

www.roadsafety.unc.edu

Autonomous Vehicles and Safety of Vulnerable Road Users: A Systems Approach

Table of contents

- Walkability in the Connected and Automated Vehicle Era: A U.S. Perspective on Research Needs (slide 3)
- 2. Limitations in Detection Technologies for Automated Driving Systems and Implications for Pedestrian Safety (slide 24)
- 3. Analysis of Crashes Involving Pedestrians across the United States: Implications for Connected and Automated Vehicles (slide 35)

www.roadsafety.unc.edu

Elizabeth Shay^{*2}, *Asad Khattak*^{*1}, & *Behram Wali*^{*1} *1 University of Tennessee, & *2 Appalachian State University • Mobility and Safety of Vulnerable Road Users

Mobility—mode share: walking accounts for 10%-12% of all trips

Safety—out of total of ~35,000 transportation fatalities annually ~5,000 peds ~800 bicyclists

• Walkability and CAVs—Premise

CAVs will reshape mobility and safety in ways we cannot know with certainty—but can reasonably anticipate will be important

• Walkability and CAVs—Premise

CAVs will reshape mobility and safety in ways we cannot know with certainty—but can reasonably anticipate will be important

Walking (behavior) and walkability (environment) are key elements of sustainable systems—active, accessible, livable, efficient, safe, just

- Public demand for walkability—good for health, households, community
- Economic case for walkability—good for business, property values, growth
- But can CAVs (e.g., ride-hailing) take share away from walking?

• Walkability and CAVs—research issues

Brave new world? Entering new uncharted territory

- Wikipedia
- The "Trolley Problem": In unavoidable fatal crashes involving CAVs, will CAV passengers or pedestrians be sacrificed?
- How will CAVs respond to new and changing behavior by pedestrians who anticipate that CAVs will be programmed not to hit them?
 - How will non-CAVs react?

Out of scope: Cyber-security, insurance, attitudes toward automation, encouragement & enforcement

Pedestrian safety studies-FHWA-RD-95-163

Countermeasures:

- Provide exclusive pedestrian interval
- Illuminated No Turn on Red (NTOR) sign

7.0%

Countermeasure:	Increase	cycle	length	for	pedestrian	crossin
-----------------	----------	-------	--------	-----	------------	---------

Countermeasure: Install high-visibility crosswalk

CMF	CRF(%)	Quality	Crash Type	Crash Severity	Area Type	Reference	Comments
0.6	40	*****	Vehicle/pedestrian	All	Urban	Li Chen, Cynthia Chen, and Reid Ewing, 2012	The treatment group included both [read more]
0.81	19	*****	Angle,Head on,Left turn,Rear end,Rear to rear,Right turn,Sideswipe	All	Urban	Li Chen, Cynthia Chen, and Reid Ewing, 2012	The treatment intersections included both [read more]

Countermeasure: Install raised pedestrian crosswalks

 Countermeasure: Installation of a High intensity Activated crossWalK (HAWK) pedestrianactivated beacon at an intersection

CMF	CRF(%)	Quality	Crash Type	Crash Severity	Area Type	Reference	Comments
0.712	29	*****	All	All	Urban and suburban	Fitzpatrick, K., and Park, E.S., 2010	The authors of this study [read more]
0.849	15	*****	All	Fatal,Serious injury	Urban and suburban	Fitzpatrick, K., and Park, E.S., 2010	The authors of this study [read more]
							😚 🖅 📢

Pedestrians—only lightly covered in Highway Safety Manual

Pedestrians—lightly covered in ITS Architecture

- Two new services for peds added in the ITS architecture
- VS1 (veh safety) 2: Pedestrian and Cyclist Safety
 - \odot Sensing and warning systems-interact with peds, cyclists, etc.
 - $\,\circ\,$ Warnings to VRU of possible infringement of crossing by approaching vehicles
 - $\,\circ\,$ SPaT-priority for people with <code>disabilities</code> needing additional crossing time
 - Integrates traffic, ped, and cyclist data from detectors & wireless devices (mobile phones) to request right-ofway or provide crossing info

• PT11: Transit Pedestrian Indication

- "Vehicle to device" communications
- Alerts peds of a transit vehicle & vice-versa, i.e., peds waiting for bus
- Prevents transit-ped collisions

CAVs—Sandt & Owens, 2017

Issues

- Tech: Detection, V2P, Communication problems
- Infra: Right-of-Way, passing, speed problems
- Travelers: Pickup/drop off, mode shift, driver handoff problem
- Data problems-pre and post crash

Stakeholders active in CAV R&D-Collaborative & Open process

n		+		+		
	LEVEL 0	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5
	No automation	Automated systems can sometimes assist the human in some parts of the driving task	Partially automated systems can conduct some driving tasks while human monitors and performs other driving tasks	Conditionally automated systems can conduct some driving tasks in some conditions, but the human driver must be ready to take back control	Highly automated systems can conduct all driving tasks in some conditions without human control	Fully automated systems can perform all driving tasks, under all conditions in which humans could drive

Detection problems & solutions—ML

Collaborative Sciences Center for ROAD SAFETY

V2P & P2V

- USDOT identified V2P techs→ Alert motorist by detecting ped with sensors
- Only some (~25%) techs alert peds

Research need: Framework to identify technologies for VRU crash reduction

Figure 3. Vehicle to pedestrian or bicyclist technologies (V2X) could aid in detection of and communication with pedestrians and bicyclists, but an array of technology and equity issues must still be addressed.

What safety gains from CAVs may be expected for peds?

Walkability and CAVs—Literature review

Controlled keyword search

- 4 knowledge bases—TRID, ScienceDirect, Web of Science, Google Scholar
- 14 terms relating broadly to CAVs and safety
- generated >400 sources

Deeper look at subset of 82 sources relating explicitly to walkability

Text analytics performed on 70 peer-reviewed papers and technical reports

Trends: Walkability and CAVs

Trends: Walkability and CAVs

• Walkability and CAVs—Text analytics

Major themes to emerge:

- Automation-collision avoidance
- Communication/connectivity
 - Platooning & Adaptive Cruise Ctrl
- Shared & electric vehicles
- Walking/built environment
- Moral & ethical issues

Key Topics – Text Analytics

Broader Category	Торіс	Keywords	Eigen- value	% Varianc e	Frequency	Cases	% Cases
Technology	Wireless Communications; Mobile Applications	Applications; Communications; Wireless; Mobile; Connected; Dedicated Short Range Communication; Smart	2.01	1.21	878	47	67.14%
Applications	Adaptive Cruise Control; Controls	Cruise; Adaptive; Adaptive Cruise Control; Control; Lane	1.89	1.41	1627	59	84.29%
	Collision Avoidance Systems	Collision; Avoidance; Warning; Collisions	1.80	1.23	2868	63	90.00%
Safaty	Pedestrian Injuries; Bumper	Bumper; Injuries; Hood; Injury; Crashes; Pedestrian; Crash	2.27	1.24	1363	57	81.43%
Salety	Safety	Pedestrians; Users; Pedestrian; Traffic; Drivers; Safety	1.38	1.06	467	26	0.3714

• Walkability and CAVs—research directions

Three decades into paradigm shift toward walkable livable environments:

May CAVs threaten this progress by shifting walkers to other modes?

Might CAVs enhance gains in walkability?

What responsibility for safety should pedestrians have in CAV era?

Will space-efficient CAVs reduce traffic congestion and parking demand, and allow reallocation of liberated ROW?

• Walkability and CAVs—research directions

Parties to discussion about CAVs, walkability, walking—and larger concerns about safety and vulnerable road users

Academia

- Public sector agencies
- Private sector leaders

Manufacturers—vehicles, infrastructure, software/hardware

Forums needed for deliberation and debate...

Thank you!

Shay, Khattak & Wali, TRB 2018: 'Walkability in the connected and autonomous vehicle era: A US perspective on research needs'

www.roadsafety.unc.edu

Limitations in Detection Technologies for Automated Driving Systems and Implications for Pedestrian Safety

Tabitha Combs, PhD¹ Laura Sandt, PhD² Michael Clamann, PhD³ Noreen McDonald, PhD¹ Paper 18-03947 TRB 97th Annual Meeting Jan 10, 2018 Washington, DC

¹University of North Carolina Dept. of City & Regional Planning ²University of North Carolina Highway Safety Research Institute

Duke University Pratt School of Engineering

Introduction

Motivation Recent increases in US pedestrian fatalities

Rapid gains in autonomous-driving technology \rightarrow rising expectations for near-term 'self-driving future'

Claim: replacing fallible human drivers with autonomous driving systems \rightarrow substantial reductions in pedestrian deaths

But technology to *detect* pedestrians pre-crash is far from perfect!

Introduction

Research Question	Would perfectly automated vehicles equipped with state-of-the-art pedestrian detection technology have been capable of pre-crash detection of pedestrians in real- life, fatal crashes?
Findings	Wide range in virtual performance of hypothetical pedestrian sensors
	In theory, AVs have potential to dramatically reduce pedestrian fatalities, but not in the near future and not without critical caveats

Methods

1. Identify 'negotiable' fatalities

Methods

- 1. Identify 'negotiable' fatalities
- 2. Determine functional ranges of available sensor types

		Senso	r Type	
Crash condition	Optical camera	LiDAR	Camera + LiDAR	Camera + LiDAR + Radar
Dark/low- light	\approx	\checkmark	\checkmark	\checkmark
Fog/ precip.	×	\approx	\approx	\checkmark
Reflective surfaces	\gtrsim	\gtrsim	\gtrsim	\checkmark
Close-range pedestrian	\checkmark	\approx	\checkmark	\checkmark
Stationary pedestrian	\checkmark	\checkmark	\checkmark	\checkmark

Methods

- 1. Identify 'negotiable' fatalities
- 2. Determine functional ranges of available sensor types
- 3. Calculate overlap

Fatalities potentially avoided (f_t)

 f_t / r = Maximum Potential Share of Fatalities Avoided

Findings

Fatalities

- -4,773 transport-related fatalities (*r*)
- -130 unavoidable (*u*); 4,643 negotiable (*n*)

Conditions of negotiable fatalities No good for...

- 76% dark/low-light
- 10% fog/precipitation
- 14% reflective surfaces
- 10% close-range pedestrians
- 6% stationary pedestrians

cameras cameras, LiDAR cameras, LiDAR LiDAR radar

Findings

Maximum potential share of fatalities avoided

Conclusions

 Choice of technology matters Cameras: narrow functional range captures few fatalities

LiDAR: decent performance with most likely potential for improvement

Radar: appears to perform best, but has crucial weaknesses

Conclusions

- Choice of technology matters
- Assumptions
 also matter

- Vehicles fitted with best available sensor tech—regardless of cost
- Perfect signal interpretation, perfect automation, perfect vehicle performance
- Fatality-avoiding evasive action exists
- Use of tech does not pose other challenges or health risks
- Pedestrian-vehicle interaction
 behavior does not evolve
- No discrepancies in deployment

Conclusions

- Choice of technology matters
- Assumptions also
 matter
- Takeaways

- Assuming improvements in affordability of sensor tech...AVs hold promise for reducing pedestrian fatalities over the long term, however:
- sensor fusion is necessary
- AVs never likely to be silver bullet
- In the near term: complementary approaches to improve pedestrian safety and mobility are still critical!

www.roadsafety.unc.edu

Meng Zhang ^{*1}, Asad Khattak ^{*1}, & Elizabeth Shay ^{*2} *1 University of Tennessee, & *2 Appalachian State University

Introduction - CAVs and vulnerable road users

Research Issues

- ~5,000 pedestrian deaths/year
- Assessment of future pedestrian-vehicle conflicts
- Current single vehicle-pedestrian fatal crashes across the U.S.
- Focus: Pedestrian & driver pre-crash actions

Source: Google image

Data Sources

- Fatality Analysis Reporting System (FARS)
 - 2013 2015
 - Crash type = Single vehicle-pedestrian fatal crashes

Integrated with county level census data

→Unique database

Conceptual framework

Distribution of ped-driver fatal crashes

Poisson vs. GWPR model

Results - Distribution of ped behaviors

Note: The percentages are added to 100% (N=12,217).

Results - Distribution of driver behaviors

Note: The percentages are added to 100% (N=12,217).

Results - Selected variables

	Variables	Ν	Mean	Std. Dev.	Min	Max
Crash	Crash frequency	3143	3.887	15.604	0	469
Crash frequency/rate	Crash rate by county population (/1000)	3143	0.030	0.053	0	1.069
nequency/face	Crash rate by county population density	3143	0.040	0.209	0	5
	Dart out/ Dash	3143	0.353	1.415	0	30
Pedestrian pre- crash behavior*Failure to obey traffics signs31430.1090.8070In roadway improperly (standing, lying, walking)31430.4631.4940Inattention (talking, eating)31430.0460.2910	Failure to obey traffics signs	3143	0.109	0.807	0	23
	0	23				
	Inattention (talking, eating)	3143	0.046	0.291	0	8
	Improper crossing (jaywalking)	3143	0.432	2.809	0	104
Crash frequency/rate Crass Crass Dard Failu Pedestrian pre- crash behavior* Inat Imp Invis Rect Driver pre-crash behavior* Rule	Invisibility (dark clothing, no light)	3143	0.396	1.192	0	16
	Reckless	3143	0.246	1.067	0	21
Driver pre-crash	Impairment	3143	0.083	0.483	0	11
behavior*	Rules of turning/yield	3143	0.041	0.361	0	14
	License/registration violation	3143	0.103	0.669	0	17

Note: These behaviors are shown at the aggregated county level.

Results - GWPR vs. Poisson model

	Poisson model		Lo	ocal GWPR	model	\frown
Variables	ß	β		Lwr	R model Upr Quartile 0.253 -0.099 0.421 - - - - - - - - - - - - - - - - - - -	Upr-Lwr
	Р	Min	Max	Quartile		> 2SE
Dart out/ Dash	0.138	0.007	0.4	0.169	0.253	TRUE
Failure to obey traffics signs	-0.166	-2.36	0.17	-0.953	-0.099	TRUE
n roadway improperly (standing, lying, walking)	0.11	0.089	0.66	0.198	0.421	TRUE
nattention (talking, eating)	0.048	_	_	-	-	-
mproper crossing (jaywalking)	-0.034	_	-	-	-	-
nvisibility (dark clothing, no light)	0.159	_	-	-	_	_
Reckless	0.136	_	-	-	_	_
mpairment	0.001	_	-	-	_	_
Rules of turning/yield	-0.245	_	-	-	_	_
License/registration violation	0.075	_	-	-	-	-
	N=3,143 Prob. > χ^2 =0.00 R ² =0.619 AICc=24,503*	R ² =N/A	Be: A, perce	st bandwic ent devian AICc=14,	lth = 166 ce explaine 621	d: 0.673
	Variables Dart out/ Dash Failure to obey traffics signs n roadway improperly (standing, lying, valking) nattention (talking, eating) mproper crossing (jaywalking) nvisibility (dark clothing, no light) Reckless mpairment Rules of turning/yield License/registration violation	Poisson modelVariables β Dart out/ Dash0.138Failure to obey traffics signs-0.166n roadway improperly (standing, lying, walking)0.11nattention (talking, eating)0.048mproper crossing (jaywalking)-0.034nvisibility (dark clothing, no light)0.159Reckless0.136mpairment0.001Rules of turning/yield-0.245.icense/registration violation0.075N=3,143Prob. > χ^2 =0.00R²=0 619AlCc=24,503*	VariablesVariables β 0.138 β 0.138 β 0.138 β 0.007 γ -0.166 γ -2.36 γ 0.166 γ 0.048 γ 0.048 γ -0.034 γ -0.034 γ 0.048 γ -0.034 γ -0.034 γ -0.034 γ -0.034 γ -0.001 γ -0.001 γ -0.245 γ -0.00 β <	Poisson modelLaVariables β β MinMaxDart out/ Dash0.1380.0070.4Failure to obey traffics signs-0.166-2.360.17n roadway improperly (standing, lying, valking)0.110.0890.66nattention (talking, eating)0.048mproper crossing (jaywalking)-0.034nvisibility (dark clothing, no light)0.159Reckless0.136mpairment0.001Alles of turning/yield-0.245icense/registration violation0.075N=3,143 Prob. > χ^2 =0.00 AlCc=24,503*Ber R^2=N/A, percer	VariablesLocal GWPR β β Lwr β β LwrDart out/ Dash0.1380.0070.40.169Failure to obey traffics signs-0.166-2.360.17-0.953n roadway improperly (standing, lying, valking)0.110.0890.660.198nattention (talking, eating)0.048mproper crossing (jaywalking)-0.034nvisibility (dark clothing, no light)0.159Reckless0.136mpairment0.001Rules of turning/yield-0.245icense/registration violation0.075N=3,143Prob. > χ^2 =0.00R ² =N/A, percent deviantAICc=14,AICc=24,503*AICc=24,503*AICc=14,AICc=14,	VariablesLocal GWPR modelVariablesBLocal GWPR modelVariables β LwrUpr QuartileDart out/ Dash0.1380.0070.40.1690.253Failure to obey traffics signs-0.166-2.360.17-0.953-0.099n roadway improperly (standing, lying, valking)0.110.0890.660.1980.421mproper crossing (jaywalking)-0.034nvisibility (dark clothing, no light)0.159Negative dark clothing, no light)0.0136Nation (ulark clothing, no light)0.136Nation (ulark clothing, no light)0.136Nation (ulark clothing, no light)0.136Nation (ulark clothing, no light)0.136Nation (ulark clothing, no light)0.001N=3,143Prob. > χ^2 =0.00R ²

*: The AICc is reported for Poisson model with the three selected

: Non-significant at 95% level variables

Spatial interpolation

Interpolate coefficients to create coefficient surface

IDW- Inverse distance weighted (IDW) interpolation

Contour parameter map

Local parameter estimates

Local parameter estimates for single vehiclepedestrian fatal crashes

Note: Black areas indicate that local parameter are not statistically significant at 95% level in that region

Closure

- Key contributors to pedestrian involved fatal crashes
 - Dart-out/Dash, Failure to yield right of way, Improperly present at roadway, Dark clothing/Not visible...
 - Method is scalable to other injury levels
- Substantial variations in pedestrian behavior across regions
 - Systematically accounting spatial heterogeneity
 - Better identification of hazardous areas & correlated behaviors
 - Develop context-sensitive countermeasures \rightarrow Local policy
 - Results helpful in designing field tests for CAVs in specific areas
- Implications and research needs
 - V2P testing needed in diverse environments
 - Predicting ped-driver trajectories
 - Night vision
- Key Limitations
 - Accuracy
 - Location, police report

Future research - VR simulation-V2P coordination

