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Executive Summary 
Travel demand models enable us to forecast the state of the transportation system under different 

scenarios such as changes to demand, transportation infrastructure, and policies. By using a wide array 

of performance measures, planners can evaluate scenarios and compare their performance including but 

not limited to cost, mobility, and emissions with base scenarios. Despite previous attempts to integrate 

road safety into planning models, one area that needs further attention is the safety of road users (instead 

of road segments or intersections) and how changes in travel patterns due to changes in transportation 

infrastructure and demographics affect the safety of road users.  

Unlike the majority of road safety studies, in this report we attributed traffic crashes to the home address 

of the road users following an approach that is more consistent with public health approaches. We 

defined the Home-Based Approach as the expected number of crashes that road users who live in a 

certain geographic area experience during a specified period. Furthermore, we measured the HBA 

crash frequency at the traffic analysis zone (TAZ) level. Using HBA enables us to measure both travel 

demand characteristics and safety at the TAZ corresponding to the residential address of the road users. 

As a result, HBA enables us to explore the relationship between travel demand and road safety of the 

road users (i.e., vulnerable road users, drivers, drivers and passengers, all road users).  

The HBA can be used in evaluation, forecasting tools, and scenario analysis. To compare the safety 

performance of scenarios, we developed an HBA Safety Performance Function (HSPF). Similar to 

traditional SPFs that estimate the expected safety of a road entity, HSPF estimates the expected safety of 

road users in a particular TAZ based on their average trip frequency, trip length and modal splits. Those 

travel demand factors are predicted by travel demand models. To maintain brevity, the main report 

focuses on developing the HSPF and evaluation of two scenarios based on the Nashville Metropolitan 

area travel demand model as individual case studies. Findings indicate that HSPF could be used to 

evaluate and quantify the safety impact of alternative travel demand scenarios that are strongly correlated 

with travel characteristics of the road users at the TAZ level.  

To illustrate how HBA can be integrated into travel demand models as well as other relevant sources of 

data, we present four applications of integrating safety into planning models. Each application illustrates 

different ways HBA can be used to explore factors affecting road safety. In addition to our work focused 

on Nashville in the core report, our applications span different geographies including three analyses in a 

smaller Tennessee city, Knoxville, and one state wide analysis. The geographic resolution for the 

Nashville cases and the three Knoxville applications are TAZ-level analysis. Similarly, the statewide 

analysis also uses census-level data. These applications are finer resolution than most other studies that 

tend to focus on zip-code levels of resolution.  

HBA Application 1: Factors influencing road users’ likelihood of involvement in traffic crashes at 

the zonal level.  

In this application, we developed a model to predict the expected number of traffic crashes in the 

Knoxville Metropolitan area based on the information at the TAZ level as well as the output of the travel 

demand model. Knoxville MPO travel demand patterns are slightly different from Nashville MPO in that 

the region is more dependent on personal vehicles for commuting. Nevertheless, the Home-Based 

Approach was able to capture the relationship between the travel demand model outputs, demographic 

variables, and road users’ safety. The model’s estimate indicates that average zonal (i.e., TAZ) travel 

activity has a significant positive association with the HBA crash rate. This also holds for interstate and 

arterial vehicle miles traveled (VMT), intersection density, the percentage of roads with sidewalks, 

percentage of areas near bus stations, and the number of workers per household. On the other hand, 

median household income, population density, and VMT on low-speed roads have significant negative 

associations with HBA crash rate. 
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HBA Application 2: Exploring the economic impact of traffic crashes at the zonal level 

Similar to the first application, in this study we used the Knoxville MPO travel demand model. To 

incorporate injury severity, we measured the Economic Cost of traffic Crashes (ECC) and the 

Comprehensive Cost of traffic Crashes (CCC) at the zonal level by using the monetary value of the 

person-injury cost. HBA method was able to explain the relationship between transportation network 

characteristics, demographic information, and the economic burden of crashes. Furthermore, we 

measured the Gini coefficient for the economic burden of traffic crashes which indicated the presence of 

inequal distribution of the burden of traffic crashes. 

HBA Application 3: Factors influencing cost of traffic crash at the traffic analysis zone level: 

incorporating spatial effects 

Unlike the previous two applications, we used spatial regression models to incorporate the presence of 

spatial autocorrelation in the analysis. Findings indicate that spatial autocorrelation exists in the study 

area. The presence of spatial autocorrelation and superiority of the spatial autoregressive regression 

compared to the spatial error model implies the economic cost of traffic crashes in one TAZ is affected by 

the traffic safety of the adjacent TAZs. Findings are discussed in line with road safety literature. 

HBA Application 4: A statewide geographically weighted regression to estimate the 

comprehensive cost of traffic crashes at a zonal level 

In this application, we are using United States census data as an input for statewide analysis of factors 

influencing the burden of traffic crashes at the State level. Furthermore, we used a Geographically 

Weighted Poisson Regression (GWPR) model to show spatial variation of the coefficient at the census 

tract level. Poisson and GWPR models were used to analyze the data. The GWPR model was more 

suitable compared to the global model to address spatial heterogeneity. Findings indicate the population 

of people over 60-years-old, the proportion of residents that use non-motorized transportation, household 

income, population density, household size, and metropolitan indicators have a negative association with 

CCCAZ. Alternatively, VMT, vehicle per capita, percent educated over 25-years-old, population under 16-

years-old, and proportion of non-white races and individuals who use a motorcycle as their commute 

mode have a positive association with CCCAZ. 

To conclude, integrating safety explicitly into planning models requires planning-oriented data resolution 

and planning approaches. Most planning approaches rely on generation of travel demand from activity 

generators (homes and destinations). We can translate safety data from the location of the crash to the 

home of the crash participants, effectively developing crash generation models that are oriented toward 

travel demand analysis methods. From a practitioner perspective, integrating safety into planning 

processes explicitly and proactively includes safety as a measure of effectiveness of various 

transportation investment strategies. It also allows for more nuanced equity and environmental justice 

analysis to assure that negative safety outcomes and countermeasures are fairly distributed. The work 

here presents novel analytical approaches to account for spatial heterogeneity in crash rates and 

outcomes. The methods presented here and new and future approaches can improve the predictive 

power of safety models, including new geographically sensitive approaches to estimating safety burden 

within planning processes.  
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Introduction 
Travel demand forecasting and modeling remain important tools in the analysis of transportation plans, 

projects, and policies. Travel demand modeling is essential and useful for modeling transportation 

systems in the future under different circumstances. Performance measures are used by planners to 

evaluate travel demand models; they are used for several purposes: among them are accountability, 

efficiency, effectiveness, communication, clarity, and improvement (Pickrell and Neumann 2000). 

According to Federal Highway Administration, performance measurement can be defined as a process of 

assessing progress toward achieving predetermined goals, including information on the efficiency with 

which resources are transformed into goods and services (outputs), the quality of those outputs (how well 

they are delivered to clients and the extent to which clients are satisfied) and outcomes (the results of a 

program activity compared to its intended purpose), and the effectiveness of government operations in 

terms of their specific contributions to program objectives (Shaw 2003).  

Vehicle-miles of travel, vehicle-hours of travel, link-based volume-to-capacity ratios, travel speeds, 

emission, accessibility to jobs, and accessibility to public transit are among the most frequently used 

performance measures in transportation system analysis (Cambridge Systematics 2012). More advanced 

metrics such as travel time reliability; intersection-based, area-based, or multimodal levels of service; 

hours of delay; or hours of congestion require both the input data and the model functions to calculate the 

measure for both a current base year and any horizon years (Cambridge Systematics 2012). 

Performance measures enable planners to compare and rank alternatives and make an informed 

decision for choosing the best alternative. 

One of the areas that have received less attention is the safety assessment of transportation planning. 

Safety planning encompasses the idea that safety issues can be brought into earlier stages of the 

transportation planning process. Historically, safety has primarily been considered in the design phases of 

transportation projects or afterward when crash analyses are conducted and hot spots are identified (de 

Leur and Sayed 2003). The approach of safety planning, on the other hand, suggests that safety 

considerations can be integrated even into the earliest stages of the transportation planning process. This 

potentially includes which types of transportation projects get selected and built, where they are built, and 

even potentially land use planning decisions (Schwetz, Reiff, and Chatterjee 2004) and other 

transportation policy decisions such as travel demand (Pirdavani et al. 2012b). 

Another goal of safety planning is to forecast a baseline of expected crash rates against which progress 

can be measured (S. Washington 2006). According to S. Washington (2006), safety is often considered 

by transportation officials to be a concept that is best handled during the project design process or left to 

enforcement agencies. Relatively little thought was given to how safety could be considered early in the 

planning process so that resulting plans, operations strategies, policies, and institutional partnerships 

would incorporate safety not as an afterthought, but rather as an integral part of an agency’s capital 

investment, operations, and daily management programs.  

Future crash counts are determined not just by infrastructure, but also by underlying changes in 

population demographics as well as travel demand. Road safety studies tend to specify the presence of 

disparities across road user type, income, race, and ethnicities; for instance, the crash fatality rate is 

approximately double in low- and middle-income countries compared to high-income countries (World 

Health Organization 2015). This trend also holds within-country; several studies in the United States 

reported that vulnerable road users (i.e., pedestrians and bicyclists) and lower-income neighborhoods 

have higher fatality rates compared to motorized road users and wealthier neighborhoods (Clark 2003; 

Marshall and Ferenchak 2017; Romano, Tippetts, and Voas 2006). In rural areas, the fatality rate tends to 

be several times higher than in urban areas (Blatt and Furman 1998; Marshall and Ferenchak 2017). 

Additionally, some ethnic groups such as Hispanics, African-Americans, and Native Americans have both 

higher crash rates (Mayrose et al. 2005; Braver 2003; Campos-Outcalt et al. 2003; McAndrews et al. 
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2013; Mayrose and Priya 2008) and fatality rates (Schiff and Becker 1996; Baker et al. 1998; Harper et al. 

2000). 

The challenges of safety planning include the problem that transportation safety analysts are trying to 

analyze the safety impacts of infrastructure or infrastructure changes that have not been built yet. For this 

reason, predictive models are often used. Crash prediction models can be used to forecast the expected 

impacts of certain defined infrastructure changes at the zonal level for specific type of crashes (e.g., Cai 

et al. 2017; Gomes, Cunto, and da Silva 2017; Hadayeghi et al. 2006; Hezaveh, Arvin, and Cherry 2019; 

Pirdavani et al. 2012a; Wang et al. 2016). The advantage of zonal-level safety prediction models 

compared to the models that predict crashes at the entity level (e.g., road segment, intersection) is that a 

wider variety of planning variables can be accounted for including demographics, travel demand, and land 

use variables (Mohammadi, Shafabakhsh, and Naderan 2018; Naderan and Shahi 2010). While it is not 

impossible to consider land use in a segment level model, land use composition, demographic variables, 

street network variables, and any of a variety of outputs from travel demand models can be used in a 

zonal-level planning analysis.  

Road safety definition in engineering analysis is best specified as "the number of accidents (crashes) by 

kind and severity, expected to occur on the entity during a specified period.”(Hauer 1997, 24) This 

definition attributes road safety to the location of the crashes (i.e., entity). Consequently, this concern has 

led to improvements in the geometric design or operations of transportation facilities, a traditional 

responsibility of transportation agencies. As a result, most strategies target engineering solutions and 

design of the road infrastructure rather than focusing on the road users and their characteristics.  

Furthermore, police crash reports as the main source of road safety analysis only record limited 

information about road users involved in traffic crashes including age, gender, road user type, seating 

position, safety equipment use (e.g., helmet, seat belt), driving license status, and road users’ violations 

(e.g., distraction, speeding, DUI) (MMUCC 2012). Although this information provides a valuable 

contribution to safety science, this information about road users seems trivial compared to the substantial 

role of road users in traffic crashes. By using the traditional definition of road safety that attributes safety 

to the location of traffic crashes, it is challenging to measure and attribute the burden of crashes in areas 

where individuals reside.  

Unlike engineering approaches in road safety analysis, in epidemiology and public health studies, 

residential characteristics of the population play an important role, and usually the issue of interest (i.e., 

the health problem) is typically attributed to the residential address of a population such as neighborhood, 

city, state, or country. This is also the case for travel demand models. In travel demand models such as 

the four-step model or activity-based models, transportation planners measure and study the travel 

behavior of the road users based at the traffic analysis zone corresponding to the home address of the 

road user (Kanafani 1983). Travel demand models and other sources of data such as Census data are 

valuable sources of data, and using them in road safety analysis would provide a complete picture of road 

safety (Cherry et al. 2018).  

Remarkably, most demand for transport is a derived demand (Kanafani 1983) and varies substantially 

based on the origin of the travelers and the regional economy. This variation in travel demand reflects the 

traveler’s sociodemographic and economic factors, and travelers’ multimodal accessibility to their 

destination, among other things (Kanafani 1983; Cervero and Kockelman 1997). This variation in 

transportation demand can be measured by a comparison of the travel characteristics at the zonal level 

such as trip frequency, average trip length, and mode choices. We hypothesize variation in travel demand 

strongly correlates with the safety of the individuals living in a city, that is, residents with lower (motorized) 

travel demand bear a smaller crash and injury burden.   

To tie traffic crashes to the home addresses of the individuals in this study, we took an epidemiological 

approach to a road safety analysis by looking at travel behavior surrounding the home addresses of the 

road users involved in traffic crashes –i.e., a Home-Based Approach (HBA). HBA enables us to evaluate 
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and compare transportation planning alternatives based on their safety performance. This study has 

several objectives:  

1- To introduce an index (HBA) for measuring road safety that attributes traffic crashes to the road 
users instead of road entities.  

2- Develop a safety performance function to explore the correlation between travel demand and the 
safety of road users.  

3- Estimate and compare the safety of long-term planning models by using proposed HSPF.  

Furthermore, to illustrate how HSPF can aid in the evaluation of transport safety analysis, we present four 

applications of the HBA. Each application illustrates different approaches and advantages to evaluate the 

safety performance of travel demand models.  
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Methodology 
Home-Based Approach Definition 
The definition of the road safety that is used in most studies that use crash data (e.g., safety performance 

function, crash severity analysis, crash modification factor development) is best specified as "the number 

of accidents (crashes) by kind and severity, expected to occur on the entity during a specified 

period.”(Hauer 1997, 24) This definition attributes the road safety to the location of the crashes (i.e., 

entity) rather than individuals who had a direct role in traffic crashes (i.e., pedestrians, bicyclists, 

motorcyclists, and drivers).  

To tie traffic crashes to the home addresses of the individuals in this study, we will use the home address 

of the road users who were involved in a traffic crash. A residential address is one of the crucial data 

elements the police officer records at the crash scene (MMUCC 2012). Furthermore, using the home 

address to collect information of the road users to collect data elements regarding sociodemographic and 

travel behavior is a common practice in urban travel demand analysis (Kanafani 1983) but is not often 

used in road safety analysis due to privacy concerns and geocoding challenges.  

To address the shortcoming of the location-based approach definition, in this study we will define the 

Home-Based Approach (HBA). In the HBA, we attribute traffic crashes to the home address of the road 

users. And in this way, we define the Home-Based Approach (HBA) crash frequency as the expected 

number of crashes that road users who live in a certain geographic area experience during a 

specified period. It should be noted that the measurement unit of the HBA crash frequency is the 

number of crashes per year per resident of a geographic unit.  

Considering the availability of the travel demand model as the finest geographical unit for studying 

transportation demand analysis and travel behavior, we used the traffic analysis zone (TAZ) as the 

geographic unit for this analysis. The TAZ is the conventional unit of analysis in travel demand modeling 

and is used to aggregate individual households and premises into manageable geographies for modeling 

purposes (Ortuzar and Willumsen 2002). Furthermore, we measured HBA crash frequency of multiple 

road users including vulnerable road users (i.e., pedestrian and bicyclists), drivers, vehicle occupants 

(i.e., driver and passenger), and all road users (vehicle occupants and vulnerable road users). 

Crash Data and Geocoding Addresses 
Overall, 2,026,666 individuals were involved in 694,276 traffic crashes between 2014-16 in Tennessee. 

The Home address of the road users involved in traffic crashes who reside in the Nashville metropolitan 

region was extracted from Tennessee Integrated Traffic Analysis Network (TITAN) crash database. We 

used the Bing application program interface (Bing 2019) services to geocode the addresses, and only 

those geocoded addresses that had an accuracy level of premises (e.g., property name, building name), 

address-level accuracy, or intersection level accuracy were used for the analysis.  
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Nashville Travel Demand Model 
In order to develop HSPF, in this study we used the travel demand model of the Nashville Metropolitan 

area which is an activity-based model. Nashville metropolitan has a total population of 1.5 million across 

2,816 TAZs. This region is anchored by the city of Nashville but also includes several urbanized areas 

outside the city. The travel demand model is an activity-based model that simulates household and 

person travel choices at a microzone-level on a minute-by-minute basis (RSG 2016).  

The population of a TAZ to some extent represents its residents’ miles traveled in the transportation 

system. As population increases, we expect to see higher miles traveled in the network. However, the 

population variable does not capture the number of trips generated by residents of a geographic area nor 

their trip length (e.g., activity). Some studies focused on modeling the crash frequency of a TAZ based on 

the location of traffic crashes used trip generation models as a vector to reflect the activity of one TAZ 

(Mohammadi, Shafabakhsh, and Naderan 2018; Naderan and Shahi 2010; Abdel-Aty, Siddiqui, and 

Huang 2011; Dong, Huang, and Zheng 2015; Dong et al. 2014). Although trip generation provides 

information regarding the activity of the road users, it fails to capture trip length. A more inclusive variable 

for estimating the economic cost of traffic crashes at a zonal level needs to consider both trip length and 

trip frequency simultaneously. 

To compare travel demand for different areas and incorporate them in the analysis, we developed 

average miles traveled (AMT) for each mode of transportation. The travel demand model provides a trip 

tour for each person in a family. Each family is further assigned to a certain TAZ. To generate a total 

exposure metric, we estimate AMT by mode (𝑚) for residents of TAZ 𝑖:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑖𝑙𝑒𝑠 𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑚𝑖 =  
∑ ∑ 𝑑𝑚𝑖𝑓𝑝𝑝𝑓

𝑃𝑜𝑝𝑖
 

                        Equation 1 

  

where 𝑃𝑜𝑝𝑖 and 𝑓 respectively correspond to the population and number of families in the 𝑖𝑡ℎ TAZ and 𝑝 

represent persons in each family unit. Table 1 presents the descriptive statistics of the miles traveled by 

each mode for the study area. AMT for motorized road users was substantially higher than for transit, 

walk, and bike.  

Table 1 Descriptive statistics of miles traveled in the system at the TAZ level 

Road user type Mean Std. Err. [95% Conf. Interval] 

All road user 27.96 0.96 26.07-29.85 

Drivers only* 33.85 1.18 31.53-36.17 

Motorized vehicle** (i.e., 

passenger(s) + driver)  
35.45 1.23 33.04-37.86 

Walk & Bike 0.56 0.03 0.50-0.62 

Transit 1.04 0.04 0.96-1.11 

* Weighted average of single, two, and three occupant vehicles: Drivers A = 1 * 𝐴𝑀𝑇Single vehicle  + 1 2⁄   𝐴𝑀𝑇2 occupants  + 1 3⁄  𝐴𝑀𝑇3 occupants   

** Average of single, two, and three occupant vehicles: Drivers AMT =  𝐴𝑀𝑇Single vehicle  +  𝐴𝑀𝑇2 occupants  + 𝐴𝑀𝑇3 occupants  
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Modeling Approach 
To evaluate safety at zonal level traditionally, count data models are commonly utilized owing to the 

nature of traffic crashes that are measured as non-negative integers in a specific period of time 

(Anastasopoulos and Mannering 2009). Likewise, the HBA crash frequency is a non-negative integer. 

Hence the models that would be used must follow the nature of count models.  

The Poisson model and negative binomial models are two common model specifications for count data. 

The main difference between these two specifications is the restriction of equality of the mean and 

variance (𝐸[𝑛𝑖] = 𝑉𝑎𝑟[𝑛𝑖]) of the observations. In the case of traffic crashes, this assumption usually is 

not met. To take account for the inequality of mean and variance, the more generalized negative binomial 

model is proposed: 

𝜆𝑖 = 𝑒𝑥𝑝 (𝛽𝑋𝑖 + 𝜀𝑖) Equation 2 

where 𝐸𝑥𝑝(𝜀𝑖) is a gamma-distributed error term with mean 1 and variance 𝛼. The addition of this term 

allows the variance to differ from the mean (𝑉𝑎𝑟[𝑛𝑖] = 𝐸[𝑛𝑖] + 𝛼𝐸[𝑛𝑖]2). The negative binomial probability 

density function has the form:  

𝑃(𝑛𝑖) = (

1
𝛼

(
1
𝛼) + 𝜆𝑖

)

1
𝛼

𝛤 [(
1
𝛼) + 𝑛𝑖]

𝛤 (
1
𝛼) 𝑛𝑖!

(
𝜆𝑖

(
1
𝛼) + 𝜆𝑖

)𝑛𝑖 Equation 3 

where, 𝛤(. ) is a gamma function. In the negative binomial model, if the value of α approaches zero, the 

negative binomial model yield to the Poisson model. Therefore, the negative binomial model is 

appropriate when the value of the dispersion parameter (𝛼) significantly differs from zero (S.P. 

Washington, Karlaftis, and Mannering 2010). Additionally, we measured elasticity effects for each 

variable. Elasticity can be interpreted as the percent effect a 1% change in a variable has on the severity 

outcome probability (Khorashadi et al. 2005).  

Traditionally, in road safety analysis, traffic volume is used as the exposure variable, usually in the form of 

traffic count, Vehicle Miles Traveled (VMT), Daily Vehicle Miles Traveled (DVMT), or VMT by road 

classification (Aguero-Valverde and Jovanis 2006; Hadayeghi, Shalaby, and Persaud 2010; Li et al. 2013; 

Rhee et al. 2016; Pirdavani et al. 2012c, 2012a; Pirdavani et al. 2013; Hosseinpour et al. 2018). Since we 

are estimating the number of crashes of the road users in one TAZ, in this study, we will use the 

population of the TAZ as the exposure variable for the regression analysis.  

Scenario Analysis 
In order to determine if countermeasures are reducing the number of crashes, we can forecast expected 

crash frequency or crash rates at the zonal level, and those forecasts can be used in turn as a benchmark 

against which to measure progress on improving safety (S. Washington 2006).  

In this study, we assessed two scenarios based on travel demand in the year 2033. The base business-

as-usual scenario1 (EC2-2033) does not include major changes and only considers the development of 

the existing transportation infrastructures without substantial changes in the public transit system. 

Alternatively, the second scenario for illustration (Transit-2033) focuses on large investments in a mass 

transit system. The plan reflects the proposed 2018 ballot initiative to expand transit and includes 26 

miles of light rail and 25 miles of bus rapid transit as well as additional funding for local buses and the 

existing Nashville commuter rail line. Figure 1 presents the abstract representation of the proposed 

changes in the transportation network (Let's Move Nashville 2017). This proposed scenario was projected 

 

1 Or no build scenario 
2 Existing condition 
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to increase from 35,600 today to anywhere between 114,500 and 131,000 by 2040 (Let's Move Nashville 

2017).  

 

 

Figure 1 Transit lines in the proposed scenario 
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Results 
Predicting Crash Frequency 
After geocoding the home addresses of the road users, we found that 366,144 (i.e., drivers, passengers, 

pedestrians, and bicyclists) had a home address in the Nashville metropolitan area. After assigning 

individuals to the TAZ corresponding to their home address, we measured HBA crash frequency for 

different road users. Table 2 presents the average HBA crash frequency by road user type at the TAZ 

level. Figure 2 presents the HBA crash frequency distribution over the average miles traveled as well as 

the empirical probability distribution function (PDF) and the empirical cumulative distribution function 

(CDF) of the HBA distinct to different transportation modes.  

Figure 3 and Figure 4 also present the HBA crash frequency at the zonal level in Nashville MPO. The 

spatial distribution of the HBA indicates that the HBA crash frequency is less in the central area of the 

Nashville MPO compared to the decentralized areas. More urbanized areas with higher population 

density are in centralized areas. It should be noted that 55% (1,389) TAZs had zero pedestrian or bicycle-

related crashes. On the other hand, there were no populated TAZs with zero crashes for all other HBA 

crash types.  

Table 3 presents the correlation between AMT (by transportation modes) and HBA crash frequency. All 

the correlations are significant (p-value < 0.05). Considering the correlation between average miles 

traveled and HBA crash frequency, we found that Walk and Bike has a relatively lower correlation 

compared to other modes of transportation.  

 

Table 2 HBA crash frequency by road user type between 2014-16 

HBA Crash  

Frequency 
Mean Std. Err. [95% Conf. Interval] 

All road user 145.07 2.65 139.86-150.27 

Driver 110.21 2.01 106.27-114.14 

Motorized road user 144.27 2.64 139.10-149.45 

Vulnerable road user 0.79 0.02 0.75-0.84 
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Table 3 Correlation between HBA crash frequency and average miles traveled 

  HBA Crash Frequency Average Miles Traveled 

 

 

All  

Users Drivers 

Motor-

ized  

Road 

Users 

Vulner-

able 

All 

users 

Drivers  

only 

Motor-

ized  

Road 

Users Transit 

Walk &  

Bike 

HBA 

Frequency 

All road user 1.00  - - - - - - - 

Driver 1.00 1.00 - - - - - - - 

Motorized 

road user 1.00 1.00 1.00 - - - - - - 

Vulnerable 

road user 0.61 0.61 0.61 1.00 - - - - - 

Average 

Miles 

Traveled 

All users 0.14 0.15 0.14 0.09 1.00 - - - - 

Drivers only 0.14 0.14 0.14 0.08 1.00 1.00 - - - 

Motorized 

Road Users 0.14 0.15 0.14 0.09 1.00 1.00 1.00 - - 

Transit 0.14 0.14 0.14 0.09 0.97 0.97 0.97 1.00 - 

Walk & Bike 0.09 0.09 0.09 0.05 0.78 0.78 0.77 0.82 1.00 

All correlations are significant 
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Figure 2 VMT and HBA crash frequency by different road users’ type 
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Figure 3 HBA Crash frequency of all road users (left) and motorized road users (right) 
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Figure 4 HBA Crash frequency of the vulnerable road users (left) and driver (right) 
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Table 4 presents the results of the estimated HSPF models. We used TAZ’s population as the exposure 

variable in Negative Binomial models. The significant value of the overdispersion parameters indicates that 

the NB model is statistically better than the Poisson model.  

All the AMT variables also have a significant correlation with the HBA crash frequency. Overall, the finding 

indicates that miles traveled by road users in the transportation network by different modes of transportation 

have significant associations with their corresponding HBA crash frequency. The positive sign indicates that 

as average miles traveled increases, road users’ crash frequency increases. A comparison of the elasticity of 

the coefficients indicates that AMT by drivers has the highest elasticity compared to all other modes followed 

closely by motorized road users. Alternatively, AMT of Walk and Bike has the lowest elasticity.  

Table 4 Estimated HBA safety performance functions 

  Road User Types 

 
Variables 

All  

Users 
Drivers 

Motorized  

Road Users 
Vulnerable 

Elasticities at 

Mean 

Average 

Miles 

Traveled 

by: 

All users 

.00304*** 

(.0001) 
- - - .381 

Drivers only  
- 

.00413*** 
(.0001) 

- - .377 

Motorized 

Road Users 
- - 

.00319*** 
(.0001) 

- .381 

Transit 
- - - 

.0318*** 
(.0045) 

.122 

Walk & Bike 
- - - 

.0211** 
(.0074) 

.050 

 
Population 

(as exposure) 
1.000 1.000 1.000 1.000 - 

 
Constant 

-1.11*** 

(.0261) 

-1.38*** 

(.0260) 

-1.1*** 

(.0264) 

-6.48*** 

(.0371) 
- 

 

Dispersion 

Parameter 
.154*** .147*** .171*** .325*** - 

Model Statistics 

𝜒2 3054 3040 2996 387 - 

Number of 

Observations 
2524 2524 2524 2524 - 

Akaike 

information 

criterion 

30947 29564 30977 6528 - 

Legend: * p<.05; ** p<.01; *** p<.001 
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Scenario Evaluation 
The population of the study area is modeled to increase from 1.52 million in 2018 to 2.33 million in 2033. As a 

result, we expect to see a higher number of crashes in both scenarios compared to the base. As presented in 

Table 5, daily miles traveled by all road users increased by 52% in the EC-2033 scenario. This increase in the 

Transit-2033 scenario was 48%. Alternatively, in the Transit-2033 scenario combined miles traveled by walk, 

bike, and transit modes increased by 76% which is 28% higher than the equivalent value in the EC-2033 

scenario. 

A comparison of the HBA crash frequency in both scenarios indicates the Transit-2033 scenario has fewer 

traffic crashes compared to the EC-2033 scenario. Overall, in the Transit-2033 scenario, crashes decreased 

by 0.7% compared to the EC-2033 scenario. HBA crash rate is also 10% lower in the Transit scenario 

compared to the EC-2033 scenario.  

 

Table 5 Comparison of the EC-2033 and Transit scenario 

 Daily Million Miles Traveled HBA Crash Frequency 

Annual Crash Rate  

(HBA Crash Frequency per  

Million Miles Traveled) 

 
Base EC-2033 

Transit-

2033 Base 

EC-

2033 

Transit-

2033 Base EC-2033 

Transit-

2033 

All Road 

users 
36.80 56.12 (53) 54.71 (49) * 122,048 173,208 171,970 9.09 8.46 8.61 

Drivers 

only  
26.30 41.29 (57) 40.31 (53) * 92,720 132,215 131,293 9.66 8.77 8.92 

Motorized 

Road 

Users 

35.30 53.65 (52) 52.06 (47) * 121,382 174,993 173,680 9.42 8.94 9.14 

Transit, 

Walk &  

Bike 

(combined) 

1.53 2.47 (61) * 2.65 (73) * 666** 761 759 1.19 0.84 0.78 

Transit 1.05 1.68 (60) * 1.86 (76) * 666** 761 759 1.74 1.24 1.12 

Walk & 

Bike 
0.48 0.78 (64) * 0.79 (65) * 666** 761 759 3.80 2.67 2.63 

 HBA crash frequency / (365* Daily Million miles traveled) 
*  % change compared to the based scenario 
** Vulnerable road user crashes 

 

Discussion 
The HSPF has one major difference with the traditional SPFs or aggregate crash prediction models. HBA 

focuses on number of crashes that road users have, whereas the traditional SPFs and aggregate crash 

prediction models focus on safety of a road entity (e.g., number of crashes in one intersection or TAZ) (e.g., 

Mohammadi, Shafabakhsh, and Naderan 2018; Naderan and Shahi 2010; Highway Safety Manual 2010; 

Pirdavani et al. 2012a, 2012c). HSPF uses the average miles traveled by road users in the transportation 

system (regardless of the origin and destination of their trips) to predict the safety of road users under 

different scenarios. Therefore, HSPF can reflect the travel characteristics of road users by capturing travelers' 

average trip length, frequency, and modal share.  
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It is noteworthy that both HBA crash frequency and travel demand characteristics are both measured at the 

same location (i.e., TAZ corresponding to road users' home address). We hypothesized travel demand 

strongly correlated with HBA crash frequency. Results of the regression analysis failed to reject this study 

hypothesis. Negative binomial models’ output indicated that as average miles traveled increases, road users’ 

crash frequency increases. However, the rate of increase varies for different modes of transportation.  

Fewer number of crashes and lower HBA crash rates for vulnerable road users in Transit-2033 scenario 

compared to the EC-2033 scenario support the safety in numbers phenomenon, in which a motorist is less 

likely to collide with a person walking and bicycling if more people walk or bicycle (Jacobsen 2015). Bicyclists 

and pedestrians have higher injury and fatality rates compared to other road users; nevertheless, increases in 

the number of bicyclists and pedestrians (through modal shift) would decrease the number of motorized road 

users that pose a risk to others (Schepers and Heinen 2013). An increase in the number of bicyclists and 

pedestrians in the transportation system will reduce VMT leading to fewer traffic crashes.  

HSPF can be used as a complementary technique to evaluate the transportation system. This method can be 

used by safety planners for evaluating the safety impact of the transportation network design alternatives, 

changes in the transportation system management, as well as zoning and land use patterns within cities on 

road users’ exposure to the traffic system and, eventually, their safety. These findings are based on the 

Nashville metropolitan area where travel is still highly car-oriented and more dependent on personal vehicles. 

Nevertheless, the methodology developed in this study could be applied to other geographical contexts, while 

those areas have travel demand models that simulate individuals’ trips in transportation networks.  

Future Direction  
One of the problems with the crash frequency is that it does not account for the injury severity. This issue 

could raise concern, particularly when we are considering vulnerable road user crashes. These groups have a 

higher risk of injury compared to motorized road users. One direction for future studies is to consider the 

monetized value of the person-injury as a dependent variable in the analysis. This issue was addressed in the 

four HBA applications in the appendix.  

Furthermore, the HBA method only considers traffic crashes of residents of the study area; nevertheless, road 

safety literature indicates that travelers (i.e., tourists) also have a noteworthy share in traffic crashes. HBA 

methodology could be developed in future studies to incorporate the role of travelers in the analysis.  
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