vehicles are emerging from driveways), and stationary 
pedestrians (such as those waiting to enter an intersection). These filters are used to determine effective 
limits for each detection technology evaluated. 
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In theory, all fatalities that make it through a technology’s effective limits filter are detectable, making 
them potentially avoidable by an ideal, fully-autonomous driving system. Note that, as we are only 
evaluating pedestrian detection technology, and not follow-on crash avoidance technology, the fatalities 
making it through these filters represent the maximum number of fatalities that could be avoided through 
the use of state-of-the-art pedestrian detection technology.  

Finally, we divide the number of each detection technology’s potential successes (i.e., candidate fatalities 
falling within the technology’s effective limits) by the total number of transportation-related pedestrian 
fatalities. This gives us a score representing the maximum percentage of total relevant fatalities 
potentially avoided by each technology or combination of technologies. 

We further break fatalities down according to other crash conditions of interest, such as whether the crash 
occurred in urban or rural settings, at intersections or crosswalks (vs. neither), or on limited access 
freeways or unrestricted surface streets, and according to whether the driver was distracted or impaired 
and whether the victim was a minor or an adult. 

Findings  
FARS data include 5,261 recorded pedestrian fatalities in 2015. Of those, 4,241 were transportation-
relevant and had complete data on the variables used to create our filters. After filtering out crashes that 
were either unavoidable or the result of conditions unlikely to be exist when vehicles are operated 
autonomously, we were left with 3,386 theoretically preventable pedestrian fatalities.  

Overall, 77% of candidate pedestrian fatalities occurred between dusk and dawn. Adverse weather was a 
factor in 10% of pedestrian fatalities; reflective surfaces in 14%. Just under 10% of pedestrian fatalities 
involved ‘close-range’ pedestrians, and in 6% of candidate fatalities, pedestrians were stationary. 

When we examine fatalities according to other crash conditions, we find that fatality rates for various 
conditions are similar to overall rates, with the exception of fatalities involving minors. Pedestrians under 
the age of 18 were killed much less frequently in the dusk-to-dawn hours, during adverse weather, and 
when road surfaces were slick than were adults. However, minors were over-represented among close-
range fatalities—approximately one quarter of minors killed were killed in close-range situations.  

Unsurprisingly, visible light cameras perform poorly overall and for nearly all specific crash conditions: 
fewer than 30% of transportation-relevant fatalities could potentially have been avoided if the striking 
vehicles had been replaced by fully autonomous versions equipped with 360-degree state-of-the-art 
optical camera pedestrian detection technology. Lidar and the camera + Lidar combination offer dramatic 
improvement over cameras, with between 70% and 89% of fatalities potentially avoided for all conditions 
except fatalities involving minors (in which fatalities avoided for Lidar alone drops down to the 50%-69% 
range). The camera + Lidar + radar combination is by far the most effective, with 90% or more fatalities 
potentially avoided in all cases. 

Conclusion  
Our study finds that the proportion of pedestrian fatalities that are theoretically avoidable varies widely 
among the detection technologies examined. At first glance, radar appears to offer the widest effective 
range and thus the greatest potential to detect—and theoretically then avoid—pedestrians before a fatal 
crash. However, radar’s inability to detect and identify stationary pedestrians and its struggles with small 
pedestrians, impose a hard ceiling on the technology’s ultimate usefulness in pedestrian detection.  

Of the three technologies examined, Lidar appears to have the greatest potential for improvement relative 
to the other technologies. However, even today’s state-of-the-art Lidar systems are prohibitively 
expensive—approximately $85,000 per vehicle—calling into question the feasibility of deployment of the 
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most advanced Lidar systems on mass-production vehicles (Simonite, 2017). Tech experts do predict a 
decrease in the cost of Lidar as the technology improves, though it’s unknown whether the decrease will 
be either large enough or soon enough for Lidar-based pedestrian detection systems to be considered 
viable options for a consumer product (Barnard, 2016). In the meantime, regulators would do well to 
explore additional strategies, independent of vehicle automation, to address the rising rate of pedestrian 
fatalities. 

Our analyses rely on rather generous assumptions about the performance of autonomous vehicles. 
Testing of these assumptions is beyond the scope of the current study; future research will allow for a 
more critical examination of these assumptions and should enable more realistic assessments of the 
potential for autonomous driving systems to reduce pedestrian fatalities.  
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This study explored how pedestrians can be protected as connected and automated vehicles (CAVs) 
diffuse through the transportation system. Vehicle-to-pedestrian (V2P) connectivity has the potential to 
enhance safety by reducing driver and pedestrian errors that result in crashes. To understand the nature 
of errors contributing to severe crashes, this study analyzes both driver and pedestrian behaviors 
preceding single vehicle-pedestrian fatal crashes, using county-level data for the U.S. for the period 2013 
- 2015 (N= 12,217). Poisson regression and Geographically Weighted Poisson Regression models were 
estimated with data from the Fatality Analysis Reporting System (FARS)—a database developed by the 
National Center for Statistics and Analysis at the National Highway Traffic Safety Administration 
(NHTSA). The analytical results provide insights into the potential of technology to improve pedestrian 
safety. 
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Introduction 
The importance of pedestrian safety is reflected in policy and planning, academic research and civil 
society. Federal and state transportation agencies devote many dollars and staff hours to research and 
programming, manifest in funding, technical reports, research digests and circulars, and implemented 
policy. 

Single vehicle-pedestrian (SVP) crashes cause a substantial share of U.S. traffic injuries and fatalities, as 
well as property damage valued in the billions annually (Trottenberg and Rivkin, 2013). The NHTSA 
(2016) reports that SVP fatal crashes represented 16% (~14,000) of all fatal crashes in the U.S. from 
2013 to 2015. A key benefit expected from CAVs is fewer collisions due to human error. This study 
probed how errors committed by drivers and pedestrians contribute to fatal vehicle-pedestrian crashes. 
Pedestrians may be expected to continue behaviors like darting into traffic or jaywalking, which CAVs will 
need to accommodate, with technology that may aid drivers and pedestrians.  

This study used national data to explore types of pedestrian errors that CAVs must anticipate, along with 
driver errors that may be change when driving becomes automated. Counties with high vehicle-
pedestrian crash risks may provide early indications of whether CAVs can prevent severe pedestrian-
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involved crashes, for example, with V2P communication in urban counties with dense interactions 
between pedestrians and vehicles, e.g., in school zones and downtowns.  

Although pre-crash driver behaviors, such as speeding and alcohol consumption, have long been 
recognized as key contributing factors in roadway crashes, the pre-crash behaviors of pedestrians remain 
underexplored. This study investigated the correlations of pre-crash behaviors of both drivers and 
pedestrians with SVP fatal crash frequency, aggregated at the county level, to understand the spatial 
effects of both driver and pedestrian behaviors on SVP fatal crash frequency. Objectives were to: 1) 
investigate the spatial distribution of SVP fatal crashes across the U.S.; 2) examine the effects of both 
driver and pedestrian pre-crash behavior on SVP fatal crash frequency; and 3) explore the spatial 
correlates of crash frequency with explanatory variables. 

Decades of research and advocacy on active living and travel for personal and community health have 
seen a groundswell of public interest in walkable communities (Buehler et al., 2016; Leinberger and 
Rodriguez, 2016; ULI, 2015), even in the face of congestion and danger to pedestrians from motorized 
vehicles. Many communities have acted on public demand and guidance from health and transportation 
professionals to encourage walking with programming, policies and, sometimes, infrastructure. This trend 
toward walkability is promoted further by growing evidence that walkability is good not only for safety, 
public health and sociability, but also for economic development and property values (Diao and Ferreira, 
2010; Hack, 2013; Pivo and Fisher, 2011). 

Previous studies correlating vehicle-pedestrian crashes with various factors, including driver, vehicle and 
roadway environments, have been limited in their spatial analysis, especially in the context of 
understanding pre-crash behaviors. This study focused on understanding which behaviors—of both 
drivers and pedestrians—correlate with higher incidence of SVP fatal crashes. This study used geo-
referenced data to investigate the various correlates of SVP crash frequency and related factors, 
especially pre-crash behaviors, across regions, estimating a local spatial model for crash frequency. 
Ultimately the research may inform effective CAV policies to reduce risk to travelers and increase walking 
activity. The transportation landscape is changing, including the penetration of CAVs. Professional and 
public discourse has long since passed ‘whether’ and moved on to ‘how’ a CAV transition will unfold 
(Glancy, 2013; Turnbull et al, 2017; Glus et al., 2017) and how it might impact pedestrians across 
geographic regions and socio-demographic groups. 

Methods 
A unique database drew data from two major sources: 1) crash details extracted from FARS, and 2) 
social-demographic data from the U.S. Census to provide context. 

Data 
Crash data 
Data were pulled together for the period of 2013-2015 for events across the U.S. from FARS—a database 
containing hundreds of variables related to crashes in different files. Four files from the FARS database 
were selected for analysis: 1) accident characteristics file, e.g., location, roadway attributes, crash type, 
county, state, latitude/longitude; 2) file with characteristics of vehicles involved in accidents, e.g., vehicle 
type and driver pre-crash behaviors; 3) a file related to non-motorist action or circumstance that may have 
contributed to the crash; and 4) a file containing details about all persons involved in the crash, e.g., injury 
severity, age, and seating position.  
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The 92,424 fatal crashes contained in the FARS database for 2013 - 2015 involved 138,974 vehicles and 
228,629 persons (16,302 pedestrians and 212,217 vehicle occupants). To analyze direct effects on crash 
frequency of pre-crash behaviors, this study extracted only SVP fatal crashes (n = 12,217). 

Contextual data 
Because contextual factors may be contributing factors in crashes (Garver and Lineau, 1996; LcScala et 
al., 2000; Huang et al., 2010), this study linked select Census variables with crash data to yield insights 
into the context in which crashes occur. The dataset included county-level population density, education, 
and median household income. 

Models 
Visualizing crashes 
The study used the spatial visualization tool kernel density estimation (Anderson, 2009) to identify crash 
hotspots and critical counties, and create a density map of spatial distribution of SVP fatal crashes across 
the U.S. 

Model structure 
This study investigated the correlates of single vehicle-pedestrian crash frequency at an aggregated 
county level. The magnitude and signs of model coefficients can vary across regions; that is, statistically 
significant correlations in one part of a region might not hold in other parts. Therefore, the study employed 
a global Poisson regression model to capture the spatial heterogeneity in correlations between crash 
frequency and explanatory variables. 

Spatial modeling  
To overcome the limitations of a global Poisson regression model, a local spatial model called 
Geographically Weighted Poisson Regression (GWPR) was estimated. A GWPR estimates the spatial 
variations in correlations between response and explanatory variables by relaxing the assumption of a 
global Poisson regression model that the estimated magnitudes and signs of model coefficients are 
stationary; that is, the estimated coefficients are no longer fixed but vary across regions in the spatial 
model. 

Inverse distance weighted interpolation IDWI  
Estimated coefficients from the local GWPR model were used to visualize the spatial variation of 
coefficients in both signs and magnitudes. A mathematical algorithm called Inverse Distance Weighted 
Interpolation (IDWI, Bartier and Keller, 1996) generated a smooth continuous coefficient surface across 
the entire U.S. The IDWI algorithm assumes that each measured location has a local influence that 
diminishes with distance, and weights locations closer to prediction locations more than those far away.  

Findings 
Figure 0-1 shows the disaggregated and aggregated distribution of SVP fatal crashes in the U.S. in 2013-
2015. In Figure 0-1(a), each point represents a SVP fatal crash, while blue and red colors indicate low- 
and high-density areas, respectively. Figure 0-1(b) shows the aggregated county-level crash distribution. 
The highest crash densities are in mega-regions such as California, Great Lakes (Wisconsin, Michigan, 
Ohio, Illinois, Indiana), the New York—Washington corridor, the Southeastern Crescent (Georgia and the 
Carolinas) and Florida. These crash densities are likely related to the surrounding population and 
economic activity, with more transportation infrastructure, services and activities, and high vehicle/ 
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pedestrian exposure. These counties with high fatal vehicle-pedestrian crash risks can serve as testbeds 
for V2P communication technologies that may reduce such crashes. 

The FARS records provide pre-crash behaviors of both drivers and pedestrians in SVP crashes. Of 
24,434 drivers and pedestrians involved in 12,217 fatal crashes, nearly 99.9% (12,203) had a pedestrian 
fatality, while only 0.3% (33) left a driver dead. 

 

 

a) Kernel density distribution (N=12,217) 

 

b) Distribution of crash frequency at aggregated county level (N=3,143) 
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Figure 0-1. Kernel density distribution and aggregated county level crash frequency of all single vehicle-pedestrian 
fatal crashes, United States, 2013-2015 
 

Table 0-1 shows the descriptive statistics of aggregated county-level SVP fatal crashes across the nation 
during the period 2013-2015. The 2015 NHTSA summary (NHTSA, 2016) reports the top pedestrian 
behavioral factors in fatal crashes are failure to yield right-of-way (1,475, or 27.4%), improper crossing of 
roadway or intersection (893, or 16.6%) and invisibility (800, or 14.9%).  

 
Table 0-1. Descriptive statistics of county-level single vehicle-pedestrian crashes (N=3,143) 
Variables  N Mean Std Dev Min Max 
Crash 
frequency 
/ rate 

Crash frequency 3143 3.887 15.604 0 469 
Crash rate by county population 
(/1000) 

3143 0.030 0.053 0 1.069 

Crash rate by county population 
density 

3143 0.040 0.209 0 5 

Pedestrian 
pre-crash 
behavior 

Dart out/ Dash 3143 0.353 1.415 0 30 
Failure to obey traffics signs 3143 0.109 0.807 0 23 
In roadway improperly (standing, 
lying, walking) 

3143 0.463 1.494 0 23 

Inattention (talking, eating) 3143 0.046 0.291 0 8 
Improper crossing (jaywalking) 3143 0.432 2.809 0 104 
Invisibility (dark clothing, no light) 3143 0.396 1.192 0 16 

Driver pre-
crash 
behavior 

Reckless 3143 0.246 1.067 0 21 
Impairment 3143 0.083 0.483 0 11 
Rules of turning/yield 3143 0.041 0.361 0 14 
License/registration violation 3143 0.103 0.669 0 17 

County 
attributes 

% of high school education (%) 3143 84.554 6.912 45 99 
Median household income (/1000 $) 3143 45.937 11.922 19.986 122.238 
% of below the poverty level (%) 3143 16.679 6.498 0.9 53.2 
Population per square mile 3143 259.322 1724.160 0 69467.5 

 

Table 0-2 shows modeling results. The global Poisson model captures the average correlate of crash 
frequency, while the local GWPR model captures the variations in correlates of crash frequency. Most 
variables showed statistically significant correlations with the response variables (5% level); the model is 
statistically significant overall, with high goodness of fit. Positive signs indicate pre-crash behaviors that 
correlate with increasing frequency SVP crashes. 

Global Poisson model 
The global Poisson model found most variables to be significant, including pedestrians who dash/dart out, 
use the roadway improperly, are inattentive, and not visible, as well as vehicle drivers who are reckless, 
impaired or unlicensed/unregistered. High education and income also have positive coefficients.
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Table 0-2. Global Poisson and local WGPR models for SVP fatal crashes 

Variables (Dependent = Crash count) 

Poisson model GWPR 

β 
P-value β Lwr 

Quartile 
Upr 

Quartile 

Upr-Lwr > 
2SE 

 min max  

Pedestrian pre-crash 
behavior 

Dart out/ Dash 0.138 0.000*** 0.007 0.399 0.169 0.253 TRUE 

Failure to obey traffics signs 
-0.166 0.000*** 

-
2.356 

0.174 -0.953 -0.099 TRUE 

In roadway improperly (standing, lying, 
walking) 

0.110 0.000*** 0.089 0.657 0.198 0.421 TRUE 

Inattention (talking, eating) 0.048 0.000*** - - - - - 
Improper crossing (jaywalking) -0.034 0.000*** - - - - - 
Invisibility (dark clothing, no light) 0.159 0.000*** - - - - - 

Driver pre-crash 
behavior 

Reckless 0.136 0.000*** - - - - - 
Impairment 0.001 0.859*** - - - - - 
Rules of turning/yield -0.245 0.000*** - - - - - 
License/registration violation 0.075 0.000*** - - - - - 

County attributes 

% of high school education (%) 0.016 0.000*** - - - - - 
Median household income (/1000 $) 0.049 0.000*** - - - - - 
% of below the poverty level (%) 0.082 0.000*** - - - - - 
Population per square mile 0.0001 0.000*** - - - - - 

Constant 
-4.389 0.000*** 

-
0.910 

1.517 0.236 0.898 TRUE 

Statistic summary 

Sample size 3143 Best bandwidth size: 166 
Log Likelihood at β -9420.9141  
Log Likelihood at 0 -922580  
Adjusted R2 0.6195 Percent deviance explained: 0.673 
Prob. > χ2 0.000  

 AICc - 14621.391 
Notes:  

1. True means the significance of spatial variance of the coefficient.  

2. Best bandwidth size is the number of subsamples used in each kernel; 166 local closest surrounding cases were used as the subsample for 
these regressions.  

3. *** —statistically significant at 1% level; **—statistically significant at 5% level 

4. Adjusted R2 refers to 1 – (Log Likelihood at β/Log Likelihood at 0) 
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Local GWPR model 
Figure 0-2 shows the spatial distribution of local parameter estimates for high-risk behaviors, including (a) 
dash/dart out, (b) failure to obey traffic signs, and (c) improper use of the roadway.  

 
a) Dash/Dart out 

 
b) Failure to obey traffics signs 

 
c) In roadway improperly (standing, lying, walking) 

Figure 0-2. Local parameter estimates for single vehicle-pedestrian fatal crashes 
Note: Black areas indicate the local parameter are not statistically significant at 95% level in that region. 
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The local GWPR model suggests that the crash frequency of SVP fatal crashes is more likely to be high 
in the West (e.g., California) and Southeast (e.g., Mississippi), but more low in the Southwest (e.g., 
Texas) and Midwest. The results highlight how the global Poisson model can hide some variations in both 
sign and magnitude of coefficients. More dash/dart out behaviors in pedestrians are associated with 
higher crash frequency in the West and Southeast (e.g., Florida), while crash frequency is much higher in 
Texas. Improper in-roadway behavior shows similar patterns, associated with higher frequency in the 
central U.S. These results may inform targeted V2P applications for local conditions.  

Limitations of this study include constrained explanatory power because of the few variables included in 
the model (no measures for roads or traffic). This study used the centroid of each county as the location, 
which might impact accuracy. In addition, police reports may be incomplete, inaccurate, or subjective. 
Finally, this study analyzed only the crash frequency of SVP crashes containing at least one fatality; 
future analysis should cover the entire spectrum of injury.  

Conclusions 
This study into the pre-crash behavior of drivers and pedestrians in SVP fatal crashes is unique in its 
geographic scope, quantifying correlations of pre-crash behaviors on crash frequency across regions in 
the U.S. for vulnerable road users. It applied Geographically Weighted Poisson Regression to address 
the spatial variations in correlations and the count nature of crash data. 

This study revealed pedestrian behaviors that are significantly associated with high fatal crash 
frequencies, consistent with NHTSA results. Key findings include: 

 
 For dart/dash out behavior and improper roadway use, the Midwest and Southwest are 

associated with higher crash frequency, and the Northeast with lower. 

 Failure to obey traffic signs shows the opposite pattern: much lower estimated coefficients in the 
Midwest and Southwest regions, higher in Western regions. 

 

These results may be useful for guiding vehicle-pedestrian fatal crash improvement plans. The local 
GWPR model coefficient map may support safety in specific counties with a higher frequency of such 
crashes. For example, Western regions where failure to obey traffic signs is associated with higher crash 
frequency may benefit from appropriate traffic sign enforcement countermeasures or a V2P field tests. 

Future research should consider how technology for CAVs in urban settings will deal with unpredictable 
pedestrian behaviors, potentially by 1) automatically braking to avoid striking pedestrians, 2) predicting 
trajectories and recognizing pedestrians in the road, or 3) providing early warnings to pedestrians about 
dangerous behaviors.  
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Vehicle-to-pedestrian (V2P) applications will enable vulnerable roadway user (VRU) safety, mobility, and 
environmental advancements that current technologies are unable to provide. The research described 
here aimed to provide insights on reducing injury severities of pedestrian- and bicyclist-involved crashes 
and enhancing existing V2P applications to address the special safety needs and challenges of these 
VRUs. Crash data from the Fatality Analysis Reporting System include a measure of injury severity, time-
to-death, which served as the independent variable in logit models to analyze the factors contributing to 
the injury severity of VRU-involved crashes. Ordered logit and multinomial logit models were compared 
for goodness-of-fit and predictive power.  
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Introduction 
Traffic crashes on U.S. roadways claimed 35,092 lives in 2015, a 7.2% increase from 32,744 in 2014—
the largest percentage increase in nearly 50 years. From 2014 to 2015, pedestrian and bicyclist fatalities 
increased by 466 (9.5%) and 89 (a 12.2%), respectively, and stand at their highest numbers since 1996 
and 1995. The number of pedestrians injured in crashes increased by 5,000 in 2015, a 7.7% increase 
over 2014. 

Over the past decade—but before the very recent spike in deaths, safety programs promoting seat belt 
use and discouraging impaired driving improved traffic safety and substantially reduced vehicle occupant 
fatalities. Vehicle technologies such as air bags and electronic stability control also contributed to 
decreasing vehicle occupant fatalities. As occupant fatalities dropped, the share of non-motorist fatalities 
increased from 13 percent of total deaths in 2006 to 18 percent in 2015, when 6,317 non-driver VRUs 
(5,376 pedestrians, 817 bicyclists, and 124 other non-vehicle occupants) were killed in crashes, an 
average of nearly 18 every day (NHTSA Traffic Safety Facts). Comprehensive research is needed to 
understand and address the special safety needs and challenges of these VRUs. 
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Enabled by emerging vehicle, sensing, and control technologies, Smart City research initiatives, big data 
analytics, and recent advances in driving experiments, traffic safety research will greatly enhance our 
scientific understanding of the new interactions and phenomena between conventional, connected, and 
automated vehicles. Connected and automated vehicles (CAVs) that can sense the environment and 
communicate with other vehicles, infrastructure, and our personal mobile devices may reduce unimpaired 
driving-related crashes by 80 percent. Currently, the connected vehicle environment includes three major 
information-sharing relationships: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-
pedestrian (V2P). Some of the anticipated V2P applications, e.g., pedestrian detection systems, mobile 
accessible pedestrian signal system, and pedestrian-in-signalized-crosswalk warning, will elevate 
pedestrian safety and mobility. The National Highway Traffic Safety Administration (NHTSA) estimated 
that these V2P communication technologies could potentially address up to 46 percent of pedestrian-
involved crashes.  

While vehicle-to-VRU crashes are less common in the U.S. than vehicle-to-vehicle crashes, they often 
result in severe injuries to non-motorists even at low vehicle speeds. The literature on injury severity of 
VRU-involved crashes addresses personal factors such as age and gender, behavior, traffic, and 
environment. 

Past studies analyzing injury severity of vehicle-to-VRU crashes have generally focused on 
characteristics of VRU, vehicle, driver, roadway geometry, and traffic, in order to develop more effective 
countermeasures and improve VRU safety. Because behaviors such as drug/alcohol impairment or 
crossing against a light contribute to more than half of the deaths in VRU-involved crashes, recent studies 
have focused on how VRU risk-taking behaviors, impairment, signal disobedience, and distraction relate 
to severity of injuries (Sze and Wong, 2007; Schwebel et al., 2012). Although the built environment may 
play a role—reducing crash risk, improving walkability, and possibly discouraging potential improper 
behaviors—traffic safety research devotes limited analysis to attributes such as land use, urban form, and 
transportation facilities. 

Two models were used to analyze the factors contributing to injury severities of VRU-involved crashes, 
and incorporate random parameter features to address heterogeneity in crash data. For comparison and 
validation, a mixed generalized ordered logit (MGOL) model and mixed logit model were compared to an 
ordered logit model and multinomial logit model, to assess the effectiveness and appropriateness of these 
models for goodness-of-fit and predictive power. The results may be useful for refining current and 
developing new V2P applications to address the special safety needs and challenges of these VRUs. 

The results showed that the time-to-death of VRU-involved crashes is significantly associated with 
involved non-motorist characteristics (age and police-reported alcohol involvement), involved motorist 
characteristics (drunk drivers, previous recorded crashes, number of occupants), involved vehicle 
characteristics (vehicle body type, model year, travel speed), roadway characteristics (interstate, junction, 
roadway profile), and environmental characteristics (light and weather condition). The study found that the 
proposed MGOL and mixed logit models can address heterogeneity problems in crash data due to the 
unobserved factors. In addition, the injury severity models that incorporate the random parameter 
features may reveal new insights and offer superior goodness-of-fit. 

Methods 
Data Source 
The data were obtained from the Fatality Analysis Reporting System (FARS), a census of fatal traffic 
crashes within the 50 states that involved a motor vehicle traveling on a public roadway and resulting in 
death within 30 days. Housed in NHTSA, FARS collects information on all qualifying crashes from 
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agencies in each state government through cooperative agreements, drawing on Police Accident Reports 
(PAR), Vehicle Registration Files, Death Certificates, Coroner/Medical Examiner Reports, State Highway 
Department Data, Driver Licensing Files, Emergency Medical Service Reports, Vital Statistics, and other 
State Records. Four data files used for this study included: 

 Accident (1975-current): crash characteristics and environmental conditions  
 Vehicle (1975-current): information on motor vehicles and drivers involved in crashes 
 Person (1975-current): information such as age, gender, vehicle occupant restraint use, and 

injury severity for all persons involved in crash—motorists and non-motorists 
 Pbtype (2014-current): information about crashes between motor vehicles and pedestrians, 

people on personal conveyances and bicyclists 
 

The data from Accident, Vehicle, Person, and Pbtype files were combined and linked through the 
common variable ST_CASE—a unique case identifier. The study used only the first reported VRU and 
involved vehicle (“PER_NO” and “VEH_NO” in Pbtype and Vehicle data files, respectively), then removed 
crashes involving only VRUs from the dataset, to analyze the factors contributing to the injury severity of 
vehicle-to-VRU crashes. Only crash records involving at least one vehicle and one VRU were selected 
into the study.  

The variables LAG_HRS and LAG_MINS record the hours and minutes between the time of the crash 
and the involved non-motorist's time of death. Injury severities were defined on a four-point ordinal scale 
coded as: 

1. died at scene/En route (referred to as injury type 1),  
2. died in one day (referred to as injury type 2),  
3. died in ten days (referred to as injury type 3), and 
4. died in 10 to 30 days (referred to as injury type 4).  

 

The dataset of complete records totaled 10,582 non-motorist involved crashes on U.S roadways during 
the two-year period. This includes 9,180 pedestrian-involved crashes and 1,402 bicyclist-involved 
crashes. Table 0-1 shows the distribution of injury severities by non-motorist types. The study analyzed 
certain collision-related attributes, including characteristics of non-motorists, motorists, vehicle, roadway, 
and environment.  

 

Table 0-1. Distribution of Non-Motorist Injury Severity by Non-Motorist Type 
Injury severity category Pedestrian Bicyclist All non-motorists 
2014    
Injury type 1 2130 (48.54%) 267 (40.76%) 2397 (46.22%) 
Injury type 2 1632 (37.19%) 250 (38.17%) 1882 (36.29%) 
Injury type 3 469 (10.69%) 108 (16.49%) 577 (11.13%) 
Injury type 4 157 (3.58%) 30 (4.58%) 187 (3.61%) 
Total 4388 (100%) 655 (100%) 5043 (100%) 
2015    
Injury type 1 2397 (50.02%) 323 (43.24%) 2720 (47.95%) 
Injury type 2 1759 (36.71%) 290 (38.82%) 2049 (36.12%) 
Injury type 3 470 (9.81%) 97 (12.99%) 567 (10.00%) 
Injury type 4 166 (3.46%) 37 (4.95%) 203 (3.58%) 
Total 4792 (100%) 747 (100%) 5539 (100%) 
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Data Analysis 
Analysis of crash injury severities addressed methodological concerns such as omitted variable bias, 
small sample size, endogeneity, within-crash correlation, and spatial and temporal correlations. The injury 
severity of the injured non-motorist, measured as time-to-death, was the dependent variable. An MGOL 
model and mixed logit model (random-parameter logit models) were used to analyze the factors 
contributing to the injury severities of VRU-involved crashes. The MGOL models addressed the limitations 
of the ordered discrete outcome models by allowing the thresholds in the ordered logit model to vary for 
both observed and unobserved characteristics (Eluru et al., 2008). Also employed was a recently 
developed discrete outcome model that analyzes three or more injury outcomes without explicitly 
considering their possible ordinal nature. 

To validate the effectiveness and appropriateness of the models, an ordered logit model and multinomial 
logit model were estimated and their performance compared for goodness-of-fit and predictive power. 
The MGOL model was compared against the ordered logit model, and the mixed logit model was 
compared to the multinomial logit model to assess the effectiveness of incorporating random-parameter 
features. The MGOL model was compared against the mixed logit model to assess the appropriateness 
of implementing the ordered discrete probability models.  

Results 
The dataset, with 9180 pedestrian- and 1402 bicyclist-involved crashes, was divided into two groups—
one for training (2014 data for 4388 pedestrian- and 655 bicyclist-involved crashes), and the other for 
validating (2015 data for 4792 pedestrian- and 747 bicyclist-involved crashes). The training set was used 
to fit the models, which then were used to predict the injury severities in the validating set. A likelihood 
ratio test was performed to evaluate the goodness-of-fit based on log-likelihood values. To evaluate 
predicted accuracy, the predicted values for each injury severity level were compared to the observed 
values with three measures: root-mean-squared deviation, mean absolute percentage error, and 
maximum percentage error between predicted and actual observed values.  

The predicted values from the MGORL and mixed logit models are much closer to the observed values, 
compared to the ordered logit and multinomial logit models. The predictive performance of the MGORL 
model is also better than the mixed logit model, but the differences are not statistically significant. 
Because the proposed MGOL model and mixed logit model provide superior goodness-of-fit and 
predictive performances in the examined dataset, the rest of this chapter focuses on them. 

For the injury severities of pedestrian-involved crashes, the mixed logit model found significant 
associations with increased risks for all injury types for three variables (non-motorist age greater than or 
equal to 60 years, alcohol-impaired driver, and interstate or highway). Significant associations for 
decreased risks were found for five variables (involved vehicle occupants—driver only, vehicle travel 
speed <50 mph, non-junction, roadway profile-level, and daylight conditions) for all four injury types. 
Significant relationships for other variables were different across the three injury types. For the injury 
severity of bicyclist-involved crashes, the mixed logit model yielded results that were largely consistent 
with pedestrian-involved crashes. 

Four variables—number of vehicle occupants, vehicle body type, roadway type, and junction type—
resulted in random parameters for injury severity in pedestrian-involved crashes. The variability is likely 
capturing the unobserved heterogeneity in the observations, such as visual noise and other physical and 
environmental factors that cannot be measured in the dataset.  
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The MGOL model results are largely consistent with the findings obtained from the mixed logit model, 
although it is interpreted differently. Compared to the mixed logit model, fewer variables in MGOL model 
result in random parameters. The finding is consistent with the results of Eluru et al. (2008), whose MGOL 
model collapsed to a generalized ordered response logit in the final specification for their dataset. 
Although the MGOL models have the random parameter feature, they cannot effectively address the 
heterogeneity issues like the mixed logit models do-see Table 0-1.  

. 
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Table 0-1. Comparison and Validation of Model Performance 
 Pedestrian involved crashes Bicyclist involved crashes 

 MGOL model 
Mixed 
logit 
model 

Ordered logit model Multinomial logit model 
Observed 
Shares 

MGOL model 
Mixed 
logit 
model 

Ordered logit model Multinomial logit model 
Observed 
Shares 

Log-
Likelihood 
value 

-971.70 (37)* 

-

968.75 

(40) 

-1041.57 (31) -1034.00 (32)  -1031.86 (32) 
-1026.49 

(37) 
-1116.68 (28) -1084.26 (29)  

Predictive 
likelihood 
ratio test 

5.90<χ2(3)=7.815**  139.76>χ2(6)=12.592 130.50>χ2(8)=15.507  10.73<χ2(5)=11.071  169.64>χ2(4)=9.488 115.53>χ2(8)=15.507  

Predicted 
market 
shares 

          

Injury type 1 
(%) 

49.963 49.889 48.609 47.321 50.021 42.771 41.427 43.528 43.876 43.240 

Injury type 2 
(%) 

36.007 35.552 36.057 37.865 36.707 39.817 39.463 38.459 38.435 38.822 

Injury type 3 
(%) 

9.478 10.044 10.918 7.175 9.808 12.547 14.369 14.492 14.296 12.985 

RMSE (%) 7.45 7.47 7.88 9.69  11.88 12.12 12.78 14.22  

MAPE (%) 10.48 10.50 10.66 12.03  16.67 17.47 21.45 21.69  

Max. 
Absolute 
Percentage 
Error (%) 

15.37 16.56 23.14 29.90  21.68 24.55 28.54 28.85 15.37 

Note: *The values in parentheses represent the number of estimated parameters.  

**The significant level of 0.05 is used 
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Conclusions 
This study explored the use of random parameters in logit models to examine factors that significantly 
influence injury severity of VRU-involved crashes. The results provide some justification for incorporating 
the random parameters in injury severity analyses. The proposed MGOL and mixed logit models address 
heterogeneity issues in crash data due to unobserved factors, and provide superior statistical fit with 
accurate predictions compared to the ordered logit and multinomial models. Although the MGOL model 
and mixed logit model have comparable performance in data fitting and prediction, interpretation of 
estimated results in mixed logit models is more straightforward and easier. In addition, the mixed logit 
model can identify more significant random parameters compared to the MGOL model.  

Compared to the fixed parameters, the random parameters yield more insights into non-motorist-involved 
crashes. The MGOL model results somewhat confirmed the findings from the mixed logit model, with 
fewer significant parameters and random parameters. The findings show that the involved non-motorist 
characteristics (age and police reported alcohol involvement), involved motorist characteristics (drunk 
drivers, previous recorded crashes, and number of occupants), involved vehicle characteristics (vehicle 
body type, vehicle model year, and travel speed), roadway characteristics (interstate, junction, and 
roadway profile), and environmental characteristics (light condition and weather condition) have 
significant effects on the injury severities of VRU-involved crashes. Among these variables, vehicle body 
type, interstate, and junction result in normally distributed random parameters, which capture and reflect 
the unobserved heterogeneity across sampled observations. Understanding what factors are associated 
with increasing severity of injuries to vulnerable road users may inform policy and programs relating to 
travel behavior and decision-making by drivers as well as walkers, as well as engineering and systems for 
road infrastructure and controls. 
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New data and analysis techniques are becoming available, providing deeper insights and understanding 
to address pedestrian and bicycle safety goals. This study uses the SHRP2 Naturalistic Driving Study 
data to explore how driving volatility well before a crash or near-crash can serve as a leading indicator of 
pedestrian and bicycle crashes. This study links volatility measures with safety critical events, i.e., 
crashes and near-crashes. Statistical modeling was used to develop curves for how the probability of a 
pedestrian or bicycle event changes with acceleration and jerk volatility of a vehicle. Pre-crash driving 
volatility, based on 20-second pre-crash trajectories, has a statistically significant positive association with 
the probability of a pedestrian/bicycle crash or near-crash. Interestingly, rigorous models show that 
probabilities of crashes or near-crashes are more sensitive to volatility in vehicular jerk compared with 
volatility in acceleration. Other relationships found in the study and the implications of the findings are 
discussed in the paper. 

Author affiliations: Tickle College of Engineering, Civil & Environmental Engineering, University of 
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Introduction 
On a global scale, an estimated 1.25 million people are involved in fatal roadway crashes yearly, with a 
good proportion of them being pedestrians and bicyclists. The National Highway Traffic Safety 
Administration (NHTSA) in their Crash Statistics report on driver and pedestrian fatalities, with data from 
the Fatality Analysis Reporting System (FARS), reported 4779, 4910 and 5376 pedestrian fatalities and 
66000, 65000, and 70000 pedestrian injuries for the years 2013, 2014 and 2015, respectively. Pedal cyclist 
fatality statistics reported a decrease from 749 in 2013 to 729 in 2014, followed by an increase to 818 pedal 
cyclist fatalities in 2015. As many researchers have pointed out, there is a significant correlation between 
behavioral factors and crash propensity and a recent study by the FHWA (2018) reports that 90% are 
influenced to some degree by driver behavior. There was also an issue of poor correlation of police injury 
severity scale with medical diagnoses. These issues have created a system of pedestrian crash reportage 
where crucial information, pertaining to the preceding contributory factors of the crash, are either not 
accounted for or underreported. The difficulty of attaining such information on pre-crash events has been 
resolved in this study by taking advantage of the real-time monitoring and recording of driver actions, and 
the driving environment, of the Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study 
(NDS). The potential for studying actual driving tasks and decisions that precede events involving safety 
critical outcomes has been made possible by the capacity of modern technology to instrument vehicles with 
a host of data gathering sensors as has been done in the study.  
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Methods 
Naturalistic Driving Data from the SHRP-2 Study was utilized in this research. An in-depth analysis of 
kinematic factors derived from the dataset, coupled with observed phenomena from video recording were 
used. 
 

Data 
Naturalistic Driving Data 
Naturalistic driving studies have the advantage of reporting detailed information into traffic events including 
“near-miss” scenarios which generally go unreported. Given the very objective nature of the NDS data set, 
it is possible to analyze pre-conditions which led towards both cases of crashes and near-misses and 
corroborate these events from video records. 

Driving Volatility 
The concept of “driving volatility” is characterized by variability from average driving, and captures 
instantaneous and extreme driving behaviors and decisions (Liu et al. 2015, Wang et al. 2015). The extent 
of variations in driving, especially hard accelerations/braking and jerky maneuvers are captured within the 
scope of these measures. Research done by Kim et al. (2016) explored the association between rear-end 
crash propensity and micro-scale driving behavior, as also recent research has linked historical crash data 
with driving volatility, while also demonstrating in a Full Bayesian context that the associations between 
driving volatility and crashes vary across locations. Proactive safety measures to curb the instances of the 
possibility of crashes at signalized intersections and freeway ramps were discussed in the study. 

Calculation of Volatility 
In calculating the volatilities for each event, the standard deviation is the most common measure used. 
This study further quantifies the ratio of the standard deviation to the mean to measure volatility termed 
the coefficient of variation. The coefficient of variation has been found to be correlate highly with crash 
risk. The coefficient of variation, Cv, is measured as: 

he coefficient of variation is measured as: 

 

𝐶௩ =

ቆට 1
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Where 𝑥  is the value of observation “i”, �̅� is the mean, and “n” are the number of observations. 

 

 

 

 

 

 



 
www.roadsafety.unc.edu 41 

 
 

 

 

Figure 0-1. Framework for Analysis 
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Models 
Driving volatility works very well as a generalized metric for driving behavior since it showcases the extent 
of variations in driving carried out by an individual, especially hard accelerations and braking, and also their 
changes in magnitude with respect to a unit of time, which is defined as jerk. The data from the onboard 
sensors from the study are high resolution motion data at a frequency of 10 Hz, which allows us to extract 
and analyze the different volatilities associated with each individual driver and assess their performance 
immediately prior to the involvement in safety critical events. The sensor records provide real time motion 
data of about 30 seconds mostly prior to any safety critical outcome, and 20 seconds data for baselines.  

To provide a clearer perspective on this, Figure 6-1 shows examples of the “baseline” and crash/near crash 
data and how the data are used to explore relationships. The typical durations of the baselines are 20 
seconds. In the case of crash/near crash, the typical total durations are 30 seconds. In some cases, the 
driver took evasive action before the crash, whereas in other situations they did not take any evasive action 
before the collision. Based on the baseline, and pre-crash (excluding the evasive maneuvers) accelerations 
and vehicular jerk in the lateral and longitudinal directions, we have derived our eight different volatility 
measures. The eight measures were selected because accelerations and vehicular jerk (the rate of change 
of acceleration) capture the abrupt lateral and longitudinal movements that can serve as leading predictors 
of crashes. The volatility measures used are the Coefficient of Variation calculated for the relevant lateral 
and longitudinal acceleration and vehicular jerk data.  

Using the data, the correlations between the volatility measures and crash propensity are explored, while 
controlling for several other variables; additionally, S-shaped curves shown in Figure 6-1 are developed to 
explicate the relationship between volatility and crash/near-crash propensity (note that Figure 6-2, which 
appears later elaborates on the lower part of Figure 6-1). A statistical model is estimated to assess 
correlations through a multinomial outcome framework of baseline (which signifies a safe outcome), vehicle 
only involved events and pedestrian-cyclist involved events (which both signify safety critical outcomes). 
Within the multinomial framework, a function determining the outcome “i” of an event “j” is defined as: 

 
𝒀𝒊𝒋  =  𝜷

𝒊
𝑿𝒊𝒋  +  𝜺𝒊𝒋                                                                                                                                                  (𝟐) 

 
Where Yij is the dependent variable, i.e., the safety outcome “i” observed in a traffic event “j”; Xij is the vector 
of independent variables (driving volatility measures and other observed factors); and βi is the vector of 
parameter estimates. The error term is denoted by ε. For each safety critical outcome, the probability of a 
crash or near-crash can be formulated as: 

 

𝑷𝒋(𝒊) =
𝒆𝒙𝒑 [𝜷𝒊𝑿𝒊𝒋]

Ʃ𝒆𝒙𝒑 [𝜷𝒊𝑿𝑰𝒋] 
                                                                                                                                                 (𝟑) 

 
Since the logit framework restricts direct interpretation of parameter estimates, marginal effects are 
estimated for the parameters.  
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Figure 0-2. Probability Density Curves (baseline vs. crash/near crash) for univariate models of volatility measures. 
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Table 6-1: Descriptive Statistics of Key Driving Volatility Measures  
Baseline Vehicle Only Involved 

Events (VoE) 
Pedestrian-cyclist 

Involved Events (PbE) 
Difference in Means 

between VoE and PbE 
Performance Measure N Mean Std. 

Dev 
N Mean Std. 

Dev 
N Mean Std. 

Dev 
Δ Mean (PbE –VoE) 

Volatility (Positive vehicular Jerk: 
longitudinal direction) 

7562 0.98 0.18 1851 1.17 0.43 74 1.34 1.25 0.36 

Volatility (Negative vehicular Jerk: 
longitudinal direction) 

7562 0.82 0.15 1851 0.90 0.27 74 0.97 0.75 0.15 

Volatility (Positive vehicular Jerk: 
lateral direction) 

7562 0.97 0.17 1851 1.16 0.57 74 1.30 0.71 0.33 

Volatility (Negative vehicular Jerk: 
lateral direction) 

7562 0.84 0.18 1851 0.91 0.26 74 0.98 0.43 0.15 

Volatility (Acceleration: 
longitudinal direction) 

7562 0.80 0.30 1851 0.80 0.32 74 0.81 0.27 0.01 

Volatility (Deceleration: 
longitudinal direction) 

7562 0.71 0.19 1851 0.77 0.27 74 0.76 0.68 -0.01 

Volatility (Acceleration: lateral 
direction) 

7562 0.99 0.33 1851 0.98 0.48 74 1.04 0.50 0.06 

Volatility (Deceleration: lateral 
direction) 

7562 0.71 0.20 1851 0.74 0.26 74 0.76 0.42 0.02 

Note: N is sample size; Std. Dev is standard deviation. 

 
  



 
www.roadsafety.unc.edu 45 

Table 6-2. Estimation Results of Multinomial Logit Models for Crash Propensity from Naturalistic Driving Data and Model Comparisons 
 Vehicular Jerk based Multinomial logit model 
 Vehicle Only Involved Events Pedestrian-cyclist Involved Events 
 Variables Β Z dy/dx β z dy/dx 
       
Constant -3.06 -16.49  -7.45 -14.31  
        
Key Volatility Indicators       
Volatility (Positive vehicular Jerk: longitudinal direction) 1.30 8.01 0.155 1.73 5.74 0.009 
Volatility (Negative vehicular Jerk: longitudinal direction) 0.63 3.26 0.075 0.82 1.70 0.004 
Volatility (Positive vehicular Jerk: lateral direction) 2.26 11.80 0.271 2.32 7.43 0.011 
Volatility (Negative vehicular Jerk: lateral direction) -0.82 -4.13 -0.099 -0.56 -1.21 -0.002 
        
Maneuver Judgement       
Safe and legal -2.08 -24.54 -0.251 -1.77 -5.77 -0.007 
Safe but illegal -2.64 -10.58 -0.317 -2.34 -2.23 -0.010 
        
Intersection Influence       
Uncontrolled intersection 2.04 15.79 0.246 1.43 2.69 0.004 
Traffic Signal 1.28 16.84 0.153 1.34 5.02 0.006 
       
Roadway Surface condition       
Dry -0.38 -4.98 -0.045 -0.44 -1.55 0.002 
       
Summary Statistics       
N 9487      
Prob. > χ2 0.000      
Pseudo R2 0.2002      

Notes: Baseline event is considered the base category-all parameter estimates to be interpreted relative to baseline event. Jerk based 
volatility measures are coefficients of variation.
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Findings 
 All eight volatility measures showed a higher mean value for both safety critical categories of 

outcomes (vehicle only events and pedestrian-cyclist involved events), compared to baseline 
(normal driving safe outcome).  

 Comparing between-group variance to within-group variances, we found that within-group 
variances are greater, suggesting larger variance in volatilities exhibited by drivers involved in the 
same event outcome category. 

 Longitudinal jerk (both positive and negative) and deceleration, for pedestrian-cyclist involved 
events showed greater mean volatility than for vehicle only involved events (Table 6-1). 

 Positive vehicular jerk (both longitudinal and lateral directions) shows greater mean values of 
volatility than the corresponding directional negative vehicular jerk, in all situations. 

 For all the eight volatility measures, there is evidence that driver volatilities in all three event 
outcome categories are statistically significantly different. 

 

The cumulative probability functions of the predictions (as a function of volatility related measures) obtained 
from both models are shown in Figure 6-2. In particular, the x-axis in top plot shows the volatility in 
acceleration/deceleration in longitudinal and lateral direction whereas the y-axis shows the cumulative 
probability of pedestrian-cyclist involved crash/near-crash event (Figure 6-2). 

Analyzing the bottom plot in Figure 6-2, it is evident that vehicular jerk-based volatility measures as a whole 
can explain instantaneous driving decisions, showing strong sensitivity and display a sharp (and almost equal) 
rate of change of the probability. Table 6-2 shows the results of multinomial logit model with vehicular jerk-
based volatility measures as key explanatory factors and other variables as controls.  

Related to pedestrian-cyclist involved crash/near-crash outcomes, the estimation results show that increase in 
positive vehicular jerk in longitudinal and lateral direction is statistically significantly correlated with occurrence 
of pedestrian-cyclist involved events (Table 6-2). In particular, a one-unit increase in positive vehicular jerk in 
longitudinal and lateral direction increases the probability of observing a pedestrian-cyclist involved event by 
0.009 and 0.004 units respectively (see marginal effects in Table 6-2).  

This suggest that driving volatility well in advance of unsafe event occurrence is significantly correlated with 
pedestrian-cyclist involved event occurrence. Likewise, increase in volatility of positive vehicular jerk in 
longitudinal and lateral directions, and volatility of negative vehicular jerk in longitudinal direction are all 
positively and statistically significantly associated with likelihood of vehicle only involved events (see Table 6-
2). Other findings shown in Table 6-2 can be interpreted in a similar way. 

Conclusions 
Compared to volatility associated with acceleration, the probability of pedestrian-cyclist involved crash/near-
crash events is more sensitive to increase in volatility associated with deceleration either in longitudinal or 
lateral directions. Interestingly, rigorous statistical models show that probabilities of pedestrian-cyclist involved 
crashes or near-crashes are more sensitive to volatility in vehicular jerk compared with volatility in 
acceleration. The above volatility related findings have important implications for proactive safety especially 
for pedestrians and bicyclists. Instantaneous driving decisions can be monitored in real-time and warnings 
and alerts can be issued to drivers. Such alerts and warnings can potentially help in improving safety. 
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Recommendations 
This year 1 research effort has (1) underscored the importance of understanding how proactive regulation of 
automated vehicle technology is necessary to ensure the benefits of CAVs—particularly but not exclusively 
safety benefits—accrue equitably across the population and (2) identified new areas for research into how 
CAVs will interact with other technologies, infrastructure, policy, and society. Accordingly, several 
recommendations have emerged from this project. 

Recommendation 1 
Maintain infrastructure and policies to support conventional (human-driven) motor vehicles and non-vehicular 
travel modes, as the roll-out of CAVs and the benefits expected to be derived from them are unlikely to be 
comprehensively or equitably distributed in the near- to mid-term. 

Recommendation 2 
Establish minimum criteria for the effectiveness of pedestrian detection and resolution technology to be 
deployed on all CAVs operating in non-freeway conditions. 

Recommendation 3 
Support research to expand knowledge on likely relationships between CAVs and other travel modes, in 
particular, whether and how CAV technology and operational characteristics can be used to enhance safety of 
vulnerable road users. 

Recommendation 4 
Support further research to expand knowledge-base regarding the impacts of CAV-supportive infrastructure 
investments on pedestrian comfort, safety, and the built environment.  

Recommendation 5 
Support research into how professions currently involved in efforts to maintain/improve roadway safety (e.g., 
traffic engineering, urban planning, law enforcement) might need to evolve and adapt to new conditions and 
demands imposed by a CAV-dominant mobility system.  

This recommendation has led to the development of a manuscript (in progress) tentatively titled “The 
automated vehicle boom: a pragmatist planning response to safety and equity implications,” which explores 
how the profession of urban planning can look to outcomes of previous responses to technological innovation 
to guide best practices with respect to proactive planning for CAVs.  

Thinking from this paper has been discussed during a breakout panel session in July 2018 at the Automated 
Vehicles Symposium (San Francisco CA); another panel discussion based on the work in this paper will take 
place at the Association of Collegiate Schools of Planning Annual Conference (ACSP) in October (Buffalo 
NY). The abstract for the ACSP session is below: 

“How can planning theory inform the challenges of planning for automated vehicles?” 

The rapid pace of innovation in automated vehicle (AV) technology has positioned urban areas on the 
precipice of massive spatial, economic, and social change. Exuberant media coverage of the emergence of 
AVs parallels statements by auto manufacturers, technology companies, and futurists touting AVs as a ‘savior 
technology’ with potential to solve some of society’s most vexing challenges. Predicted benefits of AVs 
include alleviation of congestion, reduced fossil fuel dependence, improved safety, enhanced urban vitality, 
and expanded mobility options for low-income travelers and non-drivers. 
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Despite recent announcements by automotive companies of plans for wide-scale deployment of driverless 
cars, many experts agree critical limitations in AV technology remain unaddressed (Combs et al., 2018). 
Given consumer and political pressures to expedite production, the burden of closing technological, 
infrastructural, and regulatory gaps likely will fall to the public. That is to say: rather than expecting 
manufacturers to design for today’s transportation systems, our systems must evolve to accommodate the 
specialized yet uncertain operational needs of self-driving cars. The full integration of AVs into contemporary 
cities will require massive adaptations and investments in infrastructure and new regulations. It will also 
require an evolution of norms and expectations around access to the street (Millard-Ball, 2016; Stone et al., 
2018). However, both the pace of change, and the changes themselves, are likely to introduce a host of 
unintended consequences and uncertainties that may exacerbate inequalities in transportation, housing, and 
access to opportunities; disrupt most of what we know about urban and suburban land markets; and even 
undermine the anticipated benefits of AVs themselves. 

The planning profession is uniquely positioned to handle such change. Planners are trained to identify and 
mitigate unintended consequences, and are accustomed to working under conditions of extreme uncertainty. 
However, the profession’s previous experiences with novel, potentially transformative or disruptive ideas 
leave room for doubt regarding the profession’s readiness for a new technological revolution (Guerra, 2016). 
Blind faith optimism in “progress” and the belief that rationally-instituted plans, using the latest technology, 
can “modernize” the city and sweep away a host of social ills was at the heart of Urban Renewal and other 
prominent 20th century planning interventions. Plans based on such innovations have been widely criticized 
not only in terms of their unintended negative and inequitable outcomes but also because of the 
epistemological hubris of the planners hired to design and carry them out at the time.  

The impending and likely inevitable shift toward automated mobility presents both an opportunity and an 
urgent need to re-examine the role of planning during times of transformation and uncertainty. Due to the 
rhetorical similarity between AV proponents today and Urban Renewal boosters during the post-war era, it is 
an interesting time to reconsider the role of planning in promoting “progress.” What should “progress” mean 
today compared to previous attempts by the planning field to manage rollouts of disruptive innovation in the 
public interest? 

This roundtable brings together academics with interests in planning theory, transportation equity, and 
automated mobility to explore new models of planning that might bridge the divide between the rational 
facilitation approach to progress and Luddite resistance in the face of uncertainty. In doing so, we will engage 
in a conversation on how planning theory can equip us to plan for the AV era. We will explore questions such 
as: How do we redefine “progress” in urban development in the AV era? What can planners learn from 
previous failures in managing technological rollout (or how do existing planning models fail to prepare us)? 
How can planning models be adjusted to mitigate negative impacts of AVs? Who is left out of planning efforts 
to support AVs? 
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Recommendation 6 
Support and test existing and new vehicle-to-pedestrian technologies that can result in better detection, (by 
cameras and other sensors), processing of data in real-time, and user (pedestrian and vehicle driver) alerts 
and warnings through notification systems. More field testing is needed to capture the complexity of different 
pedestrian-involved crash types and risky pre-crash behaviors (especially the behaviors of drivers and 
pedestrians that contribute to fatal crashes, identified in this research) in different spatial and environmental 
contexts. Systematic testing can be enabled by a good inventory of V2P technologies that can be field tested 
and eventually deployed. A key aspect will be to collect the Basic Safety Message data and extract valuable 
information that can be used to reduce pedestrian-vehicle conflicts and improve safety across modes. 

Following-up on understanding risky pre-crash behaviors and human errors, a Year 2 project titled 
“Developing a Taxonomy of Human Errors and Violations that Lead to Crashes” is underway to examine 
contributing factors and human errors (Principal Investigator: Asad Khattak, University of Tennessee, 
Knoxville; Co-Investigator: Eric Dumbaugh, Florida Atlantic University). The project examines human errors 
and violations more broadly as human error tends to dominate crash occurrence, contributing to 80%-90% of 
crashes. A better understanding of “critical reasons for the critical pre-crash events” has significant potential in 
reducing deadly behaviors on roadways. A key gap in relates to the origin of the different types of human 
errors, e.g., whether they begin with intentional actions or unintentional actions, and how they relate to the 
built environment. This study will analyze human errors and explore the potential for addressing human errors 
through CAVs and other safety strategies. Along these lines, a deeper understanding of factors associated 
with increasing severity of injuries to vulnerable road users may inform policy and programs relating to travel 
behavior and decision-making by drivers and walkers, as well as engineering and systems for road 
infrastructure and controls. 

Recommendation 7 
Future research investments should build links among engineering, planning, policy, public health, and other 
fields, and account for the emergence and penetration of CAVs. Open questions include how human-driven 
vehicles will interact with AVs; how CAV penetration will influence walking behavior; and how CAVs will 
respond to pedestrians’ changing behavior as they challenge CAVs in dynamic environments. Given the high 
cost of mobility—in dollars as well as lives and health, the nation should prioritize safety and accessibility for 
all modes, with strategically selected technology. In particular, research is needed on new connected and 
automated technologies that can avoid crashes and meet the mobility needs of diverse users and 
stakeholders. Crosscutting safety and technology-oriented research, development and deployment efforts 
should encompass CAVs and infrastructure, and safety technologies and strategies to promote safe and 
smart communities. A comprehensive research agenda should use partnerships among academia, public 
sector agencies, and leaders in the private sector, to identify innovative life-saving and community-
strengthening models for safe and walkable environments.  

Summary of data used/gathered 
Primary data 
None (no new data was collected by the research team).  

Secondary data (not collected by the research team)  
Fatality Analysis Reporting System (publically available: https://www.nhtsa.gov/research-data/fatality-
analysis-reporting-system-fars)  

SHRP2 Naturalistic Driving Study Data (not publicly available-more information at:  

https://insight.shrp2nds.us/) The data cannot be shared. 
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