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Abstract 
Although the use of the home address of the traffic victims to obtain information regarding their 

sociodemographic in road safety is not a new effort, less is known about the relationship between travel 

behavior and the likelihood of involvement in traffic crashes at the zonal level. By using the home address 

of the road users who were involved in a traffic crash, we measured the number of traffic crashes which 

residents of a traffic analysis zone had (i.e., a Home-Based Approach –HBA) in Knoxville metropolitan 

region between 2014-16. Next, by dividing HBA crash frequency to the traffic analysis zone population, 

we measured the HBA crash rate at the zonal level (HBA-CR). Furthermore, we obtained socioeconomics 

and travel behavior data elements surrounding home-address of the individuals from Knoxville regional 

travel demand model. We also measured average zonal activity based on the travel demand model 

outputs by using average distance traveled from one zone to others on a daily basis –i.e., individuals’ 

exposure. Moran’s I indicates that the HBA-CR is not randomly distributed in space, and it exhibits spatial 

autocorrelation. Analysis indicates that HBA-CR varies substantially over income, average zonal activity, 

and traffic exposure. Statistical tests suggest that the spatial lag model (SLM) is more suitable to predict 

HBA-CR compared to spatial error model. Model’s estimate indicates that average zonal activity has a 

significant positive association with HBA-CR. This also holds for interstate, and arterial vehicle miles 

traveled (VMT), intersection density, the percentage of roads with sidewalks, percentage of areas near 

bus stations and number of workers per household. On the other hand, median household income, 

population density, and VMT on low-speed roads have significant negative associations with HBA-CR. 

Findings are discussed in line with road safety countermeasures.  

Keywords: Macroscopic Crash Prediction Models; Home-Based Approach; Spatial Lag Model; Residence 

crash rate  
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Introduction 
Each year approximately 34 thousand people die, and more than two million people are injured in traffic 

crashes on the United States roadways. The economic and social cost of car and truck crashes in the 

United States in 2010 was 871 billion dollars (NHTSA 2014). Road safety studies tend to specify the 

presence of disparities across road user type, income, race, and ethnicities; for instance crash fatality rate 

is approximately double in low and middle-income countries compared to high-income countries (21.5, 

19.5, and 10.3 per 100,000 population respectively) (World Health Organization 2015). This trend also 

holds within-country; for example, several studies in the United States reported that vulnerable road users 

(i.e., pedestrians and bicyclists) and lower income neighborhoods have higher fatality rates compared to 

motorized road users and wealthier neighborhoods respectively (Marshall and Ferenchak 2017). This 

also holds for the rural areas where the fatality rate is several times higher than the majority of urban 

areas (Marshall and Ferenchak 2017). This variation in the burden of traffic crashes echoes the spatial 

distribution of the burden of traffic crashes and could be used to identify vulnerable neighborhoods where 

their residents are more prone to traffic crashes burden. 

Bearing in mind that the burden of road safety injuries and fatalities does not impact the population 

equally, we may expect the likelihood of involvement in traffic crashes also impacts different populations 

unevenly. Less is known about the factors influencing the likelihood of involvement in traffic crashes 

based on the residential address of the road users particularly the association between the quality of the 

road infrastructure and travel behavior at a fine geographical level. In this study, we use the home 

address of the road users extracted from police crash database to measure the likelihood of involvement 

in traffic crashes at the zonal level (here defined as Home-Based Approach ‒HBA).  

Several studies used the home address of the road users involved in traffic crashes to explore factors 

affecting road safety. For example, Lee, Abdel-Aty, and Choi (2014) investigated the characteristics of the 

at-fault drivers in traffic crashes in Florida by using the zip code of the drivers. Lee, Abdel-Aty, and Choi 

(2014) reported that population, age, commute mode, and income were associated with the number of at-

fault drivers. Moreover, Lee et al. (2015) also examined the relationship between sociodemographic and 

crash-involved pedestrians per residence zip code in Florida. They concluded that pedestrian crashes do 

not necessarily occur at their zip code residents (Lee et al. 2015). Likewise, the proportion of children, 

population working at home, a household without a vehicle, and household income had a significant 

association with crash-involved pedestrians per residence zip code in Florida (Lee et al. 2015). Blatt and 

Furman (1998) used information of the fatally injured drivers in the US from the Fatality Analysis 

Reporting System (FARS) database. Blatt and Furman (1998) reported that residents of rural and small-

town are more prone to fatal crashes. Males (2009) also used FARS database to examine the 

relationship between fatal crashes rate and demographic variables and concluded that income per capita, 

population density, motor vehicle trips per capita, college graduates per capita, unemployment rate, and 

teen population have a significant association with fatality rates. Furthermore, in a study in the Southeast 

USA, Stamatiadis and Puccini (2000) extracted the driver address and census data to obtain the 

socioeconomic and demographic variables. Their findings indicate that socioeconomic characteristics 

have an impact on single-vehicle crashes but have no statistically significant impact on multi-vehicle 

crash rates. Romano, Tippetts, and Voas (2006) also used FARS database to explore the association 

between the role of race/ethnicity, language skills, income, and education level on alcohol-related fatal 

motor vehicle crashes by using zip code level accuracy. Romano, Tippetts, and Voas (2006) observed a 

difference in alcohol-related fatality rates across Hispanic subgroups. Furthermore, Romano, Tippetts, 

and Voas (2006) concluded high-income and education levels have a protective influence on alcohol-

related fatal motor vehicle crashes. Clark (2003) also used the National Automotive Sampling System 

(NASS), General Estimates System (GES) data to explore the relationship between population density 

and mortality rate. Findings indicated that mortality was higher in locations with populations less than 

25,000 and was inversely proportional to the driver’s county population density Girasek and Taylor (2010)  

used zip code–level income and educational data to measure the safety relationship between 
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socioeconomic status and motor vehicle safety features in Maryland, VA. Girasek and Taylor (2010) 

concluded that safer motor vehicles appear to be distributed along socioeconomic lines with lower income 

groups experiencing more risk. In a recent study, Hezaveh and Cherry (2019b) used seat belt use 

extracted from police crash reports in Tennessee and census tract data and showed that seat belt use 

varied at a fine geographic level. In addition, Hezaveh and Cherry (2019b) explored sociodemographic 

factors influencing seat belt use rates variation. 

Although the use of the home address of the traffic victims to obtain information regarding their 

sociodemographic in road safety is not a new effort, one needs to consider that the majority of studies 

that relied on home addresses of traffic victims used fatally injured road users. These studies used course 

geographic units such as zip code, or only focused on a specific group of road users. Although the 

relationship between sociodemographic factors and road safety is well explored, less is known about the 

relationship between travel behavior and the likelihood of involvement in traffic crashes at the zonal level.  

To explore the spatial variation of the likelihood of involvement in traffic crashes and its relationship 

with travel behavior, we will use macroscopic crash prediction models (MCPM). MCPM is one set of 

methods that explores the relationship between road safety at macroscopic level with sociodemographic 

and transportation infrastructure. By using information surrounding the locations of the traffic crashes at 

the zonal level, researchers identified several factors that associate with crash frequency at the zonal 

level such as sociodemographic factors, network characteristics, and travel behavior (e.g., Gomes, Cunto, 

and da Silva 2017; Hadayeghi, Shalaby, and Persaud 2003; Hadayeghi, Shalaby, and Persaud 2010b; 

Lee et al. 2015; Naderan and Shahi 2010; Pirdavani et al. 2012b; Quddus 2008).  

Traditionally, in road safety analysis as well as MCPM, traffic volume was used as the exposure variable, 

usually in the form of traffic count, VMT (Vehicle Miles Traveled), DVMT (Daily Vehicle Miles Traveled), or 

VMT by road classification (Aguero-Valverde and Jovanis 2006; Hadayeghi, Shalaby, and Persaud 

2010b; Li et al. 2013; Rhee et al. 2016; Pirdavani et al. 2012b, 2012a; Pirdavani, Brijs, Bellemans, and 

Wets 2013; Hosseinpour et al. 2018). In case of absence of traffic information, other proxies such as road 

lengths with different speed limit (Abdel-Aty et al. 2011; Siddiqui, Abdel-Aty, and Choi 2012), road length 

with different functional classification (Hadayeghi, Shalaby, and Persaud 2010b; Quddus 2008), or 

population has been used (Gomes, Cunto, and da Silva 2017). In regard to measuring the likelihood of 

involvement in traffic crashes at the zonal level based on the home address of the road users, using VMT 

may not reflect the exposure properly. One way to deal with this issue is to use population as a proxy for 

the exposure variable (Lee et al. 2015; Lee, Abdel-Aty, and Choi 2014). However, the population does not 

reflect the number of trips generated by residents of a geographic area nor their trip length. Other studies 

also used trip generation models as a vector to measure exposure (Dong et al. 2014; Dong, Huang, and 

Zheng 2015; Abdel-Aty et al. 2011; Naderan and Shahi 2010; Mohammadi, Shafabakhsh, and Naderan 

2018). Although this vector provides information regarding exposure of the road users, it fails to capture 

trip length. A more inclusive exposure variable for estimating the likelihood of involvement in traffic 

crashes at zonal level needs to consider both trip length and trip frequency simultaneously.  

This study aims to explore the association between travel behavior, sociodemographic variables, and the 

likelihood of involvement in traffic crashes at the zonal level. Instead of relying on the zip code of the road 

users, we used home-address of the road users extracted from police crash database to measure road 

safety at the zonal level. High resolution of the home address enables us to explore the association 

between travel behavior and safety at the zonal level by linking the data to a travel demand model. 

Furthermore, we also consider the trip length and frequency simultaneously to measure road users’ 

exposures in the transportation networks based on travel demand model outputs.  

The next section discusses the methods used in this study. In the methodology section, we discuss the 

HBA, geocoding process, measuring exposure, and spatial models for analyzing the data. In the last 

section, we present and discuss the findings of the analysis.  
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Methodology 
Home-Based Approach Definition 
Home-addresses of the road users who were involved in a traffic crash is one of the data elements of 

police officer records at the crash scene (MMUCC 2012). Using home-address to collect information of 

the road users to collect data element regarding sociodemographic and travel behavior is a common 

practice in urban travel demand analysis (Kanafani 1983). We use the collected home-address of 

individuals as a basis for further analysis. To tie traffic crashes to the home addresses of the individuals in 

this study, we define the Home-Based Approach (HBA) crash frequency as the expected number of 

crashes that road users who live in a certain geographic area experience during a specified period. This 

definition attributes traffic crashes to individuals and their residential addresses rather than the location of 

traffic crashes.  

Data and Geocoding Process  
This study focuses on the Knoxville metropolitan region with a total population of over one million (Figure 

1) and includes ten counties namely Knox, Anderson, Roane, Union, Grainger, Hamblen, Jefferson, 

Sevier, Blount, and Loudon. This region is anchored by the city of Knoxville, but also includes several 

urbanized areas outside the city. The crash data in this study was provided by the Tennessee Integrated 

Traffic Analysis Network (TITAN). Each crash record includes information about road user type (i.e., 

driver, motorcyclist, passenger, pedestrian, bicyclist), coordinates of the crashes, and addresses of the 

individual who were involved in traffic crashes. Records of 60,104 crashes and information on 148,666 

individuals who were involved in traffic crashes between 2015 and 2016 in the Knoxville region were 

retrieved from TITAN. After obtaining the address of road users, we used the Bing application program 

interface services to geocode the addresses. The quality of the geocoding was checked by controlling for 

the locality of the addresses. Only those records that had an accuracy level of premises (e.g., property 

name, building name), address level accuracy, or intersection level accuracy was used for the analysis. 

We were able to successfully match 141,514 (95%) of the individuals with a home-location and 

accordingly to a TAZ corresponding to their home address.  

By dividing HBA crash frequency to TAZ’s population (1,000 population), we measured HBA-Crash Rate 

(HBA-CR). Figure 2 presents the histogram of HBA-CR at the TAZ level. Figure 3 also presents the HBA-

CR at the TAZ level. Distribution of the HBA-CR indicates that the burden of traffic crashes are more 

tangible in the vicinities of the interstates, and multilane highways where TAZs’ residents are more prone 

to high-speed traffic and higher road classification. 
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Figure 1 Knoxville Regional Travel Demand 

 

Figure 2 Histogram of HBA-CR at the TAZ level 



 

11 | P a g e  

 

Figure 3 HBA-CR distribution in KRTM 

Measuring exposure and travel activity 
In this study, one goal was to investigate the relationship between travel behavior, quality of 

transportation infrastructure, and HBA-CR. To this end, we used the 2014 Knoxville Regional Travel 

Demand Model. The Knoxville Regional Travel Model (KRTM) has a hybrid design using elements of 

activity-based model architecture. The model creates a disaggregate synthetic population of households 

in the region based on the demographic information associated with the traffic analysis zones (TAZs). For 

more information about Knoxville Regional Travel Demand Model, please see KRTM (2012).  

The study area includes 1,186 TAZs and includes sociodemographic, economic, and travel information of 

the residents. Table 1 presents the descriptive statistics of the sociodemographic variables obtained from 

TAZs. It is worthwhile to mention that 63 zones had no population (e.g., Smoky Mountain National Park, 

Oak Ridge National Lab), and 135 zones had a population of fewer than 100 individuals. To exclude 

outliers, we excluded these TAZs from the analysis. Table 1 presents the descriptive statistics of the data 

elements obtained from the KRTM model.  
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Table 1 TAZ descriptive statistics 

Variable Mean 
Standard 
Deviations Min Max 

Household Income ($) 46655 21075 2349 168227 
Workers Per Household 1.21 0.24 0.00 2.10 
Students Per Household 0.39 0.18 0.00 1.11 
Intersection Density (per square miles) 153 198 3 1657 
Percent Road with Sidewalk 0.21 0.32 0.00 1.00 
Percent Near Bus Station 0.18 0.36 0.00 1.00 
Population Density (Per Square Mile) 1377 2736 3 44072 
VMT on Interstate from TAZ (miles) 9625 32673 0 287762 
VMT on Arterial from TAZ (miles) 11398 17657 0 163821 
VMT on Others from TAZ (miles) 7146 8294 0 76596 

     

To evaluate the exposure at the zonal level, we use average person miles traveled at zonal level (PMT). 

𝑃𝑀𝑇𝑖 combines trip rate and trip length, and is an index for measuring the average zonal activity of the 

trips originated from 𝑇𝐴𝑍𝑖. To measure 𝑃𝑀𝑇𝑖 we will use trip production, distribution, and assignment 

outputs of the travel demand model. 𝑃𝑀𝑇𝑖 is calculated by equation 1: 

𝑃𝑀𝑇𝑖 = ∑
𝑃𝑖𝑗𝐿𝑖𝑗 

𝑃𝑜𝑝𝑖

𝑛

𝑗=1

 

 

Equation  1  

where 𝑛 is the index of TAZ, 𝑃𝑖𝑗 is the number of trip produced from TAZ 𝑖 to TAZ 𝑗 in one day, 𝐿𝑖𝑗 is the 

shortest network path between TAZ 𝑖 to TAZ 𝑗,  and 𝑃𝑜𝑝𝑖 presents the population of the zone 𝑖. KRTM 

was used as a source to extract the number of trips for each pair. Shortest path between each pair was 

also extracted form traffic assignment at the peak-hour. It is also worthy to mention that PMT reflects all 

trip purposes and modes in the study area. Figure 4 presents the average zonal activity distribution in 

Knoxville Regional Travel Demand Model at TAZ level. TAZs in the urban and suburban population 

centers tend to have lower PMT per capita (blue colors) than outlying rural areas. Visual screening of 

Figure 4 indicates that the rural areas have higher PMT compared to the urban areas. HBA-CR tended to 

have more distributed impacts, with higher crash rate along major roads in the study area (e.g., 

interstate). 
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Figure 4 Daily average zonal activity (person miles traveled)  

Modeling Approach 
One concern in MCPM modeling is the spatial autocorrelation. Spatial autocorrelation exists when a 

variable displays interdependence over space (Legendre 1993). Presence of spatial autocorrelation in 

MCPM was reported in several studies (Rhee et al. 2016; Lee et al. 2015; Quddus 2008). If spatial 

autocorrelation exists, then the dependent variable is not produced solely by the internal structural factors 

represented in the non-spatial model. Therefore, disregarding spatial autocorrelation may lead to drawing 

incorrect inferences.  

Testing spatial dependency  
Visual inspection of Figure 3 indicates that neighborhoods with better safety records (i.e., blue colors) are 

surrounded by other TAZs with blue colors. This is also the case for the TAZs with red colors. This may 

be an indicator of the presence of significant spatial autocorrelation.  

To diagnose spatial autocorrelation, Global Moran’s I (Moran 1950) was used to test whether the model 

residuals are spatially correlated. Moran’s I values range from -1 to +1. Moran’s I can be written as:  

𝐼 =  
∑ ∑ 𝑤𝑖𝑗(𝑗𝑖 𝑦𝑖 − 𝜇)(𝑦𝑗 − 𝜇)

∑ (𝑦𝑖 − 𝜇)2
𝑖

 
Equation  2  

where 𝑤𝑖𝑗 is an element of a row-standardized spatial weights matrix, 𝑦𝑖 is the HBA-CR, and 𝜇 is the 

average HBA-CR in the sample. The statistical significance of the Moran’s I is based on the z-score. For 

more details about the calculation of the Moran’s I’s z-score please see Andrew and Ord (1981). The 

extreme values of Moran’s I indicate a significant spatial autocorrelation where value close to 0 indicates 

a random pattern between residuals. A significant and positive Moran's I indicates clustering in space of 

similar HBA-CR.  
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By hypothesizing the presence of significant spatial autocorrelation, we will use model specifications that 

consider the spatial dependency in their structure. Spatial error model (SEM) and spatial lag model (SLM) 

are two common models that are used by researchers to consider spatial autocorrelation in the road 

safety analysis (Lee et al. 2015; Rhee et al. 2016; Quddus 2008). The distinction between the two models 

in the method is they incorporate spatial dependency (Doreian 1980, 1982). The SLM model considers 

the direct effect of one element’s response on another’s. On the other hand, in the SEM model, the 

source of the interdependence of the error term is not known. 

Spatial error model 
SEM model is similar to the ordinary least squares (OLS) model. However, in the SEM, the models’ 

constant variable is treated as a spatially structured random effect vector. The core assumption in the 

SEM is that the observational units in close proximity should exhibit effect levels that are similar to those 

from neighboring units (LeSage and Pace 2009). Compared to the OLS, the SEM has an additional term 

for the spatial dependency of errors in neighboring units. The SEM model can be written as:  

𝑦 = 𝑋β + ε Equation  3 
𝜀 = 𝜆𝑊𝜀 + 𝑢 = (𝐼 − 𝜆𝑊)−1𝑢 Equation  4 
𝑦 = 𝜆𝑊𝑦 + 𝑋β + λWXβ + u Equation  5  

  

where 𝑦 is a vector of HBA-CR, 𝑋 is a vector of independent variables presented in Table 1, 𝛽 is the 

corresponding vector of estimated coefficients (𝑋). In this model, ε is the error term, which consists of two 

parts: 𝑊𝜀 and 𝑢. 𝑊𝜀 presents the spatially lagged error term corresponding to a weigh matrix 𝑊 and 𝑢 

refers to the spatial uncorrelated error term that satisfies the normal regression assumption (𝑢 ∼

N(0, 𝜎2𝐼)). Last, 𝜆 presents the spatial error term parameters. If the value of the spatial error parameters 

equals zero, the SEM is similar to the standard linear regression model.  

Spatial lag model 
The spatial lag model, in contrast, incorporates the spatial influence of unmeasured independent 

variables, but also stipulates an additional effect of neighbors' HBA-CR, via the lagged dependent 

variable. The SLM model can be represented as: 

𝑦 = 𝜌𝑊𝑦 +  𝑋β + ε Equation  6  

where 𝜌 presents the spatial autoregressive parameter, 𝑊𝑦 is a spatially lagged variable corresponding to 

𝑊 matrix, 𝑋 is a vector of independent variables, 𝛽 is the vector of estimated coefficients. Last, 𝜀 is 

assumed to be a vector of independent and identically distributed (𝐼𝐼𝐷) error terms. Due to the 

endogeneity in the 𝑊𝜀 (spatial lag) term, ordinary least-squares (OLS) estimators are biased and 

inconsistent for the spatial-lag model, and instead, maximum-likelihood estimation (Ord 1975) is used to 

obtain consistent estimators. (Kim, Phipps, and Anselin 2003). In order to estimate the SEM and SLM 

models, we used GeoDa Software (Anselin 2003).  

Weight matrix  
Choosing a proper weight matrix is crucial for the analysis since it incorporates the prior structure of 

dependence between spatial units (Baller et al. 2001). Rook and Queen contiguity matrix was used in this 

analysis to establish the weight matrix. The queen weights matrix define neighbors as TAZs that share a 

boundary or corner, whereas, rook only considers those TAZ that shares a boundary (Anselin 2003). The 

selection of optimal weighting matrix could be based on the corrected Akaike information criterion –AICc 

(Hurvich and Tsai 1989); the weight matrix with the lowest AICc is preferred (A. Fotheringham and 

Brunsdon ; Nakaya 2014; Nakaya et al. 2005; Hadayeghi, Shalaby, and Persaud 2010b). For more 

information about the weighting matrix, please see Anselin (2003).  
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Model comparison and assessment  
We use the Lagrange Multiplier (LM) principle to choose the proper model specification. These tests are 

based on the regression residuals obtained from the OLS model. Each of SLM and SEM models has their 

specific LM statistics, which offers the opportunity to exploit the values of these statistics to suggest the 

likely alternative. The LM statistic against SEM (𝐿𝑀𝑆𝐸𝑀) and SAR (𝐿𝑀𝑆𝐿𝑀) models take the following 

forms: 

𝐿𝑀𝑆𝐸𝑀 =
(

𝑒′𝑊𝑒

𝑠2 )
2

𝑇
 

Equation  7  

𝐿𝑀𝑆𝐿𝑀 =
(

𝑒′𝑊𝑒

𝑠2 )
2

(𝑊𝑋𝑏)′𝑀(𝑊𝑋𝑏)
𝑠2 + 𝑇

 

Equation  8  

  

where 𝑒 is a vector of OLS residuals, 𝑠2 its estimated standard error, 𝑇 = 𝑡𝑟[(𝑊 + 𝑊 ′)𝑊], 𝑡𝑟 as the matrix 

trace operator, and 𝑀 = 𝐼 − 𝑋(𝑋′𝑋)−1𝑋′. Both 𝐿𝑀𝑆𝐸𝑀 and 𝐿𝑀𝑆𝐴𝑅 are asymptotically distributed as 𝜒2(1) 

under the null. Several researchers illustrate the relative power of these tests by using extensive 

simulation studies (Anselin and Florax 1995; Anselin and Rey 1991; Anselin et al. 1996).  

It is possible that in some cases both 𝐿𝑀𝑆𝐸𝑀  and 𝐿𝑀𝑆𝐿𝑀  statistics turn out to be highly significant which 

makes it challenging to choose the proper alternative. To deal with this issue, Anselin et al. (1996) 

developed a robust form of the LM statistics in the sense that each test is robust to the presence of local 

deviations from the null hypothesis in the form of the other alternative. In other words, the Lagrange 

Multiplier (LM) is robust to the presence of spatial lag, and vice versa. The robust tests perform well in a 

wide range of simulations and form the basis of a practical specification search, as illustrated in (Anselin 

and Florax 1995; Anselin et al. 1996). In this study, we used GeoDa software to perform the LM tests 

(Anselin 2003). In addition to LM, to further evaluate the overall model fit and predictive performance, we 

also used the Akaike Information Criterion (𝐴𝐼𝐶𝑐) as a measure of the relative goodness.  
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Results 
After assigning the individuals’ home addresses to corresponding TAZs, we calculated the crash 

frequency at the TAZ level. The average of HBA crash frequency at the TAZ level for the two years was 

95 (SD = 107). Average HBA-CR for the study period was 76 per 1,000 populations (SD = 141). Figure 5 

and Figure 6 present the visual distribution of the HBA-CR over the dependent variables. Visualizing 

HBA-CR over different functional classes of VMT indicates that as VMT increases, the HBA-CR also 

increases. For example, the HBA-CR for TAZs with high VMT is 2-3 times more than areas with no 

interstate roads. This is also the case for the arterial roads and other road classification. Notably, the 

HBA-CR distribution also varied substantially over average zonal activity. For example, in TAZs with very 

low average zonal activity (<10 PMT), the average HBA-CR is 17, whereas for TAZs with very high 

average zonal activity (PMT > 50) the corresponding value is greater than 100. HBA-CR also has 

substantial variation over income categories. For instance, the groups with income below $25K the HBA-

CR is 2.4 times more than the income group between $50-75K and four times more than the group with a 

median household income over $100K.  

In a nutshell, HBA-CR has a linear relationship with the dependent variables except for the population 

density as population density increases (smaller than 800 people per square miles) the HBA-CR 

increases, and then again HBA-CR decreases after the 800 people per square miles point. Furthermore, 

both workers per household and student per household have a negative relationship with HBA-CR. As 

worker per household and student per household increases, the HBA-CR decreases.  
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Figure 5 Relationship between the HBA-CR and dependent variables 

 

Figure 6 Relationship between the HBA-CR and dependent variables  
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Results of the global Moran’s I indicate that a significant spatial autocorrelation exists (Moran’s I = 0.10 p 

< 0.001). The significant positive value of the Moran’s I demonstrates the presence of the spatial pattern, 

which is an indicator of the clustering in the space of HBA-CR. In the next step, we estimated spatial 

models with consideration of different weight matrices. Considering the non-zero values of 𝜌 and 𝜆, we 

conclude that both SLM and SAE models are significantly different from linear regression models. By 

controlling for AICc, we learned that the queen contiguity matrix for both SLM and SEM has significantly 

better performance (significantly lower AICc) compared to the other alternatives.  

A LM test was conducted to select the suitable spatial model. LM tests (Table 2) revealed that both 𝐿𝑀𝑆𝐸𝑀 

and 𝐿𝑀𝑆𝐿𝑀  are  significant. Therefore, in the next step we used robust LM statistics. Only Robust-

𝐿𝑀𝑆𝐿𝑀  has significant values, which indicates that the SLM model is more suitable. Comparison of the 

AICc values of estimated models in the Table 3 also indicates that the SLM model has a better 

performance compared to the OLS and SEM. 

Table 2 Results of Lagrange multiplier statistics 

TEST VALUE PROB 
Moran's I (error)  5.304 0.000 
𝐿𝑀𝑆𝐿𝑀 : Lagrange Multiplier (lag) 39.998 0.000 
𝑅𝑜𝑏𝑢𝑠𝑡 𝐿𝑀𝑆𝐿𝑀 : Robust LM (lag) 15.321 0.000 
𝐿𝑀𝑆𝐸𝑀 : Lagrange Multiplier (error) 25.067 0.000 
𝑅𝑜𝑏𝑢𝑠𝑡 𝐿𝑀𝑆𝐸𝑀 : Robust LM (error) 0.390 0.532 

   

Estimated Parameters 
In this study, we used the average zonal activity as the exposure variable for each TAZ. Therefore, we 

expected a positive sign for the estimated coefficients. Average zonal activity in all models has a 

significant positive association with HBA-CR, meaning that as average miles traveled of trips originated 

from each TAZ increases, the HBA-CR increases. Average Zonal activity implies that those TAZs with 

longer travel distances on daily bases have a higher crash rate.  

The median household income variable also has a negative correlation with HBA-CR which is consistent 

with previous studies (Cai, Abdel-Aty, and Lee 2017; Cai et al. 2017; Pirdavani et al. 2012b; Pirdavani, 

Brijs, Bellemans, and Wets 2013; Gomes, Cunto, and da Silva 2017; Cheng et al. 2018; Lee, Abdel-Aty, 

and Choi 2014). Individuals with higher household incomes tend to have lower crash rates. This negative 

sign also is in agreement with road safety literature (World Health Organization 2015; Marshall and 

Ferenchak 2017; Girasek and Taylor 2010).  

Number of workers per household and students per household reflect the demographics of a TAZ. The 

significant positive association of the worker per household variable indicates that as proportion of 

workers per household increases HBA-CR also increases. This finding agrees with Naderan and Shahi 

(2010) study where they reported that the number of work-trips produced at a zonal level has a positive 

impact with the number of injury crashes, property damage only crashes, and total crash in a TAZ. 

Similarly, students per household also could be interpreted as a proxy for the number of educational trips 

produced at each TAZ. The estimated variables in the estimated models are not significant.  

As expected, road network characteristics have a significant association with safety level. It is worthy to 

mention that the network characteristics of a TAZ may reflect the traffic flows and infrastructures that 

transportation system imposes to residents of a TAZ. Population density also has a negative association 

with HBA-CR. The negative sign indicates that as density increases the crash frequency of the road users 

decreases.  

Consistent with previous studies VMT also have a significant association with safety outcomes. 

Comparison of the coefficients indicates that VMT on arterial roads (i.e., major and minor arterials) has a 

greater impact on HBA-CR compared to the interstate. This differences in the magnitudes could reflect 
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the high access of the arterial roads with more conflicts compared to interstates which could increase the 

likelihood of crash occurrence. On the other hand, other road classifications with the lower posted speed 

limit (e.g., collector, local) have a negative association with HBA-CR. Many studies explored the 

association between of functional classes and crash frequency at zonal level (e.g., Hadayeghi, Shalaby, 

and Persaud 2003; Quddus 2008; Xu and Huang 2015), only a few considered the effect of exposure 

(i.e., VMT) in different road classes. There is also a need to consider that the definition of the functional 

classes may vary across areas. In a series of studies in Flanders, Belgium, Pirdavani, Brijs, Bellemans, 

Kochan, et al. (2013) and Pirdavani et al. (2012b) reported that VMT on a motorway had a smaller effect 

on total crash frequency compared to non-motorway VMT. In Florida, Xu and Huang (2015) reported that 

proportions of the road with speed limits 25 mph or lower had a negative association with crash frequency 

at a zonal level, whereas, percent of roads at 45 mph and above had positive association on zone crash 

frequencies. Hadayeghi, Shalaby, and Persaud (2003) also reported that total local road length in a TAZ 

had a negative association with all crashes and severe crashes, whereas, arterials, expressways, 

collectors, and ramps had a positive and significant association with crash frequency at the zonal level in 

a study in Canada.  

Percent of roads with sidewalk and number of bus stations also have a significant association with HBA-

CR. The positive sign of these two variables may be an indicator of the presence of vulnerable road 

users. It is likely that due to the less developed network of the pedestrian in the KRTM, vulnerable road 

users are more prone to traffic crashes and therefore HBA-CR increases. Cai et al. (2017) also reported 

that sidewalk length has a positive association with crash frequency, severe crash, and non-motorized 

crash frequency. Intersection density in the TAZ also has a significant positive association with HBA-CR. 

This is in agreement with previous researches that reported the number of intersection could be 

correlated with higher numbers of conflict and accordingly a higher number of traffic crashes (Ladron de 

Guevara, Washington, and Oh 2004; Pirdavani et al. 2012a; Hadayeghi, Shalaby, and Persaud 2003; 

Lovegrove and Sayed 2006; Abdel-Aty et al. 2011; Gomes, Cunto, and da Silva 2017).  
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 1 

Table 3 OLS, SLM, and SEM Estimations 2 

 OLS    SLM    SEM    
Variable Coef. S. E.  T-test P-value Coef. S. E.  T-test P-value Coef. S. E.  T-test P-value 

Sociodemographics             
Income ($10,000) -4.794 1.968 -2.437 0.015 -3.232 1.914 -1.689 0.091 -3.623 2.192 -1.653 0.098 

Worker Per Household 55.423 17.698 3.132 0.002 47.926 17.170 2.791 0.005 43.076 18.158 2.372 0.018 

Student Per Household -7.747 21.608 -0.359 0.720 -1.856 20.979 -0.088 0.930 -7.179 22.286 -0.322 0.747 

Activity Per Capita (Miles 
Traveled) 1.390 0.069 20.224 0.000 1.347 0.067 20.062 0.000 1.362 0.068 19.916 0.000 

Population Density (per Square 
miles) -0.007 0.002 -4.587 0.000 -0.007 0.002 -4.617 0.000 -0.007 0.002 -3.990 0.000 

Network             
Intersection Density 0.075 0.027 2.801 0.005 0.059 0.026 2.259 0.024 0.067 0.028 2.412 0.016 

% Road with Sidewalk 86.125 16.927 5.088 0.000 79.027 16.464 4.800 0.000 86.042 17.427 4.937 0.000 

% Near Bus Stop 24.546 14.287 1.718 0.086 18.232 13.875 1.314 0.189 21.932 15.894 1.380 0.168 

VMT Interestate 9.767 1.687 5.791 0.000 9.025 1.639 5.505 0.000 9.499 1.714 5.541 0.000 

VMT Arterial 12.457 2.058 6.054 0.000 11.181 2.004 5.578 0.000 11.564 2.041 5.665 0.000 

VMT Other Roads -9.411 2.334 -4.032 0.000 -8.455 2.266 -3.731 0.000 -8.779 2.363 -3.716 0.000 

Constant -38.818 20.856 -1.861 0.063 -52.070 20.407 -2.552 0.011 -27.301 22.032 -1.239 0.215 

Lag coeff.   (Rho)      0.249 0.040 6.256 0.000 0.238 0.047 5.047 0.000 

R-squared 0.426    0.453    0.445    
Log likelihood (Full) -5838.1    -5820.7    -5826.9    
AIC 11700.1    11667.5    11677.8    

  3 
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Summary and Conclusion 
In this study, we measured the likelihood of involvement in traffic crashes based on the on the home 
address of individuals (i.e., home-based approach) who were directly involved in traffic crashes at the 
zonal level. Analysis of the HBA-CR over different categories indicates that HBA-CR substantially varies 
over VMT classification, average zonal activity, and income variables. Spatial analysis showed that HBA-
CR is not randomly distributed in space and it exhibits positive spatial autocorrelation. Highly spatially 
correlated HBA-CR at zonal level suggest that HBA-CR is not produced solely by the internal structural 
factors that are captured in the aspatial specification. Results of Lagrange Multiplier (LM) statistics also 
indicate that the spatial lag model is more suitable compared to the spatial error model. Considering the 
underlying assumptions of the SLM model, we may conclude that HBA-CR in one TAZ is influenced by 
HBA-CR in neighboring TAZs. Therefore, we may conclude that a neighborhood with poor traffic safety 
may pose negative externality to its neighbors and vice versa.  

HBA-CR was higher in the vicinities of the high-speed traffic roads and roads with a higher classification. 

Also, both VMT and average zonal activity have a significant association with HBA-CR. Regarding the 

significant and positive association between both exposure variables and HBA-CR, we can conclude that 

HBA-CR may decrease by controlling for exposure variables. First, by reducing the VMT of the roads with 

higher classifications, for example, designing a transportation network with the aim of diverging high-

speed traffic from residential areas or managing the accessibility of the residents near the high-speed, 

high volume roads could eliminate or discount exposure to high-speed traffics. The second strategy may 

target average zonal activity. Both trip length and frequency influence average zonal activity. Therefore,  

by eliminating a portion of trips by managing travel demand and providing strategies and policies that 

reduce travel demand (Gärling et al. 2002) may impact HBA-CR. Besides, it is well-established that an 

increase in density and mixed land-use design would degenerate both trip rate (Cervero and Kockelman 

1997), and trip length (Cervero and Kockelman 1997). Hence, an increase in both density and mixed 

land-use would eventually reduce average zonal activity, VMT and improve the road safety of the road 

users.  

The spatial distribution of the HBA-CR and its association with sociodemographic variables demonstrated 

potentials of the HBA as a means for identifying the TAZ’s hotspots in which residents have a higher 

likelihood of involvement in traffic crashes. Proper safety campaigns could be used to address the safety 

concerns in the TAZs with high HBA crash rate, mainly focusing on behavioral interventions that 

contribute to higher crash risk and injury burden (e.g., speeding, driving under the influence, seatbelts). 

Furthermore, road safety culture and driving behavior may also correlate with crash rate; this issue could 

be investigated in the future studies.  

In addition to the spatial models, we estimated count data models such as negative binomial and Poisson 

models (both random and fixed coefficients). Comparison of the models suggests that the association 

between the dependent variable and the independent variables were stable. To maintain concision, we 

did not present the estimated models. Furthermore, the majority of road users in this study was motorized 

users. Moreover, we ran separate models for predicting HBA-CR for all road users and drivers crash rate. 

Comparison of the models indicates the models are similar, and findings are broadly in agreement. This is 

due to the fact that pedestrian and bicyclists consist a small portion of road users in this study. 

Alternatively, average zonal activity reflects trip rates of all road users. Therefore, to maintain concision, 

we did not present the model for predicting motorized road user crash rate.  

It is also worth mentioning that there are difficulties in accessing the crash data with identifiers and it is 

not possible to obtain this data in some cases. One possible direction for the future could be in partnering 

with data owners to assist in matching crashes with spatial datasets to preserve confidentiality.  
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Abstract 
Road safety literature provides abundant examples of studies that measure the economic cost of 

traffic crashes at the coarse geographic level. The current practice of road safety economic 

assessment attributes traffic crashes to the location of traffic crashes. Therefore, it is challenging to 

estimate the economic cost of traffic crashes of individuals who live in a specific geographic area. 

After geocoding the home address of individuals who were involved in traffic crashes in Knoxville 

metropolitan area 2014-16 (n = 183,833) and assigning them to the Traffic Analysis Zone (TAZ) 

corresponding to their home address; we measured the Economic Cost of traffic Crashes (ECC) and 

Comprehensive Cost of traffic Crashes Economic (CCC) at the zonal level by using monetary value of 

the person-injury cost. The average ECC and CCC at the TAZ level were respectively, $920 K and $ 

2.7 M. The adjusted Gini index coefficient for the ECC per capita (ECCPC) and CCC per capita 

(CCCPC) was respectively 0.43 and 0.54 which is an indicator of the unequal distribution of the 

burden of traffic crashes. Travel demand model output was used as an input for a negative binomial 

model for exploring the factor correlating with CCC and ECC at the zonal level. Overall, both models 

were largely consistent. Findings indicate that person miles traveled in network, transportation 

network characteristics, and demographic information significantly correlates with burden of traffic 

crashes. Burden of traffic crashes at the zonal level could be used as an index for allocating proper 

countermeasures and interventions to groups and areas where the burden of traffic crashes is more 

tangible.  

Keywords: Economic Cost of Traffic Crashes; Home-Based Approach; Home-Address; Equity  
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Introduction  
One of the main negative externalities of the transportation system is traffic crashes, which is among 

the top ten causes of premature death globally and kills more than 1.25 million annually (World Health 

Organization 2015). Traffic crashes cost 1-2% of Gross Domestic Product (GDP) of high-income 

countries, and 3% of GDP in low and middle-income countries (Jacobs, Aeron-Thomas, and Astrop 

2000; Wijnen and Stipdonk 2016; World Health Organization 2015). Road safety literature has 

abundant examples of estimating cost of traffic crashes at coarse geographic level (i.e., country-level) 

(Ahadi and Razi-Ardakani 2015; Blincoe et al. 2015; García-Altés and Pérez 2007; Wegman and 

Oppe 2010; Mohan 2002); however, to the best of our knowledge, there are no studies that explored 

this matter at fine geographic level (i.e., traffic analysis zone) and factors correlated with it. 

Traffic crash cost has several components and based on the selected components, researchers 

measure traffic crashes in two ways: the economic cost of traffic crashes and societal harm. 

Economic costs of traffic crashes include lost productivity, medical costs, legal and court costs, 

emergency service costs (EMS), insurance administration costs, congestion costs, property damage, 

and workplace losses (Blincoe et al. 2015). In addition to the economic cost of traffic crashes, the 

societal harm includes lost quality-of-life such as the value of pain, suffering, and quality of life loss to 

victims and their families (Mohan 2002). In other words, economic cost of traffic crashes reflects the 

tangible part of the traffic crashes; whereas the societal harm of traffic crashes reflects both tangible 

and intangible cost of traffic crashes (Ahadi and Razi-Ardakani 2015; Blincoe et al. 2015; García-Altés 

and Pérez 2007; Wegman and Oppe 2010; Mohan 2002). In the United States, the economic cost and 

societal harm of traffic crashes were estimated to be over $242 billion and $871 billion in 2010, 

respectively (Blincoe et al. 2015); these numbers reflect 32,999 fatalities, 3.9 million non-fatal injuries, 

and 24 million damaged vehicles.  

Road safety studies tend to specify the presence of disparities across road user type, income, race, 

and ethnicities; for instance, the crash fatality rate is approximately double in low- and middle-income 

countries compared to high-income countries (21.5, 19.5, and 10.3 per 100,000 population 

respectively (World Health Organization 2015). This trend also holds within-country; several studies in 

the United States reported that vulnerable road users (i.e., pedestrians and bicyclists) and lower-

income neighborhoods have higher fatality rates compared to motorized road users and wealthier 

neighborhoods, respectively (Clark 2003; Marshall and Ferenchak 2017; Romano, Tippetts, and Voas 

2006). In rural areas, the fatality rate tends to be several times higher than in urban areas (Blatt and 

Furman 1998; Marshall and Ferenchak 2017). Additionally, some ethnicities such as Hispanic, 

African-American, and Native American have both higher crash rates (Mayrose et al. 2005) (Mayrose 

and Jehle 2002, Braver 2003, Campos-Outcalt et al. 2003, McAndrews et al. 2013) and fatality rates 

(Schiff and Becker 1996, Baker et al. 1998, Harper et al. 2000).  

The current practice of road safety attributes safety to the location of the traffic crash. As a result, it is 

challenging to measure and attribute the economic burden of crashes in areas where individuals 

reside. In order to examine road safety disparities, we measure the crash cost at the zonal level by 

using the home address of the road users involved in traffic crashes instead of the location of traffic 

crashes.  

Although the use of the home address of the traffic victims to obtain information regarding their 

sociodemographic in road safety is not a new effort, one needs to consider that the majority of studies 

used fatally injured road users (Blatt and Furman 1998; Males 2009; Romano, Tippetts, and Voas 

2006; Stamatiadis and Puccini 2000), course geographic units such as zip code  (Lee et al. 2015; 

Romano, Tippetts, and Voas 2006), census-level (Stamatiadis and Puccini 2000), or only focused on 

a specific group of road users (Lee et al. 2015). Likewise, these studies did not measure the 

monetized value of road traffic crashes based on person-injury cost. Monetized value of the traffic 

crashes consider the effect of both crash frequency and severity simultaneously.  

Macroscopic Crash Prediction Models are a set of methods that provide information regarding the 

association between road safety at zonal level and data elements at an aggregate level such as 

sociodemographic factors, network characteristics, and travel behavior. By using a wide range of 
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safety outcomes, researchers explored the association between geographic unit characteristic and 

number of all traffic crashes (Naderan and Shahi 2010; Pirdavani et al. 2012b; Pirdavani, Brijs, 

Bellemans, and Wets 2013; Huang et al. 2016; Miaou, Song, and Mallick 2003; Cai et al. 2017; 

Hezaveh and Cherry 2018), number of property damage only crashes (Naderan and Shahi 2010; 

Aguero-Valverde 2013), frequency of injury/severe crashes (Xu and Huang 2015; Aguero-Valverde 

2013; Cai et al. 2017), or crash frequency of specific road users (e.g., non-motorized, bicyclists) (Cai 

et al. 2017; Cheng et al. 2018; Saha et al. 2018; Lee, Abdel-Aty, and Jiang 2015) at zonal level mostly 

based on the location of traffic crashes. Although many studies used different dependent variables to 

measure the road safety, to the best of our knowledge no studies used monetary value of the traffic 

crashes based on the home address of the road users and travel-related factors associating with it.  

The population of a TAZ to some extent represents its residents’ miles traveled in the transportation 

system. However, the population variable does not capture the number of trips generated by residents 

of a geographic area nor their trip length (e.g., activity). Some studies that focused on the modeling 

the crash frequency of a TAZ based on the location of traffic crashes used trip generation models as a 

vector to reflect the activity of one TAZ (Naderan and Shahi 2010, Abdel-Aty et al. 2011, Dong et al. 

2014, Dong et al. 2015, Mohammadi et al. 2018). Although trip generation vector provides information 

regarding the activity of the road users, it fails to capture trip length. A more inclusive variable for 

estimating the economic cost of traffic crashes at a zonal level needs to consider both trip length and 

trip frequency simultaneously. 

This study has several aims. First, we will use the home address of the road users who were involved 

in traffic crashes to measure road safety (i.e., a Home-Based Approach –HBA). Accordingly, we 

convert the HBA crash frequency (based on injury severity) to measure the economic cost of traffic 

crashes at fine geographic areas and subsequently explore the relationship between travel behavior, 

and economic burden of traffic crashes at the zonal level. We also explore the equitable distribution of 

crash burden within an urban area based on TAZs characteristics. We measure the distribution of the 

burden of traffic crashes at the traffic analysis zone (TAZ) level to identify the groups that are more 

prone to the burden of traffic crashes. Learning about the relationship between exogenous variables, 

travel activity, and traffic crash cost of residents of a specific geographic area may enable safety 

practitioners and researchers to allocate resources to the neighborhoods where the burden of traffic 

crashes is higher than average, or address inequities in the transportation system where specific 

groups are bearing a higher proportional economic burden.  

In the next section, we discuss the methodology, including the HBA definition, data, and modeling 

approach. The rest of the paper presents results and discusses the findings of this study.  

Methodology 
Person Miles Traveled 
In this study, one goal was to investigate the relationship between travel behavior and quality of 

transportation infrastructure with the crash cost. We used the data from the Knoxville Regional Travel 

Demand Model (KRTM) in Tennessee. This region is anchored by the city of Knoxville but also 

includes several urbanized areas outside the city. The KRTM has a hybrid design using elements of 

activity-based models. For more information about Knoxville Regional Travel Demand Model, please 

see KRTM (2012). Figure 7 presents the Knoxville Region study area that includes Knox, Anderson, 

Roane, Union, Grainger, Jefferson, Sevier, Blount, and Loudon counties. The study area also includes 

1,186 TAZs and includes sociodemographic, economic, and travel information of the residents. Table 

1 presents the descriptive statistics of the sociodemographic variables obtained from TAZs. It is 

worthwhile to mention that 63 zones had no population (e.g., Smoky Mountain National Park, Oak 

Ridge National Lab) and we excluded these zones from our analysis. 

 

 

Table 1 TAZ descriptive statistics 
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Variable Mean 
Standard 
Deviations Min Max 

Household Income ($) 46655 21075 2349 168227 

Workers Per Household 1.21 0.24 0.00 2.10 

Students Per Household 0.39 0.18 0.00 1.11 

Intersection Density (per square miles) 153 198 3 1657 

Percent Road with Sidewalk 0.21 0.32 0.00 1.00 

Percent Near Bus Station 0.18 0.36 0.00 1.00 

Population Density (Per Square Mile) 1377 2736 3 44072 

Average Speed (MPH) 39.09 8.33 20.00 65.00 

VMT on Interstate from TAZ (miles) 9625 32673 0 287762 

VMT on Arterials from TAZ (miles) 11398 17657 0 163821 

VMT on Others from TAZ (miles) 7146 8294 0 76596 

 

 

Figure 7 Counties in the Knoxville Regional Travel Demand Model 

To evaluate the activity of road users at the TAZ level (i.e., individual’s exposure to transportation 

system), we will use Person Miles Traveled (PMT) at the zonal level. 𝑃𝑀𝑇𝑖 combines modeled trip rate 

and trip length for all population in zone 𝑖 and is an index for measuring the zonal activity in each 𝑇𝐴𝑍. 

𝑃𝑀𝑇 is calculated by equation 1: 

𝑃𝑀𝑇𝑖 = ∑
𝑃𝑖𝑗𝐿𝑖𝑗 

𝑃𝑜𝑝𝑖

𝑛

𝑗=1

 
Equation 1 

where 𝑛 is the index of the destination TAZ, 𝑃𝑖𝑗 is the number of trips produced from TAZ 𝑖 to TAZ 𝑗 in 

one day, 𝐿𝑖𝑗 is the shortest network path between TAZ 𝑖 to TAZ 𝑗, and 𝑃𝑜𝑝𝑖 presents the population of 

the zone 𝑖. KRTM output was used as a source to extract the number of trips for each pair. The 

shortest path between each pair was also extracted from the traffic assignment model at the peak-

hour. Figure 8 presents the distribution of daily PMT in the KRTM Model at the TAZ level. Visual 

screening of Figure 8 indicates that the rural areas have higher PMT compared to the urban areas.  
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Figure 8 PMT (person miles traveled) distribution across the study area 

Home-Based Approach definition 
The home address of the road users who were involved in a traffic crash is one of the data elements 

that police officers record at the crash scene (MMUCC 2012). Using home-address to collect 

information of the road users to collect data element regarding sociodemographic and travel behavior 

is a common practice in urban travel demand analysis (Kanafani 1983), but is not often used in the 

road safety analysis due to privacy concerns and geocoding challenges.  

To tie traffic crashes to the home addresses of the individuals in this study, we define the HBA crash 

frequency as the expected number of crashes, by severity, that road users who live in a certain 

geographic area experience during a specified period. This definition attributes traffic crashes to 

individuals and their residential addresses. Next, we use crash frequency and crash severity to 

calculate the economic cost of traffic crashes in each zone.  

Data and geocoding process  
The crash data in this study was provided by Tennessee Integrated Traffic Analysis Network (TITAN), 

the statewide crash data administered by the Tennessee Department of Safety and Homeland 

Security. The records of 89,380 crashes that occurred in KRTM area were retrieved from the TITAN. 

After geocoding the home addresses of the individuals involved in the crashes with Bing Application 

Program Interface (API) services and quality control of addresses; we were able to assign 183,833 

(95% success rate) of the road users to a TAZ corresponding to their home addresses. For more 

details about the geocoding process, please see Hezaveh and Cherry (2019b) and Hezaveh, Arvin, 

and Cherry (2019).  
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Cost of traffic crashes 
The injury severity in TITAN database follows the KABCO scale provided by the Federal Highway 

Administration (FHWA 2017). In the KABCO scale, K, A, B, C, and O respectively stand for an injury 

with fatal, incapacitating, non-incapacitating evident, possible injury, and no-injury (FHWA 2017). 

FHWA offers two units for crash cost analysis; person-injury and crash-unit. Person-injury should be 

applied to the number of involved-persons in crashes whereas the crash-unit cost should be applied 

to the number of crashes (Harmon, Bahar, and Gross 2018). In order to monetize the value of injury 

severities, we used the person-injury unit costs presented in Table 2 recommended by FHWA 

(Harmon, Bahar, and Gross 2018) based on the year 2010. We also converted the person-injury cost 

to 2018 dollar by adjusting for inflation and income (Harmon, Bahar, and Gross 2018). 

Although it is probable that an individual may sustain multiple injuries, person-injuries only considers 

the most severe injury, and each individual is only counted once (Harmon, Bahar, and Gross 2018). 

Notably, crashes with injury level of no-injury has a non-zero value; the non-zero value reflects the 

misclassification of the injury by police officers (Harmon, Bahar, and Gross 2018).  

Next, we measured the total economic cost of the traffic crashes (ECC) and total comprehensive 

crash cost (CCC) for each TAZ. Furthermore, we measured the economic cost of traffic crashes per 

capita (ECCPC), and comprehensive cost of traffic crashes per capita (CCCPC) at the TAZ level by 

dividing the total cost to the population of each TAZ:  

𝐸𝐶𝐶𝑃𝐶𝑖 =
𝐸𝐶𝐶𝑖

𝑇 ∗ 𝑃𝑜𝑝𝑖
= 𝑃𝐶𝐼 ∗

(𝑁𝑣,𝑖 ∗ 𝐶𝑜𝑠𝑡𝑃𝐷𝑂) +  ∑𝛼={𝐾,𝐴,𝐵,𝐶,𝑂} 𝑁𝛼,𝑖 ∗ 𝐶𝑜𝑠𝑡𝐸𝛼

𝑇 ∗ 𝑃𝑜𝑝𝑖
 

Equation 2  

𝐶𝐶𝐶𝑃𝐶𝑖 =
𝐶𝐶𝐶𝑖

𝑇 ∗ 𝑃𝑜𝑝𝑖
= 𝑃𝐶𝐼 ∗

(𝑁𝑣,𝑖 ∗ 𝐶𝑜𝑠𝑡𝑃𝐷𝑂) + ∑𝛼={𝐾,𝐴,𝐵,𝐶,𝑂} 𝑁𝛼,𝑖 ∗ 𝐶𝑜𝑠𝑡𝐶𝛼

𝑇 ∗ 𝑃𝑜𝑝𝑖
 

Equation 3 

𝑁𝛼,𝑖 is the number of individuals who live in zone 𝑖 with the level of injury 𝛼, 𝐶𝑜𝑠𝑡𝐸𝛼  and 𝐶𝑜𝑠𝑡𝐶𝛼  

respectively presents the economic and comprehensive the traffic injury cost per injury in Table 2. 𝑇 

also presents the period of the study (T = 3 years). 𝑁𝑣,𝑖 is the number of vehicles with a registered 

address in zone 𝑖 that were involved in traffic crashes, and 𝐶𝑜𝑠𝑡𝑃𝐷𝑂  is the vehicle unit damage cost. 

PCI is Tennessee per capita income ratio adjustment factor which is equal to 0.855 for year 2018 

(Bureau of Economic Analysis 2018).  

Table 2 National KABCO person-injury unit costs (2018 dollar) 

Injury Type Crash Cost Per Injury 

Economic person- 
Injury Unit Costs 

QALY Person-Injury 
 Unit Costs 

Comprehensive Crash Cost  
(2018 Dollars) 

No Injury† 6,553 (5,717*) 2,938 (2,563*) 9,491 (8,280*) 

Possible Injury 24,930 (21,749*) 57,227 (49,926*) 82,157 (71,675*) 

Non-Incapacitating Injury 36,800 (32,105*) 112,302 (97,974*) 149,102 (130,079*) 

Incapacitating Injury 96,866 (84,507*) 41,6459 (363,324*) 513,325 (447,832*) 

Fatal Injury 1,603,502 (1,398,916*) 8,880,060 (7,747,082*) 10,483,562 (9,145,998*) 

Unknown    

Vehicle unit cost 6,965 (6,076*)  6,965 (6,076*) 

† The cost reflects the cases where injury severity was falsely assigned.  

* Source: adjusted person-injury cost based on 2010 US Dollar based on Harmon, Bahar, and Gross (2018) 

 

Lorenz curve and Gini coefficient 
Lorenz curves have typically been used in the field of economics to explore the distribution of the 

inequalities across a population. This method has been used in transportation to explore the inequality 

in the transportation studies such as public transit and infrastructure investment (Xia et al. 2016; Zofío 

et al. 2014; Delbosc and Currie 2011). In an equitable manner, x% of the population pays x% of the 

economic cost of traffic (Straight-line presented in Figure 9). In reality, the distribution of the crash 
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burden would be different from the straight line, and it is presented by the Lorenz curve. The Lorenz 

curve presents a graphical representation of inequality across a population.  

The Gini coefficient is a single value based on the area between the line of equality and the Lorenz 

curve (Atkinson 1970) and ranges between 0 and 1. The closer the Lorenz curve is to the line of 

equality the more equal the distribution is and the smaller the area enclosed between the two lines. 

The value close to 0 corresponds to perfect equality and value close to 1 corresponds to perfect 

ECCPC inequality. 

 

Figure 9 Gini Coefficient and Lorenz curve 

Modeling approach 
To evaluate safety at zonal level, traditionally, count data models are commonly utilized owing to the 

nature of traffic crashes that are measured as non-negative integers in a specific period of time 

(Anastasopoulos and Mannering 2009). Likewise, the cost of the traffic crash is a non-negative 

integer. Hence the models that would be used to evaluate cost of traffic crashes must follow the 

nature of counts model (Hezaveh, Arvin, and Cherry 2019).  

The Poisson model and negative binomial models are two common model specifications for count 

data. The main difference between these two specifications is the restriction of equality of the mean 

and variance (𝐸[𝑛𝑖] = 𝑉𝑎𝑟[𝑛𝑖]) of the observations (here ECC and CCC). In the case of traffic 

crashes, this assumption usually is not met. To take account for the inequality of mean and variance, 

the more generalized negative binomial model is proposed:  

𝜆𝑖 = 𝑒𝑥𝑝 (𝛽𝑋𝑖 + 𝜀𝑖) Equation 4 

where 𝐸𝑥𝑝(𝜀𝑖) is a gamma-distributed error term with mean 1 and variance 𝛼. The addition of this 

term allows the variance to differ from the mean (𝑉𝑎𝑟[𝑛𝑖] = 𝐸[𝑛𝑖] + 𝛼𝐸[𝑛𝑖]2). The negative binomial 

probability density function has the form:  

𝑃(𝑛𝑖) = (

1
𝛼

(
1
𝛼) + 𝜆𝑖

)

1
𝛼

𝛤 [(
1
𝛼) + 𝑛𝑖]

𝛤 (
1
𝛼) 𝑛𝑖!

(
𝜆𝑖

(
1
𝛼) + 𝜆𝑖

)𝑛𝑖 
Equation 5 

where, 𝛤(. ) is a gamma function. In the negative binomial model, if the value of α approaches zero, 

the negative binomial model yield to the Poisson model. Therefore, the negative binomial model is 
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appropriate when the value of the dispersion parameter (𝛼) significantly differ from zero (S.P. 

Washington, Karlaftis, and Mannering 2010).  

Furthermore, we measured elasticity effects for each variable. Elasticity can be interpreted as the 

percent effect of a 1% change in a variable has on the severity outcome probability (Khorashadi et al. 

2005).  

Results and discussion  
Among MPO residents, 382 individuals were fatally injured as a result of traffic crashes in the study 

area. Moreover, 20,705 individuals were injured (level A, B, or C). The economic and comprehensive 

cost of traffic crashes in the region for 2014-16 were $3.1 and $9.2 Billion (2018 dollars). The average 

ECC and CCC at the zonal level were respectively $920 K, 95th percent interval $ 866-975K) and $ 

2.74 M (95th percent interval $2.54- 2.95 M). Figure 10 and Figure 11 present the spatial distribution of 

the ECC and CCC at zonal level in the study area. These variables tended to have distributed impacts 

with high economic cost scattered throughout the region.  
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Figure 10 ECC distribution in KRTM; average of 2014-16 
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Figure 11 CCC distribution in KRTM; average of 2014-16 
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Figure 12 and Figure 13 presents the spatial distribution of the proportion of the economic and 

comprehensive cost of traffic crashes per capita to individual’s income. Average ECCPC per income 

and CCCPC per income are respectively 6.5% (Q1: 2.7%, Median: 6.5%, Q3: 13.1%) and 14.9% (Q1: 

5.7%, Median: 14.8%, Q3: 39.1%). The gray color in the maps exhibits TAZs, in which the proportion 

of the economic cost of traffic crashes to families’ income is less than average. The warmer colors 

point out areas in which cost of traffic crashes over families’ income level is more substantial. A visual 

inspection of traffic crashes in the study area reveals that burden of traffic crashes are larger for TAZs 

in the northern part of the Knoxville and near multilane highways that connect major cities in the 

KRTM area (e.g., Knoxville to Maryville, Knoxville to Sevierville); on the other hand, in areas near I-40 

(major corridor of the study area), the burden of traffic crashes are lower. One explanation for more 

tangible crash burden along the road network is the exposure of the residents to high volume 

corridors with high accessibility and high traffic speeds. These factors are known to contribute to both 

crash frequency and severity. Moreover, households who live very close to these corridors have lower 

household incomes. This is also supported by literature that individuals with lower socioeconomic 

status (e.g., income) experience higher residential exposure to traffic and traffic exposure and traffic-

related pollution than non-minorities and persons of higher socioeconomic status.(Pollution 2010; 

Apelberg, Buckley, and White 2005; Gunier et al. 2003; Parker et al. 2012; Woghiren-Akinnifesi 2013) 
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Figure 12 Proportion of The Economic Cost of Traffic Crashes per Capita to Median Families' Income 
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Figure 13 Proportion of The Comprehensive Cost of Traffic Crashes per Capita to Median Families' Income  
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Figure 14 presents the distribution of crash cost per capita and crash cost per capita per income over 

PMT. As PMT increases, the burden of traffic crashes increases. For example, TAZs with PMT higher 

than 50 have a substantially higher ECCPC/CCCPC and ECCPC/CCCPC per income compared to 

those below 50. This trend also holds for distribution over income.  

Visual inspection of Figure 15 indicates that TAZs with median household below $25,000 have a 

substantially higher burden of traffic crashes compared to wealthier families. For example, TAZs with 

a median household income of less than $25,000, the average ECCPC is equal to $2,200 which is 3 

times higher than TAZs with a median household income of more than $100,000. Likewise, by 

normalizing the ECCPC with income, we learned that the value of ECCPC per income for families with 

income less than $25,000 is 8 times higher (9% vs. 1%) than TAZs with a median household income 

of more than $100,000.  

The value of the Gini coefficient for the ECC and CCC are respectively 0.51 and 0.58. Furthermore, 

the value of the Gini coefficient for the ECCPC and CCCPC are respectively 0.43 and 0.54.  

 

 

Figure 14 Distribution of the ECCPC & ECCPC per income with regards to PMT 
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Figure 15 Distribution of the ECCPC & ECCPC per income with regards to median household 

income 

 

Parameters estimation and discussion 
In both estimated ECC and CCC models (presented in Table 4), we used the TAZ population as the 

offset variable to predict the Economic/comprehensive cost of traffic crashes at the zonal level. The 

significant value of dispersion parameters justified the use of negative binomial mode over the 

Poisson model. Significant variables in Table 4 are presented in bold. Comparison of the estimated 

models and their significance level indicate estimated coefficients in both models are largely 

consistent. Rest of the section discusses the study findings based on the CCC model output.  

Analysis of elasticity indicates that none of the dependent variables have elastic effect. The average 

speed at the TAZ level has the highest negative impact on the burden of traffic crashes followed by 

intersection density. Alternatively, median household income, percentage of households with senior 

population, and number of workers per household had a positive impact on burden of traffic crashes. 

These findings are discussed in more details.  
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Table 4 Results of negative binomial model for predicting ECC and ECCPC at the zonal level 

 ECC CCC 

ec18average Coef. Std. Err. P>|z| Elasticity Coef. Std. Err. P>|z| Elasticity 

Average zonal activity  3.41E-04 4.26E-05 0.000 0.046 2.59E-04 4.66E-05 0.000 0.035 

Average Speed (MPH)  0.009 0.003 0.005 0.345 0.010 0.004 0.015 0.376 

Income ($10,000)  -0.059 0.011 0.000 -0.272 -0.068 0.015 0.000 -0.314 

Percentage of households with senior population -1.183 0.236 0.000 -0.333 -1.023 0.304 0.001 -0.288 

Worker Per Household  -0.299 0.113 0.008 -0.358 -0.316 0.146 0.031 -0.379 

Student per Household  0.118 0.135 0.382 0.045 0.041 0.170 0.808 0.016 

Intersection Density (per square miles)  4.15E-04 1.38E-04 0.003 0.072 6.63E-04 1.82E-04 0.000 0.115 

Percent road with Sidewalk  -0.132 0.086 0.124 -0.031 -0.346 0.112 0.002 -0.082 

Percent Near Bus Station  -0.032 0.070 0.648 -0.006 -0.117 0.091 0.196 -0.023 

Population Density (per Square miles)  -8.82E-05 7.74E-06 0.000 -0.116 -9.47E-05 1.01E-05 0.000 -0.125 

VMT Interstate  -2.63E-06 7.06E-07 0.000 -0.025 -2.83E-06 8.95E-07 0.002 -0.027 

Daily VMT Arterial  6.98E-06 1.40E-06 0.000 0.078 4.24E-06 1.72E-06 0.014 0.047 

Daily VMT Other road classes  -3.07E-06 2.65E-06 0.246 -0.022 2.58E-07 3.38E-06 0.939 0.002 

Constant  7.620 0.218 0.000  8.711 0.280 0.000  

ln(Population) 1 (exposure)  1 (exposure)  

alpha 0.424 0.017   0.681 0.027   

Log likelihood (null) -15060.41    -16159.56    

Log likelihood (model) -14842.35    -16039    

LR 𝜒2(13) 241.11    241.11    

Df  15    15    

AIC 29714.7    32108    
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Positive sign of the PMT suggests that residents of those zones that originated trips are made more 

frequently or for longer instances are more prone to traffic crashes, and traffic crashes have a greater 

monetary impact on them. This is also supported by visual inspection of Figure 8. Population density has 

a negative effect on cost of traffic crashes. It is well established that the crash frequency in urban areas is 

higher than rural areas on average; whereas the crash severity is relatively lower (Marshall and 

Ferenchak 2017; Zwerling et al. 2005); hence, the average cost of traffic crashes in the urban areas is 

lower than rural areas. Moreover, it is expected in the urban areas with higher population density, road 

users travel shorter distances which may yield to lower trip length (Pucher and Renne 2005). The 

negative sign of the income variable and crash cost is in agreement with road safety literature (Marshall 

and Ferenchak 2017; World Health Organization 2015). Furthermore, it is more likely that individuals with 

lower income use less safe vehicles with fewer safety features (Girasek and Taylor 2010); therefore, their 

crash severity and eventually the cost of their traffic crashes increases. 

Unlike the number of students per household, number of workers per household have a significant 

association with the dependent variables. This difference may reflect the difference in travel behavior of 

these groups. It should be noted that the majority of the students use alternative modes of transportation 

such as school bus, carpooling, or usually depending on adults to commute to school or other places. The 

proportion of individuals over 60-years-old has a significant negative association with economic cost of 

traffic crashes. Although, one may expect the senior population due to their vulnerability will suffer from 

higher injury severity (Yee, Cameron, and Bailey 2006); conversely, the senior population has lower trip 

rates compared to other groups  (Williams and Carsten 1989, Massie et al. 1995, KRTPO 2008). Thus, in 

this study, percentage of household with seniors reduces the economic impact of traffic crashes 

compared to other age cohorts. 

As expected, road network characteristics have a significant association with safety level. Percent of 

roads with sidewalk has a significant negative association with the crash cost. This was unlike Cai, Abdel-

Aty, and Lee (2017) that reported sidewalk length has a positive association with crash frequency, severe 

crash, and non-motorized crash frequency.  

It is well established that modal shift from private vehicle to other transportation modes (in particular 

public transit) has a positive effect on road safety (Tiwari, Jain, and Rao 2016; Schepers and Heinen 

2013; Elvik et al. 2009). However, in this study, percent of roads near bus stop does not have a significant 

association with cost of traffic crashes. This could be explained by very low demand for public transit in 

the study area and higher automobile dependency in Knoxville Metropolitan area.  

Speed is known as a contributing factor to both crash frequency and crash severity (Elvik et al. 2009; 

Highway Safety Manual 2010). As it was expected, the average speed of roads in a TAZ has a positive 

association with the crash cost. VMT on interstate road has a negative association with both 

comprehensive crash cost and economic crash cost models. Although this finding may sound 

counterintuitive at first glance, it should be noted that 85% (900 TAZs) of the TAZs do not have access to 

this road classification function. Moreover, TAZs with interstate access has a lower population compared 

to the others; therefore, the overall cost of traffic crashes was lower. Furthermore, due to the design 

nature of the interstates, interstates have lower access compared to arterial and local streets, and 

consequently local traffic is not mixed with higher speed traffics. VMT of the arterial roads, on the other 

hand, has a positive association with crash cost, which could be explained by relatively higher speed as 

well as their higher accessibility which increase number of traffic conflicts, likelihood of traffic crashes, and 

severity of injuries. Unlike two previous classes of the roads, other road classification does not have a 

significant association with crash cost.  

Conclusion 
The main aim of this study was to explore the factor influencing the burden of traffic crashes at a fine 

geographic level as well as highlighting the equality challenges associated with disparities in burden of 
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traffic crashes. To explore this problem, we used the home address of individuals who were involved in 

traffic crashes in the study area and assigned the economic cost of traffic crashes to their corresponding 

TAZ. We also measured Person Miles Traveled (PMT) to measure the average trip rate weighted by trip 

length originated at each TAZ. By controlling the traffic crash burden over the PMT, we learned that the 

burden of traffic crashes is higher for those TAZs which have a higher PMT or their residents have a 

lower income.  

Additionally, the value of the Gini index indicated that the burden of traffic crashes is not equally 

distributed across the population. Establishing progressive policies concerning educational outreach and 

additional funding resources to ease the burden of traffic crashes for neighborhoods that are more prone 

to traffic crashes particularly neighborhoods consisting of disadvantaged groups (i.e., lower-income 

families) may alleviate the burden of traffic crashes. 

Geographic distribution of the negative externalities of the traffic crashes shows that the burden of traffic 

crashes is more tangible in the vicinities of the multilane highways where TAZs’ residents are more prone 

to high-speed traffic and higher road classification. A transportation network designs that diverge high-

speed traffic from residential areas or managing the accessibility of the residents near the high-speed, 

high volume roads could be used to improve the safety of residents of these areas. Moreover, eliminating 

a portion of trips by promoting sustainable transport and targeting PMT could reduce the residents’ 

exposure to traffic. Likewise, an increase in diversity and mixed land-use design would also reduce both 

trips rate, and trip length (Cervero and Kockelman 1997) and eventually PMT. Reduction in PMT and 

subsequently, VMT has a direct impact on both economic and comprehensive cost of traffic crashes.  

In summary, in this study we introduced a method to measure the cost of traffic crashes at the zonal level, 

which could be straightforwardly integrated to travel demand analysis. The economic cost of traffic 

crashes at the zonal level could also be used as an index for allocating proper countermeasures and 

interventions to areas where the burden of traffic crashes is more tangible, which can be done by 

investment in the safer infrastructure and educational interventions. The authors recommend using this 

measure as a criterion to evaluate future scenarios of development of the transportation system in 

metropolitan areas to identify how those scenarios impact safety costs and distributional impacts of safety 

externalities.  
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Abstract 
Road safety literature provides abundant examples of studies that measure the economic cost of 

traffic crashes at the coarse geographic level. The current practice of road safety economic 

assessment attributes traffic crash costs to the location of traffic crashes. Therefore, it is challenging 

to estimate the economic cost of traffic crashes of individuals who live in a specific geographic area. 

To address this limitation, we used home-address of individuals who were involved in traffic crashes 

in East Tennessee between 2015-2016. After geocoding the home-addresses, we assigned 110,312 

individuals to the Traffic Analysis Zone (TAZ) corresponding to their home address and calculated the 

economic cost of traffic crashes per capita (ECCPC). The average ECCPC in the study area was 

$1,399. The Knoxville regional Travel demand model output was used for extracting travel behavior 

data elements for modeling ECCPC at zonal level. We also established an index to measure 

exposure individuals’ activity in the transportation system –i.e., average zonal activity– for residents of 

each TAZ. The spatial autoregressive (SAR) model with a queen contiguity weights matrix was more 

suitable compared to spatial error model and ordinary least squares regression. SAR model implies 

that ECCPC in one TAZ is affected by traffic safety of the adjacent TAZs. Findings indicate that 

average zonal activity and traffic exposure have a significant positive association with ECCPC. The 

ECCPC could be used as an index for allocating proper countermeasures and interventions to groups 

and areas where the burden of traffic crashes is more tangible. This could be done by investment in 

the safer infrastructure and educational interventions.  

Keywords: Economic Cost of Traffic Crashes; Home-Based Approach; Home-Address; Equity  
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Introduction  
One of the main negative externalities of the transportation system is traffic crashes, which is among 

the top ten causes of premature death globally and kills more than 1.25 million annually (World Health 

Organization 2015). Traffic crashes cost 1-2% of Gross Domestic Product (GDP) of high-income 

countries and 3% of GDP in low and middle-income countries (WHO 2015; Jacobs, Aeron-Thomas, 

and Astrop 2000; Wijnen and Stipdonk 2016). The relative magnitude of this externality is larger in low 

and middle-income countries compared to the developed countries. Road safety literature has 

abundant examples of estimating cost of traffic crashes at coarse geographic level (i.e., country-level) 

(Wegman and Oppe 2010; García-Altés and Pérez 2007; Mohan 2002; Blincoe et al. 2015; Ahadi and 

Razi-Ardakani 2015); however, to the best of our knowledge, there are no studies that explored this 

matter at fine geographic level (e.g., traffic analysis zone) and factors correlated with it. 

Traffic crashes cost can be measured in two ways; the economic cost of traffic crashes and societal 

harm. Economic costs of traffic crashes include lost productivity, medical costs, legal and court costs, 

emergency service costs (EMS), insurance administration costs, congestion costs, property damage, 

and workplace losses (Blincoe et al. 2015). In addition to the economic cost of traffic crashes, the 

societal harm includes lost quality-of-life. Economic cost of traffic crashes reflects the tangible part of 

the traffic crashes; whereas the societal harm of traffic crashes reflects both tangible and intangible 

cost of traffic crashes (Blincoe et al. 2015; Mohan 2002; García-Altés and Pérez 2007; Ahadi and 

Razi-Ardakani 2015; Harmon, Bahar, and Gross 2018). In the United States, the economic cost and 

societal harm of traffic crashes were estimated to be over $242 billion and $871 billion in 2010, 

respectively (Blincoe et al. 2015); these numbers reflect 32,999 fatalities, 3.9 million non-fatal injuries, 

and 24 million damaged vehicles.  

Road safety studies tend to specify the presence of disparities across road user type, income, race, 

and ethnicities; for instance, the crash fatality rate is approximately double in low- and middle-income 

countries compared to high-income countries (21.5, 19.5, and 10.3 per 100,000 population 

respectively) (World Health Organization 2015). This trend also holds within-country; several studies 

in the United States reported that vulnerable road users (i.e., pedestrians and bicyclists) and lower 

income neighborhoods have higher fatality rates compared to motorized road users and wealthier 

neighborhoods, respectively (Marshall and Ferenchak 2017; Romano, Tippetts, and Voas 2006; Clark 

2003). In rural areas, the fatality rate tends to be several times higher than in urban areas (Marshall 

and Ferenchak 2017; Blatt and Furman 1998). Additionally, some ethnicities such as Hispanic, 

African-American, and Native American have higher crash rates (Mayrose and Jehle 2002; Braver 

2003; Campos-Outcalt et al. 2003; McAndrews et al. 2013) and fatality rates (Schiff and Becker 1996; 

Baker et al. 1998; Harper et al. 2000).  

The current practice of road safety measure safety at the location of the crash. As a result, it is 

challenging to measure and attribute the economic burden of crashes in areas where individuals 

reside. In order to examine road safety disparities, we measure the crash cost at the zonal level by 

using the home address of the road users involved in traffic crashes. Although the use of the traffic 

victims’ home-addresses to obtain information regarding their sociodemographic in road safety is not 

a new effort, one should consider that the majority of these studies used fatally injured road users 

(Blatt and Furman 1998; Males 2009; Romano, Tippetts, and Voas 2006; Stamatiadis and Puccini 

2000), used course resolution such as zip code (Romano, Tippetts, and Voas 2006; Lee et al. 2015), 

census-level (Stamatiadis and Puccini 2000), or focused on a specific group of road users (Lee et al. 

2015). Likewise, these studies did not measure the monetize value of road traffic crashes based on 

injury level.  

Macroscopic Crash Prediction Models are a set of methods that provide information regarding the 

association between road safety at zonal level and data elements at aggregate level such as 

sociodemographic factors, network characteristics, and travel behavior (e.g., Gomes, Cunto, and da 

Silva 2017; Hadayeghi, Shalaby, and Persaud 2003; Hadayeghi, Shalaby, and Persaud 2010b; Lee et 

al. 2015; Naderan and Shahi 2010; Pirdavani et al. 2012b; Quddus 2008). By using a wide range of 

safety outcomes, researchers explored the association between geographic unit characteristic and 

number of all traffic crashes (Naderan and Shahi 2010; Pirdavani et al. 2012b; Pirdavani, Brijs, 
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Bellemans, and Wets 2013; Huang et al. 2016; Miaou, Song, and Mallick 2003; Cai et al. 2017; 

Hezaveh and Cherry 2018), number of property damage only crashes (Naderan and Shahi 2010; 

Aguero-Valverde 2013), frequency of injury/severe crashes (Xu and Huang 2015; Aguero-Valverde 

2013; Cai et al. 2017), or crash frequency of specific road users (e.g., non-motorized, bicyclists) (Cai 

et al. 2017; Cheng et al. 2018; Saha et al. 2018; Lee, Abdel-Aty, and Jiang 2015) at zonal level. 

Although many studies used different forms of the road safety, to the best of our knowledge no 

studies used monetary value of the traffic crashes based on the home address of the road users and 

factors associating with it.  

Traditionally, in road safety analysis traffic volume was used as the exposure variable, usually in the 

form of traffic count, VMT (Vehicle Miles Traveled), DVMT (Daily Vehicle Miles Traveled), or VMT by 

road classification (Aguero-Valverde and Jovanis 2006; Hadayeghi, Shalaby, and Persaud 2010b; Li 

et al. 2013; Rhee et al. 2016; Pirdavani et al. 2012b, 2012a; Pirdavani, Brijs, Bellemans, and Wets 

2013; Hosseinpour et al. 2018). In case of absence of traffic information, other proxies such as road 

lengths with different speed limit (Abdel-Aty et al. 2011; Siddiqui, Abdel-Aty, and Choi 2012), road 

length with different functional classification (Hadayeghi, Shalaby, and Persaud 2010b; Quddus 

2008), or population has been used (Gomes, Cunto, and da Silva 2017). In case of measuring the 

economic cost of traffic crashes based on the home addresses of the traffic victims at the zonal level, 

using VMT may not reflect the road users’ exposures properly. One way to deal with this issue is to 

use population as a proxy for the exposure variable (Gomes, Cunto, and da Silva 2017; Lee et al. 

2015). However, the population does not reflect the number of trips generated by residents of a 

geographic area nor their trip length. Other studies also used trip generation models as a vector to 

measure exposure (Dong et al. 2014; Dong, Huang, and Zheng 2015; Abdel-Aty et al. 2011; Naderan 

and Shahi 2010; Mohammadi, Shafabakhsh, and Naderan 2018). Although this vector provides 

information regarding exposure of the road users, it fails to capture trip length. A more inclusive 

exposure variable for estimating the economic cost of traffic crashes at a zonal level based on the 

home address of the road users, needs to consider both trip length and trip frequency simultaneously.  

This study has several aims. First, we will use the home address of the road users who were involved 

in traffic crashes to measure road safety (i.e., a Home-Based Approach –HBA). Accordingly, we 

convert HBA crash frequency and crash severity to measure the economic cost of traffic crashes at 

five geographic areas and explore the relationship between travel behavior and economic burden of 

traffic crashes at the zonal level, focusing on whether there is an equitable distribution of crash burden 

within an urban area. Last, we measure the distribution of the burden of traffic crashes at the traffic 

analysis zone (TAZ) level to identifies the groups that are more prone to the burden of traffic crashes. 

Learning about the relationship between exogenous variables, exposure, and traffic crashes cost of 

residents of a specific geographic area may enable safety practitioners and researchers to allocate 

resources to the neighborhoods where the burden of traffic crashes is higher than average, or 

address inequities in the system where groups are bearing a higher proportional economic burden.  

In the next section, we discuss the methodology including the HBA definition, data, and modeling 

approach. The rest of the paper presents and discusses the findings of this study.  

Methodology 
Travel activity 
In this study, one goal was to investigate the relationship between travel behavior and quality of 

transportation infrastructure with crash cost. We used the data from the Knoxville Regional Travel 

Demand model in Tennessee. Tennessee has a worse crash record compared to US national level 

(fatality rate: TN = 1.66 vs. US = 1.34 per 100 MVMT). To this end, we used the 2014 Knoxville 

Regional Travel Demand Model. This Knoxville region is anchored by the city of Knoxville but also 

includes several urbanized areas outside the city. The Knoxville Regional Travel Model (KRTM) has a 

hybrid design using elements of activity-based models. For more information about Knoxville Regional 

Travel Demand Model, please see KRTM (2012). Figure 1 presents the Knoxville Region study area 

that includes Knox, Anderson, Roane, Union, Grainger, Jefferson, Sevier, Blount, and Loudon 

counties. The study area also includes 1,186 TAZs and includes sociodemographic, economic, and 
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travel information of the residents. Table 1 presents the descriptive statistics of the sociodemographic 

variables obtained from TAZs. It is worthwhile to mention that 63 zones had no population (e.g., 

Smoky Mountain National Park, Oak Ridge National Lab) and 135 zones had a population of fewer 

than 100 individuals. To exclude outliers, we excluded these TAZs from the analysis.  

Table 4 TAZ descriptive statistics 

Variable Mean 
Standard 
Deviations Min Max 

Household Income ($) 46655 21075 2349 168227 
Workers Per Household 1.21 0.24 0.00 2.10 
Students Per Household 0.39 0.18 0.00 1.11 
Intersection Density (per square miles) 153 198 3 1657 
Percent Road with Sidewalk 0.21 0.32 0.00 1.00 
Percent Near Bus Station 0.18 0.36 0.00 1.00 
Population Density (Per Square Mile) 1377 2736 3 44072 
Average Speed (MPH) 39.09 8.33 20.00 65.00 
VMT on Interstate from TAZ (miles) 9625 32673 0 287762 
VMT on Arterials from TAZ (miles) 11398 17657 0 163821 
VMT on Others from TAZ (miles) 7146 8294 0 76596 

 

 

Figure 16 Knoxville Regional Travel Demand Model Extent 

Traditionally, in road safety analysis VMT is used as a variable to measure exposure. However, the 

VMT alone might not reflect the activity of residents and the amount of travel in the transportation 

network. To evaluate the activity of road users at the TAZ level (i.e., individual’s exposure), we will 

use the zonal activity as Person Miles Traveled at the zonal level (PMT). 𝑃𝑀𝑇𝑖 combines modeled trip 

rate and trip length for all population in zone 𝑖 and is an index for measuring the zonal activity in each 

𝑇𝐴𝑍 . 𝑃𝑀𝑇 is calculated by equation 1: 

𝑃𝑀𝑇𝑖 = ∑
𝑃𝑖𝑗𝐿𝑖𝑗 

𝑃𝑜𝑝𝑖

𝑛

𝑗=1

 

 

Equation  9  
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where 𝑛 is the index of the destination TAZ, 𝑃𝑖𝑗 is the number of trips produced from TAZ 𝑖 to TAZ 𝑗 in 

one day, 𝐿𝑖𝑗 is the shortest network path between TAZ 𝑖 to TAZ 𝑗,  and 𝑃𝑜𝑝𝑖 presents the population of 

the zone 𝑖. KRTM was used as a source to extract the number of trips for each pair. Shortest path 

between each pair was also extracted from the traffic assignment model at the peak-hour. Figure 4 

presents the distribution of daily activity (PMT) per capita in the KRTM Model at the TAZ level. Visual 

screening of Figure 4 indicates that the rural areas have higher PMT compared to the urban areas.  

 

Figure 17 Average zonal activity (person miles traveled) 

Home-Based Approach definition 
Home address of the road users who were involved in a traffic crash is one of the data elements that 

a police officer records at the crash scene (MMUCC 2012). Using home-address to collect information 

of the road users to collect data element regarding sociodemographic and travel behavior is a 

common practice in urban travel demand analysis (Kanafani 1983) but is not often used in the road 

safety analysis. We use the home-address of individuals involved in crashes, and reported in the 

crash database, as a basis for further analysis. To tie traffic crashes to the home addresses of the 

individuals in this study, we define the HBA crash frequency as the expected number of crashes by 

severity that road users who live in a certain geographic area experience during a specified period. 

This definition attributes traffic crashes to individuals and their residential addresses. We use crash 

frequency and crash severity to calculate the economic cost of traffic crashes at each zone.  

Data and geocoding process  
The crash data in this study was provided by Tennessee Integrated Traffic Analysis Network (TITAN), 

the statewide crash data administered by the Tennessee Department of Safety and Homeland 

Security. The records of 60,104 crashes and information on 148,666 individuals who were involved in 

traffic crashes between 2015 and 2016 in the Knoxville region were retrieved from TITAN. Each 

record includes information about road user type (i.e., driver, motorcyclist, passenger, pedestrian, 

bicyclist), coordinates of the crashes, and addresses of the individual who were involved in traffic 

crashes. After obtaining the address of road users, we used the Bing Application Program Interface 

(API) services to geocode the addresses. The quality of the geocoding was checked by controlling for 

the locality of the addresses. Only those records that had an accuracy level of premises (e.g., 

property name, building name), address level accuracy, or intersection level accuracy was used for 

the analysis (Hezaveh and Cherry 2019b). We were able to successfully match 141,514 (95%) of the 

individuals with a home-location.  
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The economic cost of traffic crashes 
The injury severity in TITAN database follows the KABCO scale for Tennessee provided by FHWA 

(FHWA 2011). In KABCO scale K, A, B, C, and O respectively stand for a crash with fatal, 

incapacitating, non-incapacitating evident, possible injury, and no-injury (FHWA 2017). In order to 

convert the injury severities to crash cost, we used the average values presented in Table 5 

recommended by FHWA (Harmon, Bahar, and Gross 2018) for the year 2010 for the person-injury 

unit. We converted the injury cost to 2017 dollar by the inflation rate (Harmon, Bahar, and Gross 

2018). Notably, crashes with injury level of no-injury has a non-zero value; the non-zero value reflects 

the misclassification of the injury by police officers (Harmon, Bahar, and Gross 2018). By using 

numbers presented in Table 5 and counting crash frequencies by severity at each census tract, we 

measured the total economic cost of the traffic crashes at the TAZ level by using the following 

equation: 

𝐸𝐶𝐶𝑃𝐶𝑖 =
(𝑁𝑣,𝑖 ∗ 𝐶𝑜𝑠𝑡𝑃𝐷𝑂) + ∑ 𝑁𝛼,𝑖 ∗ 𝐶𝑜𝑠𝑡𝛼𝛼={𝐾,𝐴,𝐵,𝐶,𝑂}

𝑇 ∗ 𝑃𝑜𝑝𝑖

 
Equation  10  

where 𝑁𝛼,𝑖 represents the number of individual who live in zone 𝑖 with the level of injury 𝛼, 𝐶𝑜𝑠𝑡𝛼  

presents the traffic injury cost per injury presented in Table 5 and 𝑇 presents the period of the study 

(T = 2 years). 𝑁𝑣,𝑖 presents the number of vehicles with a registered address in zone 𝑖 that were 

involved in traffic crashes, and 𝐶𝑜𝑠𝑡𝑃𝐷𝑂  presents the vehicle unit damage cost. Figure 18 presents the 

distribution of the ECCPC at zonal level in the study area. ECCPC tended to have distributed impacts 

with high economic cost scattered throughout the region.  

 

Figure 18 ECCPC distribution in KRTM 
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Table 5 National KABCO person-injury unit costs (2017 dollar) 

Injury Type Economic person-Injury Unit Costs  
No Injury $6,426  
Possible Injury $24,448 
Non-Incapacitating Injury $36,089 
Incapacitating Injury $94,994.3 
Fatal Injury $1,572,521.48  
PDO Vehicle* $6,830.03  
Unknown Not Applicable  

 

Modeling approach 
Testing spatial dependency  
Visual inspection of Figure 18 indicates that neighborhoods with better safety records (i.e., green 

colors) are surrounded by other TAZs with blue colors. This is also the case for the TAZs with red 

colors. This may be an indicator of the presence of significant spatial autocorrelation. Spatial 

autocorrelation occurs when events occurring at different but nearby locations are correlated. In order 

to statistically check the presence of spatial autocorrelation, in this study we used global Moran’s I 

statistics. Global Moran’s I (Moran 1950) was also used to test whether the model residuals are 

spatially correlated. Moran’s I values range from -1 to +1, where values close to 0 indicate no spatial 

correlation. Moran’s I can be written as:  

𝐼 =  
∑ ∑ 𝑤𝑖𝑗(𝑗𝑖 𝑦𝑖 − 𝜇)(𝑦𝑗 − 𝜇)

∑ (𝑦𝑖 − 𝜇)2
𝑖

 Equation  11  

where 𝑤𝑖𝑗 is an element of a row-standardized spatial weights matrix, 𝑦𝑖 is the ECCPC, and 𝜇 is the 

average ECCPC in the sample. The statistical significance of the Moran’s I is based on the z-score. 

For more details about the calculation of the Moran’s I’s Z-score please see Andrew and Ord (1981). 

A positive and significant Moran's I score indicates clustering in space of similar ECCPC.  

By assuming the presence of significant spatial autocorrelation, we will use model specifications that 

consider the spatial dependency in their structure. Spatial error model (SEM)1 and spatial 

autoregressive model (SAR) are two common models that are used by researchers to consider spatial 

autocorrelation in the road safety analysis (Lee et al. 2015; Rhee et al. 2016; Quddus 2008). The 

distinction between the two models is the method that they consider spatial dependency (Doreian 

1980, 1982). The SAR model considers the direct effect of one element’s response on another’s. This 

interdependency is consistent with the presence of an influence process. In the SEM model, the 

source of the interdependence of the error term is not known and could be due to various unobserved 

processes that do not involve a direct effect of geographical units on one another (Marsden and 

Friedkin 1993; Baller et al. 2001).  

Spatial error model 
In the SEM, the models’ constant variable is treated as a spatially structured random effect vector. 

The core assumption in the SEM is that the observational units in close proximity should exhibit 

effects levels that are similar to those from neighboring units (LeSage and Pace 2009). The SEM is 

similar to the linear regression models with an additional term for the spatial dependency of errors in 

neighboring units. The SEM model can be written as:  

𝑦 = 𝑋β + ε Equation  12 
𝜀 = 𝜆𝑊𝜀 + 𝑢 = (𝐼 − 𝜆𝑊)−1𝑢 Equation  13 
𝑦 = 𝜆𝑊𝑦 + 𝑋β + λWXβ + u Equation  14  

  

 

1 Not to be mistaken by Structural Equation Modeling 
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where 𝑦 is a vector of ECCPC, 𝑋 is a vector of independent variables presented in Table 1, β is the 

corresponding vector of estimated coefficients on 𝑋. In this model, ε is the error term, which consists 

of two parts: 𝑊𝜀 and 𝑢. 𝑊𝜀 presents the spatially lagged error term corresponding to a weigh matrix 𝑊 

and 𝑢 refers to the spatial uncorrelated error term that satisfies the normal regression assumption 

(𝑢 ∼ 𝑁(0, 𝜎2𝐼)). Last, 𝜆 presents the spatial error term parameters, if the value of the spatial error 

parameters equals zero, the SEM is similar to the standard linear regression model.  

Spatial autoregressive model 
A similar approach that accounts for spatial correlation is the SAR model The SAR model can be 

represented as: 

𝑦 = 𝜌𝑊𝑦 +  𝑋β + ε Equation  15  

where 𝜌 presents the spatial autoregressive parameter, 𝑊𝑦 is a spatially lagged variable 

corresponding to 𝑊 matrix, 𝑋 is a vector of independent variables, 𝛽 is the vector of estimated 

coefficients. Last, 𝜀 is assumed to be a vector of independent and identically distributed (𝐼𝐼𝐷) error 

terms. Due to the endogeneity in the 𝑊𝜀 (spatial lag) term, ordinary least-squares (𝑂𝐿𝑆) estimators are 

biased and inconsistent for the spatial-lag model, and instead, maximum-likelihood estimation (Ord 

1975) is used to obtain consistent estimators. (Kim, Phipps, and Anselin 2003). In order to estimate 

the SEM and SAR models, we used GeoDa Software (Anselin 2003).  

Weight matrix  
Choosing a proper weight matrix is crucial for the analysis since it incorporates the prior structure of 

dependence between spatial units (Baller et al. 2001). The Rook and Queen contiguity matrix were 

used in this analysis to establish the weight matrix. The queen weights matrix define neighbors as 

census tracts that share a boundary or corner, whereas, rook only considers those census tract that 

shares a boundary (Anselin 2003). The selection of the optimal weighting matrix could be based on 

the corrected Akaike information criterion –AICc (Hurvich and Tsai 1989); the weight matrix with the 

lowest AICc is preferred (A. Fotheringham and Brunsdon ; Nakaya 2014; Nakaya et al. 2005; 

Hadayeghi, Shalaby, and Persaud 2010b). For more information about the weighting matrix, please 

see Anselin (2003).  

Model comparison and assessment  
A Lagrange Multiplier (LM) is used to test the specifications against SEM and SAR. These tests are 

based on the regression residuals obtained from estimated the model under the null hypothesis 

regression (i.e., OLS). Each of SAR and SEM models has their specific LM statistics, which offers the 

opportunity to exploit the values of these statistics to suggest the likely alternative. The LM statistic 

against SEM (LMSEM) and SAR (LMSAR) models take the following forms: 

𝐿𝑀𝑆𝐸𝑀 =
(

𝑒′𝑊𝑒

𝑠2 )
2

𝑇
 

Equation  16  

𝐿𝑀𝑆𝐴𝑅 =
(

𝑒′𝑊𝑒

𝑠2 )
2

(𝑊𝑋𝑏)′𝑀(𝑊𝑋𝑏)
𝑠2 + 𝑇

 

Equation  17  

where 𝑒 is a vector of OLS residuals, 𝑠2 its estimated standard error, 𝑇 = 𝑡𝑟[(𝑊 + 𝑊 ′)𝑊], 𝑡𝑟 as the 

matrix trace operator, and 𝑀 = 𝐼 − 𝑋(𝑋′𝑋)−1𝑋′. Both LMSEM and LMSAR are asymptotically 

distributed as 𝜒2(1) under the null. Several researchers illustrate the relative power of these tests by 

using extensive simulation studies (Anselin and Florax 1995; Anselin and Rey 1991; Anselin et al. 

1996).  

It is possible that in some cases both LMSEM and LMSAR statistics turn out to be highly significant, 

which makes it challenging to choose the proper alternative. To deal with this issue, (Anselin et al. 

1996) developed a robust form of the LM statistics in the sense that each test is robust to the 

presence of local deviations from the null hypothesis in the form of the other alternative. In other 
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words, the robust LME is robust to the presence of spatial lag, and vice versa. The robust tests 

perform well in a wide range of simulations and form the basis of a practical specification search, as 

illustrated in (Anselin and Florax 1995; Anselin et al. 1996). In this study, we used GeoDa software to 

perform the LM tests. The Queen contiguity matrix was used to generate a spatial weight matrix. In 

addition to LM, to further evaluate the overall model fit and predictive performance, we also used the 

Akaike Information Criterion (𝐴𝐼𝐶𝑐) as a measure of the relative goodness of fit. 

Results and discussion  
Among those involved in traffic crashes, 308 (residence: 252; non-residence: 56) individuals were 

fatally injured as a result of traffic crashes in the KRTM Model area. Moreover, another 17,312 

(residence: 14,225; non-residence: 3,087) individuals were injured (level A, B, or C). The economic 

cost of traffic crashes in the region for the two years between 2015-2016 was $2.5 Billion (2017 

dollars). Over three quarters (78%) of crash victims were from the KRTM area. The economic costs of 

residents of the KRTM was $2.08 billion and for non-residents was $503 million. Table 6 presents 

more details on crash cost based on the driver residential address (KRTM resident vs. non-KRTM 

resident). For example, KRTM residents bore $263 million out of their pocket due to traffic crashes 

with a non-KRTM (external) drivers. 

The mean and median value of ECCPC (for selected TAZs) was $1,399 and $702, respectively (max 

= $28,665), the 90th percentile spans $176 to $3,232. By using average family size at zonal level and 

normalizing the economic crash cost to median household income per capita, we find that the mean 

direct cost of traffic crashes consumed 5.6% (median: 3.85%) of annual families’ income at zonal 

level, and the 90th percentile spans 0.9 to 20.5%. Figure 19 presents the distribution of ECCPC, 

ECCPC per income over average zonal activity, as average zonal activity increases, both ECCPC, 

ECCPC per income increases. For example, TAZs with average zonal activity higher than 40 have a 

substantially higher ECCPC and ECCPC per income compared to those below 40. This trend also 

holds for distribution over income.  

Visual inspection of Figure 20 indicates that TAZs with median household below $25,000 have 

substantially higher ECCPC and ECCPC per income compared to wealthier families. For example, 

TAZs with a median household income of less than $15,000, the average ECCPC is equal to $1,500 

which is 3 times higher than TAZs with a median household income of more than $100,000. Likewise, 

by normalizing the ECCPC with income we learned that the value of ECCPC per income for families 

with income less than $15,000 is 36 times higher (17% v. 0.47%) than TAZs with a median household 

income of more than $100,000.  

Table 6 Economic cost of traffic crashes by driver and resident types (2017 million dollars) 

Person Involved  
Residency 

Driver Type  
Grand Total KRTM  Non-KRTM  

Non-KRTM  19.2 484.1 503.3 

KRTM  1,817.8 263.1 2,081.0 

Grand Total 1,837.0 747.2 2,584.3 
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Figure 19 Distribution of the ECCPC & ECCPC per income with regards to average zonal 

activity 

 

 

Figure 20 Distribution of the ECCPC & ECCPC per income with regards to median household 

income 

Figure 21 presents the spatial distribution of the proportion of the economic cost of traffic crashes to 

families’ income. The gray color in the map exhibits TAZs, where the proportion of the economic cost 

of traffic crashes to families’ income, is less than 6%. The warmer color points out areas in which 

direct cost of traffic crashes over families’ income level is more substantial. A visual inspection of 

traffic crashes in the study area reveals that burden of traffic crashes are larger for TAZs near I-40 

(east/west) and multilane highways that connect major cities in the KRTM area (e.g., Knoxville to 

Maryville, Knoxville to Sevierville). One explanation for more tangible crash burden along the road 

network is the exposure of the residents to high volume corridors with high traffic speeds. These two 

factors may increase both crash frequency and severity. Moreover, households who live very close to 

these corridors could have lower household incomes.  



 

35 | P a g e  

Model Evaluation 
Results of the global Moran’s I, using a Queen contiguity matrix, indicate that there is significant 

spatial autocorrelation (Moran’s I = 0.14, p-value = 0.000). The positive value of the Moran’s I 

indicates the clustering in ECCPC.  

By controlling for AICc as well as lag coefficient values for the estimated SAR, and SEM models in 

different weighting matrices we learned that the queen contiguity matrix for both SAR and SEM has 

significantly better performance (lower AICc) compared to the other alternatives. Considering the non-

zero values of 𝜌 and λ ,we conclude that both SAR and SEM models are significantly different from 

linear regression models.  

 

Figure 21 Proportion of The Economic Cost of Traffic Crashes to Median Families' Income 

Comparison of the SEM, SAR, model by using 𝐿𝑀 indicate that both 𝐿𝑀𝑆𝐸𝑀 and 𝐿𝑀𝑆𝐴𝑅 are 

significant. However, using robust-𝐿𝑀𝑆𝐸𝑀 and robust-𝐿𝑀𝑆𝐴𝑅 tests for comparison indicate that only 

robust-𝐿𝑀𝑆𝐴𝑅 has a significant value. As a result, the SAR model is more suitable compared to the 

other models. Furthermore, comparison of the AICc and model performance, the SAR model has the 

lowest value of the AICc; therefore, the SAR model is more suitable compared to OLS and SEM. 

Table 7 presents the result of the estimated models.  
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Table 7 Results of OLS, SAR and SEM models for prediction of ECCPC 

 SEM   SAR   OLS   
Variable Coefficient Std. Error P-value Coefficient Std. Error P-value Coefficient Std. Error P-value 
Average zonal activity 21.008 1.088 0.000 20.783 1.075 0.000 21.100 1.089 0.000 
Average Speed 15.488 8.507 0.069 16.100 8.232 0.050 17.187 8.377 0.040 
Income ($10,000) -82.673 33.438 0.013 -74.930 30.746 0.015 -92.292 31.158 0.003 
Worker Per Household 789.818 287.103 0.006 842.896 276.897 0.002 927.897 281.764 0.001 
Student per Household -39.040 349.943 0.911 7.374 336.439 0.983 -45.856 342.180 0.893 
Intersection Density (per square miles) 0.663 0.439 0.131 0.631 0.422 0.135 0.765 0.429 0.075 
Percent road with Sidewalk 1176.700 273.907 0.000 1132.080 263.859 0.000 1205.690 268.151 0.000 
Percent Near Bus Station 485.042 242.838 0.046 433.221 223.289 0.052 503.682 226.838 0.027 
Population Density (per Square miles) -0.112 0.027 0.000 -0.115 0.025 0.000 -0.120 0.025 0.000 
VMT Interstate (10,000 miles) 156.811 28.148 0.000 150.221 27.410 0.000 176.145 34.699 0.000 
VMT Arterial (10,000 miles) 172.467 34.784 0.000 165.570 34.209 0.000 -155.453 37.024 0.000 
VMT Others (10,000 miles) -147.868 37.433 0.000 -145.169 36.410 0.000 21.100 1.089 0.000 
Constant -788.099 492.471 0.110 16.100 8.232 0.050 -983.910 482.956 0.042 

Lag Coef. (Lambda) 0.153 0.049 0.002       
Lag Coef. (Rho)     0.17 0.04 0.00    
Moran’s I -0.013   0.000   0.14  0.000 
Log likelihood (Full) -8473.89   -8470.68   -8437.61   
LMSEM    8.4847   0.004   
Robust LMSEM    0.6037   0.437   
LMSAR 15.0911  0.000       
Robust LMSAR 7.2101  0.007       

Akaike info criterion 16973.8   16969.4   16982.4   
Corrected Akaike info criterion 16894.2   16888.9   16901.8   
R-squared 0.42   0.42   0.39   
Number of Observations 956   956   956   
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Parameters estimation and discussion 
All the variables presented in Table 7 (except student per household and intersection per density) have a 

significant and intuitive association with ECCPC in three estimated models. In this study, we used the 

average zonal activity as the individuals’ exposure variable for each TAZ. Therefore, we expected a 

positive sign for the estimated coefficients. Average zonal activity implies that those who travel longer 

distances are more prone to traffic crashes and traffic crashes have a greater impact on them.  

Congruent with previous studies, VMT of roadways in the zone also have a significant association with 

safety outcomes. (Cheng et al. 2018; Lee, Abdel-Aty, and Jiang 2015; Pirdavani et al. 2012b, 2012a; 

Pirdavani, Brijs, Bellemans, Kochan, et al. 2013; Pirdavani, Brijs, Bellemans, and Wets 2013) 

Comparison of the coefficients indicates that vehicle miles traveled on arterial roads (i.e., major and minor 

arterials) has a greater impact on ECCPC compared to the interstate. This differences in the magnitudes 

could reflect the high access of the arterial roads with more conflicts compared to interstates which could 

increase the likelihood of severe crashes; considering the relatively higher speeds on arterials could be 

another factor contributing to the higher severity of traffic crashes. On the other hand, other road 

classifications (e.g., collector, local) has a negative association with ECCPC. Although many studies 

explored the association between of functional classes and crash frequency at zonal level (e.g., 

Hadayeghi, Shalaby, and Persaud 2003; Quddus 2008; Xu and Huang 2015), only a few considered the 

effect of exposure (i.e., VMT) in different road classes. There is also a need to consider that the definition 

of the functional classes may vary across areas. In a series of studies in Flanders, Belgium, Pirdavani, 

Brijs, Bellemans, Kochan, et al. (2013) and Pirdavani et al. (2012b) reported that VMT on a motorway had 

a smaller effect on total crash frequency compared to non-motorway VMT. In Florida, Xu and Huang 

(2015) reported that proportions of the road with speed limits 25 mph or lower had a negative association 

with crash frequency at a zonal level, whereas, percent of roads at 45 mph and above had positive 

association on zone crash frequencies. Hadayeghi, Shalaby, and Persaud (2003) also reported that total 

local road length in a TAZ had a negative association with all crashes and severe crashes; whereas, 

arterials, expressways, collectors, and ramps had a positive and significant association with crash 

frequency at the zonal level in a study in Canada.  

The significant positive association of the worker per household variable indicates that as proportion of 

workers per household increases (i.e., the proposed increase in work trip frequency) ECCPC also 

increases. This finding agrees with the Naderan and Shahi (2010) study where they reported the number 

of work-trips produced at zonal level has a positive impact with the number of injury crashes, property 

damage only crashes, and total crashes in a TAZ.  

Population density also has a negative association with the economic cost of traffic crashes; the model 

predicts that as density increases the ECCPC decreases. The crash frequency in urban areas is higher 

than rural areas on average; whereas the crash severity is relatively lower (Zwerling et al. 2005), as a 

result, the average economic cost of traffic crashes in the urban areas is lower than rural areas. 

Furthermore, population density could be used as a surrogate for non-motorized transportation; non-

motorized trips are more likely in areas with higher density (Cai et al. 2017; Siddiqui, Abdel-Aty, and Choi 

2012); non-motorized road users do not impose a crash risk to other road users.  

The household income variable also has a negative association with ECCPC, consistent with previous 

studies (Cai, Abdel-Aty, and Lee 2017; Cai et al. 2017; Pirdavani et al. 2012b; Pirdavani, Brijs, 

Bellemans, and Wets 2013; Gomes, Cunto, and da Silva 2017; Cheng et al. 2018). People with higher 

household incomes tend to have lower crash rates and, in our model, lower ECCPC. This negative sign 

also is in agreement with road safety literature (World Health Organization 2015; Marshall and Ferenchak 

2017). In addition, it is possible that individuals with higher income use safer vehicles. As a result, their 

crash severity and eventually the economic cost of their traffic crashes decreases.  

As expected, road network characteristics have a significant association with safety level. Percent of 

roads with sidewalk and number of bus stations also have a significant positive association with ECCPC. 
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Cai et al. (2017) also reported that sidewalk length has a positive association with crash frequency, 

severe crash, and non-motorized crash frequency. Considering that sidewalk is utilized by vulnerable 

road users, we may expect higher injury severity in case of crashes with this road user type and hence, 

higher ECCPC; this trend also holds on for the number of bus stops in which more non-motorized road 

users have access to. Intersection density in the TAZ also has a positive (but non-significant) association 

with ECCPC. Other literature found that the number of intersection could be correlated with higher 

numbers of conflict and accordingly the higher number of traffic crashes (Ladron de Guevara, 

Washington, and Oh 2004; Pirdavani et al. 2012a; Hadayeghi, Shalaby, and Persaud 2003; Lovegrove 

and Sayed 2006; Abdel-Aty et al. 2011; Gomes, Cunto, and da Silva 2017). It is well-established that 

speed is a contributing factor to both crash frequency and crash severity (Highway Safety Manual 2010; 

Elvik et al. 2009). The average speed of roads in a TAZ has a positive association with ECCPC agreeing 

with previous research (Pirdavani et al. 2012a; Abdel-Aty et al. 2011; Hadayeghi, Shalaby, and Persaud 

2003), 

Conclusion 
The main aim of this study was to explore the association between travel behavior, and economic cost of 

traffic crashes at a fine geographic level, aiming to highlight equity challenges associated with disparities 

in crash cost burden. To explore this problem, we used the home-address of individuals who were 

involved in traffic crashes in the study area and assigned the economic cost of traffic crashes to their 

corresponding TAZ. We also determined activity (PMT) per capita for residents of each TAZ to measure 

their exposure in the transportation network. By controlling the traffic crash burden over the average zonal 

activity, we learned that the burden of traffic crashes is higher for those who travel more or have a lower 

income. As a result, these groups require further attention in the transportation design process or in case 

of allocating funding to ease the burden of traffic crashes.  

Our analysis indicates that spatial dependency exists in the ECCPC, and it is not randomly distributed in 

space. Our analysis also suggests that that ECCPCs are not generated solely by the internal structural 

factors represented in the OLS model. Comparison of different spatial models indicates the SAR model 

with Queen contiguity matrix is more suitable for interpreting the relationship between ECCPC and travel 

behavior characteristics at the zonal level. Considering the underlying assumptions of the SAR model, we 

may conclude that ECCPC in one TAZ is influenced by ECCPC in neighboring TAZs. Therefore, a 

neighborhood with poor traffic safety outcomes poses negative externality to its neighbors and vice versa.  

Geographic distribution of the negative externalities of the traffic crashes shows the burden of traffic 

crashes is more tangible in the vicinities of the interstates and multilane highways where TAZs’ residents 

are more prone to high-speed traffic and higher road classification. First, by designing a transportation 

network with the aim of diverging high-speed traffic from residential areas or managing the accessibility of 

the residents near the high-speed, high volume roads. The second strategy may target average zonal 

activity by eliminating a portion of trips by promoting sustainable transport. Moreover, an increase in 

diversity, mixed land-use design, and non-motorized oriented design would also reduce both trips rate, 

trip length, modal shift (Cervero and Kockelman 1997) and eventually average zonal activity. Reduction in 

average zonal activity and VMT has a direct impact on the economic cost of traffic crashes. The economic 

cost of traffic crashes at the zonal level could also be used as an index for allocating proper 

countermeasures and interventions to areas where the burden of traffic crashes is more tangible, which 

can be done by investment in the safer infrastructure and educational interventions.  

In summary, in this study we introduced a method to measure the tangible cost of traffic crashes at the 

zonal level, which could be straightforwardly integrated to travel demand analysis. The authors 

recommend using this measure as a criterion to evaluate future scenarios of development of the 

transportation system in metropolitan areas to identify how those scenarios impact safety costs and 

distributional impacts of safety externalities.  
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Abstract 
Global road safety records demonstrate spatial variation of comprehensive cost of traffic crashes between 

countries. To the best of our knowledge, no study has explored the variation of this matter at a local 

geographical level. This study proposes a method to estimate the comprehensive crash cost at the zonal 

level by using person-injury cost. The current metric of road safety attributes safety to the location of the 

crash which makes it challenging to assign the crash cost to home-location of the individuals who were 

involved in traffic crashes. To overcome this limitation, we defined Home-Based Approach crash 

frequency as the expected number of crashes by severity that road users who live in a certain geographic 

area have during a specified period. Using crash data from Tennessee, we assign those involved in traffic 

crashes to the census tract corresponding to their home address. The average Comprehensive Crash 

Cost at the Zonal Level (CCCAZ) for the period of the study was $18.2 million (2018 dollars). Poisson and 

Geographically Weighted Poisson Regression (GWPR) models were used to analyzing the data. The 

GWPR model was more suitable compared to the global model to capture the spatial heterogeneity. 

Findings indicate population of people over 60-years-old, the proportion of residents that use non-

motorized transportation, household income, population density, household size, and metropolitan 

indicator have a negative association with CCCAZ. Alternatively, VMT, vehicle per capita, percent 

educated over 25-year-old, population under 16-year-old, and proportion of non-white races and 

individuals who use a motorcycle as their commute mode have a positive association with CCCAZ. 

Findings are discussed in line with road safety literature.  

Keywords: Comprehensive Crash Cost; Home-Based Approach; Geographically Weighted Regression; 

Road Safety. 
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Introduction 
Annually more than 1.2 million individuals lose their lives on roads globally. Likewise, between 20 to 50 

million individuals are impacted by serious and sometimes permanent injuries in traffic crashes. World 

Health Organization reports on road safety indicate road fatality rate (death per 100,000 population) 

varies across countries (World Health Organization 2015). The traffic fatality rate is approximately two 

times higher in low and middle-income countries compared to high-income countries (21.5, 19.5, and 10.3 

per 100,000 respectively). Spatial variation in road safety performance indicators and social costs of 

traffic crashes on roads could be attributed to several external factors: namely safety measures and 

programs, traffic structure, and culture of a country (Koornstra, Lynam, and Nilsson 2002). These factors 

also reflect study area characteristics such as demographics, weather, reporting practices, and the 

economy (Koornstra, Lynam, and Nilsson 2002).  

Social cost or Comprehensive crash cost of traffic crashes consists of several components including 

medical cost, loss of production capacity, costs of property damage, administrative costs, and economic 

valuation of lost quality of life (Elvik et al. 2009; Harmon, Bahar, and Gross 2018). These components 

could be categorized into two main categories; tangible and intangible cost. Tangible costs reports are the 

economic costs of traffic crashes that can be directly measured such as medical bills and lost wages. The 

intangible costs comprise the other impacts of crashes and can be monetized as quality-adjusted life 

years (QALY) (Harmon, Bahar, and Gross 2018).  

Road safety literature provides several instances of studies regarding the comprehensive crash cost at 

country level (e.g., Wegman and Oppe 2010; García-Altés and Pérez 2007; Mohan 2002; Blincoe et al. 

2015; Ahadi and Razi-Ardakani 2015). Findings indicate that traffic crashes cost 1-2% of Gross Domestic 

Product (GDP) of high-income countries and 3% of GDP in low and middle-income countries. (WHO 

2015; Jacobs, Aeron-Thomas, and Astrop 2000). In the United States, societal harm from traffic crashes 

in 2010 was estimated to be over $836 billion. The economic cost of traffic crashes in the US was 

estimated to be over $242 billion which is equal to 1.6% of the US GDP (Blincoe et al. 2015). This trend 

also holds within a country; for example, several studies in the United States showed that in rural areas 

the fatality rate is several times higher than the majority of urban areas (Marshall and Ferenchak 2017). In 

addition, some ethnicities such as Hispanic, African-American, and Native American are more prone to 

traffic crashes –i.e., they have higher crash rates (Mayrose and Jehle 2002; Braver 2003; Campos-

Outcalt et al. 2003; McAndrews et al. 2013); this is also the case for the fatality rate (Schiff and Becker 

1996; Baker et al. 1998; Harper et al. 2000). Furthermore, vulnerable road users (i.e., pedestrians and 

bicyclists) and lower-income neighborhoods have higher fatality rates compared to motorized road users 

and wealthier neighborhoods (Marshall and Ferenchak 2017).  

To the best of our knowledge, the road safety literature has abundant examples of estimating the societal 

outcome of traffic crashes at aggregate level (i.e., country); however, there are no studies that 

investigated comprehensive crash cost at a fine geographical level (e.g., traffic analysis zone, census 

tract) and explores the factors correlating with it by using a Macroscopic Crash Prediction Models 

(MCPM). Furthermore, we may expect that traffic crashes do not impact geographic areas in equitable 

ways. Therefore, we expect the comprehensive cost of traffic crashes has spatial variation within a 

country, city, or finer geographic unit. In addition, learning about the areas where their residents are more 

prone to the burden of traffic crashes would help safety practitioners and researchers to allocate proper 

countermeasures to reduce the burden of traffic crashes or providing resources to reduce the burden of 

traffic crashes.  

Macroscopic Crash Prediction Models 
In order to study the societal cost of traffic crashes, we will measure societal cost at the zonal level by 

using MCPM. MCPM is a set of methods that are used to investigate the relationship between safety at 

zonal level and socioeconomic factors (Huang and Abdel-Aty 2010; Aguero-Valverde and Jovanis 2006; 
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Hadayeghi, Shalaby, and Persaud 2010b; Pulugurtha, Duddu, and Kotagiri 2013), travel behavior 

(Naderan and Shahi 2010), road infrastructure and traffic flow (Huang and Abdel-Aty 2010; Abdel-Aty et 

al. 2011; Quddus 2008; Xu and Huang 2015; Pirdavani et al. 2012b), and environment condition (Aguero-

Valverde and Jovanis 2006). Various type of spatial units have been used by researchers; from fine level 

such as traffic analysis zones (Hadayeghi, Shalaby, and Persaud 2010b; Pirdavani, Brijs, Bellemans, and 

Wets 2013; Dong et al. 2016; Pirdavani et al. 2012b; Xu and Huang 2015; Gomes, Cunto, and da Silva 

2017; Pulugurtha, Duddu, and Kotagiri 2013), census tracts (Ukkusuri, Hasan, and Aziz 2011; Wang and 

Kockelman 2013; Hezaveh and Cherry 2019a), and block groups (Levine, Kim, and Nitz 1995) to coarser 

levels such as zip codes (Girasek and Taylor 2010), districts (Haynes et al. 2007), counties (Miaou, Song, 

and Mallick 2003; Aguero-Valverde and Jovanis 2006; Huang and Abdel-Aty 2010), and regions (S. 

Washington et al. 1999).  

In MCPM, safety usually is measured with different indices, namely number of all traffic crashes (Naderan 

and Shahi 2010; Pirdavani et al. 2012b; Pirdavani, Brijs, Bellemans, and Wets 2013; Huang et al. 2016; 

Miaou, Song, and Mallick 2003; Cai et al. 2017; Hezaveh and Cherry 2019a), number of property damage 

only crashes (Naderan and Shahi 2010; Aguero-Valverde 2013), frequency of injury/severe crashes (Xu 

and Huang 2015; Aguero-Valverde 2013; Cai et al. 2017), and crashes of specific road users (e.g., non-

motorized, bicyclists) (Cai et al. 2017; Cheng et al. 2018; Saha et al. 2018; Lee, Abdel-Aty, and Jiang 

2015). Although using different dependent variables enable researchers to investigate the correlation of 

exogenous variables and traffic crash outcomes, it does not provide information about the association of 

exogenous variable and ultimate outcome – societal cost (i.e., comprehensive cost of traffic crashes) - of 

road safety. For example, the crash rates in an urban area are higher than rural area; but the fatal injury 

rate and crash injury rate in the urban area is lower than the rural area (Zwerling et al. 2005; NHTSA 

2013).  

Learning about the relationship between exogenous variables and comprehensive cost of traffic crashes 

would help safety practitioners and researchers prioritize their countermeasures based on the monetary 

values of traffic crashes regardless of road user type, the location of the crash (e.g., rural vs. urban), and 

crash severity. The current practices of assessing road safety relies on MCPM based on the location of 

the crash. This metric was best described by Hauer (1997, 24) "the number of accidents (crashes) by kind 

and severity, expected to occur on the entity during a specified period.” This definition attributes road 

safety to the location of the crashes rather than individuals who were involved in traffic crashes (i.e., 

pedestrians, bicyclists, motorcyclists, vehicle occupants, and drivers). As a result, it is challenging to 

attribute crash burden to the location where individuals reside by using this definition.  

Another concern in MCPM models is spatial heterogeneity or spatial non-stationary (LeSage and Pace 

2009; A. Fotheringham and Brunsdon). Spatial heterogeneity exists when exogenous variables do not 

vary identically across space (Xu et al. 2017). One reason for the presence of unobserved heterogeneity 

in the data is the presence of unknown or known factors that are unlikely to be available for the analysis 

(Mannering, Shankar, and Bhat 2016). This phenomenon influences the association among exogenous 

variables and dependent variables; as a result, this relationship may not be constant across the 

observation. Failing to consider the unobserved heterogeneity in count data analysis would lead to 

overdispersion; hence, the variance of the exogenous variable is larger than the mean (Gourieroux and 

Visser 1997; Cameron and Trivedi 1986). Likewise, if unobserved factors correlate with known 

exogenous factors, the estimates would yield biased parameters which eventually lead to drawing 

incorrect inferences (Mannering, Shankar, and Bhat 2016).  

There are different methods to address the heterogeneity in count models. Random parameters count 

data, and geographically weighted poison regression (GWPR) are two common methods to address this 

issue (Xu and Huang 2015; Arvin, Kamrani, and J. 2019). Random parameters models are drawn from 

some random distribution and are assumed to vary randomly over observations (Xu and Huang 2015). 

One of the shortcomings of the random parameter model is that it usually fails to reflect the location of 

observation. Alternatively, spatial models consider the location of the observations to capture spatially 
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structured variability in the effect of contributing factors (Xu et al. 2017; Xu and Huang 2015). Several 

studies showed the advantage of GWPR models with regards to improvement in model goodness of fit 

and capability to explore the spatially varying association among dependent variables and contributing 

factors (Hadayeghi, Shalaby, and Persaud 2010b; Xu and Huang 2015; Xu et al. 2017; Pirdavani et al. 

2014). In addition, estimated parameters of the GWPR reflects local characteristics by enabling 

coefficients to vary across the study area; therefore, GWPR results could be used as a reference for 

transportation agencies focusing on geographic differences (Chiou, Jou, and Yang 2015). 

Regarding the current state of practice in MCPM, this study has three aims. First, it aims to measure 

comprehensive crash cost at the zonal level by using the home address of the road users (i.e., Home-

Based Approach). Secondly, we aim to display the geographical distribution of the comprehensive cost of 

traffic crash across the study area. Third, we will use a geographically weighted regression to account for 

spatial heterogeneity and explore the relationship between sociodemographic factors and comprehensive 

crash cost at the zonal level. The result of this study could help safety practitioners and researchers to 

identify the neighborhoods where their residents are more prone to the burden of traffic crashes and 

target them with proper countermeasures or interventions to reduce their risk. 

Methodology 
Data and Geocoding Process  
To achieve the aims of this study, we need to attribute the safety outcome of traffic crashes to the origin 

of the individuals who were involved in traffic crashes. Therefore, we defined the HBA to measure the 

expected number of crashes by severity that road users who live in a certain geographic area have during 

a specified period. This definition attributes traffic crashes to individuals and their residential addresses 

rather than the location of traffic crashes. We use crash frequency by severity to calculate the 

comprehensive crash cost at each zone.  

The data in this study was provided by the Tennessee Integrated Traffic Analysis Network (TITAN), a 

portal provided by Tennessee Highway Patrol (THP). The records include 694,276 crashes and 

information on 2,026,666 individuals who were involved in traffic crashes between 2014-2016. Each 

record includes information about road user type (e.g., driver, motorcyclist, passenger, pedestrian, 

bicyclist), coordinates of the crashes and addresses of all individuals who were involved in traffic crashes. 

It is also worthy to mention that the TITAN database does not identify at-fault road users in traffic crashes 

so we could not conduct any analysis on the role of each person in the traffic crash.  

After obtaining the address of the pedestrians, bicyclists, motorcyclists, drivers, and vehicle occupants (n 

= 1,615,374), we used the Bing and Google application program interface services to geocode the 

addresses. The quality of the geocoding was checked by controlling for the locality of the addresses. Only 

those records that had an accuracy level of premises (e.g., property name, building name), address level 

accuracy, or intersection level accuracy was used for the analysis (Merlin et al. 2019; Hezaveh and 

Cherry 2019a, 2019b). After controlling for the address quality, 1,521,583 (94.1%) of the records met the 

minimum address quality filter. Of those, 1,358,117 had a Tennessee home-address (89.3% of geocoded 

addresses); the number out of state individuals was 163,466 (10.7% of geocoded addresses).  

In this study, one goal was to investigate the relationship between sociodemographic variables and crash 

frequency at the zonal level. For that reason, we used the census tract as the geographic unit. Census 

data from the US survey in 2010 was also used to obtain sociodemographic data elements in each 

census tract in Tennessee.   
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Table 8 presents the descriptive statistics of the sociodemographic variables obtained from the US 

census in 2010. Figure 22 presents the histogram of HBA crash frequency by severity at the zonal level in 

this study.  

Furthermore, we used highway performance monitoring system data for Tennessee in 2015 to obtain 

Average Annual Daily Traffic for each road segment and calculate total Vehicle Miles Travelled (VMT) at 

the census tract level.  

Comprehensive Crash Cost at the Zonal Level 
The injury severity in this database followed the KABCO scale for Tennessee provided by FHWA (FHWA 

2011). In KABCO scale K, A, B, C, and O respectively stand for a crash with fatal, Incapacitating, Non-

Incapacitating Evident, Possible Injury, and No Injury (FHWA 2017). The comprehensive crash cost 

consisted of two elements: economic person-injury unit costs and quality-adjusted life years (QALY), 

which respectively take account for tangible and intangible consequences of traffic crashes. In order to 

convert the injury severities to crash cost, we used number presented in Table 9, which are based on 

FHWA recommendation for the person-injury unit cost (Harmon, Bahar, and Gross 2018). It is also worthy 

to mention that in their report, Harmon, Bahar, and Gross (2018) considered injury misclassification that 

controlled for more accurate injury accounting at emergency departments. For more details about this 

issue please see Gomes, Cunto, and da Silva (2017). Furthermore, based on the Harmon, Bahar, and 

Gross (2018) study recommendation, we updated the person injury unit cost to reflect 2018 US Dollars. 

For more details, please see Harmon, Bahar, and Gross (2018). 

 

Figure 22 Histogram of HBA Crash frequency by severity type at the census tract level 

In this study, comprehensive cost of traffic crashes at the zonal level consists of two parts. The first part 

reflects the injury severity cost and the second part reflects the vehicle damage cost. By using numbers 

presented in Table 9 and counting crash frequencies by severity at each census tract, Comprehensive 

Crash Cost at Zonal Level (CCCAZ) at census tract was calculated using the following equations:  
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𝐶𝐶𝐶𝐴𝑍𝑖 = 𝑃𝐶𝐼 ∗ ( ∑ 𝑁𝛼,𝑖 ∗ 𝐶𝑜𝑠𝑡𝛼 + (𝑁𝑣,𝑖 ∗ 𝐶𝑜𝑠𝑡𝑃𝐷𝑂)

𝛼={𝐾,𝐴,𝐵,𝐶,𝑂}

) 

(1) 

where Nα,i represents the number of individual who live in zone i with the level of injury α, and Costα 

presents the traffic injury cost per injury presented in Table 9. Nv,i presents the number of vehicles with a 

registered address in zone 𝑖 which were involved in traffic crashes, CostPDO also presents the vehicle unit 

damage cost. PCI also represents the Tennessee crash cost Per Capita Income (PCI) ratio adjustment 

factor, the PCI of the state of Tennessee for year 2018 was 0.855 (Bureau of Economic Analysis 2018). 

Figure 23 presents the histogram of the Comprehensive Crash Cost at the zonal level for the period of the 

study. 

 

Figure 23 Histogram of CCCAZ (2018 Dollars) 
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Table 8 Descriptive statistics of the variables 

Variable Mean SD  Range 

Total Population 1526 789 [0, 9281] 
Population Density (Person per square km) 625 979 [0, 32989] 
Average Household Size 2.72 5.3 [0, 243.18] 
Race Proportion     

White 0.77 0.3 [0, 1] 

Non-White 0.22 0.28 [0, 1] 

Means Of Transportation To Work Proportion  

Personal Vehicle 0.92 0.11 [0, 1] 

Carpool 0.1 0.08 [0, 0.82] 

Bus 0.01 0.04 [0, 0.62] 

Motorcycle 0 0.01 [0, 0.17] 

Bicycle 0 0.01 [0, 0.18] 

Walk 0.02 0.05 [0, 1] 

Other Means 0.01 0.03 [0, 0.6] 

Age Cohort Proportion    

16 Years And Younger 0.23 0.08 [0, 0.71] 

16-42 Years Old 0.32 0.11 [0, 1] 

43-59 Years Old 0.25 0.08 [0, 1] 

60 Years Old And More 0.2 0.1 [0, 1] 

Vehicles’ Ownership Per Capita 0.69 0.16 [0, 1.2] 
% Of Educated People Over 25 Years Old 67.67 10.37 [0,99.93] 
Housing Unit    

Percent Of Vacant Housing Unit 0.12 0.1 [0, 1] 
VMT (1,000,000) 0.57 0.69 [0, .74] 
Average Travel Time To Work (Minutes) 25.1 6.6 [0, 65.85] 
Median Household Income ($1,000) 45.7 25.09 [0, 249.3] 

Source: United States Census and HPMS 

 

Table 9 National KABCO person-injury unit costs in 2018 dollars 

Injury Type Crash Cost Per Injury 

Economic person- 
Injury Unit Costs 

QALY Person-Injury 
 Unit Costs 

Comprehensive Crash Cost  
(2018 Dollars) 

No Injury† 6,553 (5,717*) 2,938 (2,563*) 9,491 (8,280*) 

Possible Injury 24,930 (21,749*) 57,227 (49,926*) 82,157 (71,675*) 

Non-Incapacitating Injury 36,800 (32,105*) 112,302 (97,974*) 149,102 (130,079*) 

Incapacitating Injury 96,866 (84,507*) 41,6459 (363,324*) 513,325 (447,832*) 

Fatal Injury 1,603,502 (1,398,916*) 8,880,060 (7,747,082*) 10,483,562 (9,145,998*) 

Unknown    

Vehicle unit cost 6,965 (6,076*)  6,965 (6,076*) 

† The cost reflects the cases where injury severity was falsely assigned.  

* Source: adjusted person-injury cost based on 2010 US Dollar based on Harmon, Bahar, and Gross (2018) 

 

Modeling Approach 
To evaluate safety at zonal level, traditionally, count data models such as Poisson, negative binomial and 

zero-inflated models are commonly utilized owing to the nature of traffic crashes that are usually 

measured as non-negative integers in a specific period of time (Anastasopoulos and Mannering 2009). 

Similar to crash frequency, the comprehensive cost of the traffic crash is a non-negative integer. Hence 

the models that would be used to evaluate CCCAZ must follow the nature of counts model. In addition, 

variations in the relationship over space also could be present in the data (i.e., spatial heterogeneity) 

(LeSage and Pace 2009). The stationary relationship may hide some spatial factors affecting the safety at 

the zonal level, which may eventually affect the accuracy of models only use one constant coefficient for 
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the study area (i.e., global model). Using the analogy between crash frequency and CCCAZ, in this study, 

we will use the Poisson Regression model and the Geographically Weighted Poisson Regression Model 

(GWPR). To directly model the CCCAZ as an integer variable, we also used the population of each 

census tract as the generalized offset variable. We used the GWPR model to reflect the role of spatial 

heterogeneity in the modeling process by using the coordinates of the center of census tracts.  

Poisson Model 
In the Poisson regression, the probability that comprehensive cost of the crash at zone 𝑖 equal to 𝑛 could 

be written as (Greene 2003): 

𝑃(𝑛𝑖) =
𝜆𝑖

𝑛𝑖 exp(−𝜆𝑖)

𝑛𝑖!
  

(2) 

where 𝜆𝑖 (Poisson parameter) is the expected CCCAZ for zone 𝑖 in a three year period, E(ni). In order to 

fit the regression model, the Poisson parameter, 𝜆𝑖, can be written in a logarithm format (Greene 2003):  

ln(𝜆𝑖) = 𝛽𝑋𝑖   (3) 

where 𝑋𝑖 is the vector of the sociodemographic data element extracted from the census tract and 𝛽 is a 

vector of the estimated coefficients. To consider the population variable as an offset variable, we 

constrained the value of the population’s (in logarithm scale) coefficient equal to one (Pérez-Marín and 

Guillen 2019).  

Furthermore, in cases where the mean and the variance are not equal, applying the Poisson regression 

might lead to inappropriate results. in order to statistically test the existence of over-dispersion in the 

Poisson model, the Lagrange multiplier method was performed (Greene 2003): 

𝐿𝐿 =  (
∑ ((𝑦𝑖 − 𝜇𝑖)2 − 𝑦𝑖)𝑁

𝑖=1

2 ∑ 𝜇𝑖
2𝑁

𝑖=1

)

2

  
(4) 

where 𝑦𝑖 is the observed CCCAZ at zone 𝑖, 𝜇𝑖 is the predicted CCCAZ at zone 𝑖, and 𝑁 is the number of 

zones.  

Geographically Weighted Poisson Regression Model 
GWPR can be used to examine whether the association between exogenous variables and CCCAZ 

substantially varies across space (A.S. Fotheringham, Brunsdon, and Charlton 2003). The model can be 

written as: 

ln(𝜆𝑖) = 𝛽0(𝑢𝑖 , 𝑣𝑖) + 𝛽1(𝑢𝑖 , 𝑣𝑖)ln (𝐸𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑗

𝐾

𝑘=1

  
(5) 

where (𝑢𝑖 , 𝑣𝑖) denotes the coordinates of zone 𝑖. It should be noted that in the GWPR, 𝛽𝑘(𝑢𝑖 , 𝑣𝑖) is a 

function of the coordinates of the center of census tract 𝑖. The following equation can be used to 

estimate 𝛽𝑘(𝑢𝑖 , 𝑣𝑖): 

β̂(ui, vi) = (XTW(ui, vi)X)−1XTW(ui, vi)Y  (6) 

where β̂(ui, vi) is the vector of estimated coefficients at zone i, X is the matrix of exogenous variables, Y is 

the n × 1 vector of the dependent variable (CCCAZ), and W(ui, vi) is n × n spatial weight matrix: 
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W(ui, vi) = [

wi1

0
0

wi2

…
…

0
0

… … … …
0 … … win

]  

 (7) 

 

where wij is the weight of variable j at location i. In this approach, a regression equation is estimated for 

each location based on observations at nearby areas. Based on the distance from the regression point 

each area is weighted (areas that are closer have a higher weight than ones that are farther). The W 

matrix can be estimated using an adaptive bi-square kernel, which can be written as: 

wij {(1 − (
dij

diN
⁄ )

2

)

2

 if dij < diN

 0 otherwise  

 

(8) 

where 𝑑𝑖𝑁 denotes the distance to the Nth nearest zone of zone 𝑖. Compared to the fixed bandwidth 

kernels, the adaptive bi-square bandwidth varies based on the data’s sparsity. To determine the 

bandwidth of the adaptive kernel, the corrected Akaike Information Criteria (AICc) (Hurvich, Simonoff, and 

Tsai 1998) was used. The best model is the one with the lowest AICc score (A.S. Fotheringham, 

Brunsdon, and Charlton 2003; Hadayeghi, Shalaby, and Persaud 2010a). 

The non-stationarity test was used to evaluate the existence of variation in the estimated coefficients 

across space (Arvin, Kamrani, and J. 2019; Liu and Khattak 2017). Substantial variations among the 

estimated coefficients across space exist if the difference between upper and lower quartile (𝛿 =  𝛽𝑢𝑝𝑝𝑒𝑟 −

𝛽𝑙𝑜𝑤𝑒𝑟 ) of the estimated coefficients from the GWPR model meets both of the following conditions:  

{  𝑎𝑛𝑑
𝛿 > 1.96 ∗ 𝑆𝐸 

1.96 < max(|𝑧𝑖|)  
 

(9) 

where 𝑆𝐸 is the standard error of the coefficient in the global Poisson model and |𝑧𝑖| is the absolute value 

of the significance z-score of the GWPR model at census tract 𝑖. Otherwise, the coefficient is considered 

as the global coefficient, which does not have a substantial spatial variation. In order to estimate the 

GWPR model, GWR4.0 software which is developed by Nakaya et al. (2012) was used. 

Variable Selection 
A combination of intuition and stepwise regression modeling was used to select the best subset of the 

predictors with an exclusion criterion of p-values greater than 0.20. Moreover, Variance Inflation Factors 

(VIF) was used to control for the multicollinearity in each step. Curious readers could refer to O’brien 

(2007) for more details about the VIF. 

Measures of Goodness of Fit 
To evaluate and compare the performance of traditional Poisson regression, and GWPR, three statistics 

were utilized to measure estimation accuracy. First, we used AIC, a lower value of AIC (Bozdogan 1987) 

represents the better goodness of fit. We can measure AIC as following:  

𝐴𝐼𝐶 =  𝐷 + 2𝑘 (10) 

 
where 𝐷 denotes the model deviance, and 𝑘 is the number of parameters. In the GWPR, due to the non-

parametric framework of the model, the number of parameters is meaningless. Therefore, an effective 

number of parameters should be considered, which can be written as (Nakaya et al. 2005) 

𝐾 = 𝑡𝑟𝑎𝑐𝑒(𝑆) (11) 
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where 𝑆 is the hat matrix. In addition to the AIC, we will also use Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE) to compare the model performances. The lower value of MAE and RMSE indicates 

a better performace.   

Results and Discussion 
Between 2014-2016, 215,481 individuals were injured in traffic crashes and 3,082 died on Tennessee’s 

road. The total compressive crash cost of Tennessean in a three-year period was $75.0 Billion (2018 

dollars). Table 10 shows the cost of traffic crashes based on road users types. Overall, drivers and 

passenger have the biggest share of Comprehensive Cost of traffic crashes (94%). Yet, pedestrian and 

bicyclists crashes average comprehensive cost of traffic crashes was 15.7 and 6.7 times higher than 

driver crashes, respectively. This value reflects the vulnerability of pedestrians and bicyclist compared to 

motorized road users.  

Table 10 Crash cost by road user type (2018 Dollars) 

 Total Cost ($ million) Average Cost ($ 1,000) 

User Type 
Number of 

users 

Compreh. 

Cost  

Economic 

Costs 

QALY 

Costs 

Compreh. 

Cost  

Economic 

Costs 

QALY 

Costs 

Driver 995,670 $41,282  $11,617  $29,815  $41.5  $11.7  $29.9  

Passenger 352,389 $12,644  $3,828  $8,850  $35.9  $10.9  $25.1  

Pedestrian 5,262 $3,431  $579  $2,836  $652.0  $110.1  $539.0  

Cyclists 1,387 $390  $74  $314  $280.9  $53.2  $226.4  
Grand Total 1,354,708 $57,746  $16,098  $41,815  $42.6  $11.9  $30.9  

 

On average, the comprehensive cost of a traffic crash in Tennessee was $92,374. Table 11 presents the 

average number crashes by severity at the zonal level. As crash severity increases, the frequency of 

individuals who suffered decreases. On average, on each census tract 28, 14, and 5 individuals received 

possible injury, non-incapacitating injury and incapacitating injury in a three-year period, respectively. On 

average, 0.7 individuals in each census tract were fatally injured in a traffic crash over the period. The 

mean comprehensive crash cost at census tract level (CCCAZ) for the study period was $18.2 million (SD 

= $13.9 million; Median= $15 million). Figure 24 exhibits a geographical distribution of CCCAZ in 

Tennessee.  

Table 11 National KABCO person-injury unit costs and number of crashes in Tennessee 2014-2016 

based on 2018 Dollar 

Injury Type 

Zonal Level Crash Frequency 

 Total Cost Of Crashes Between 
2014-16 (2010 Dollars)** Mean Std. Dev. Max 

Total Number Of  
Observed Crashes  

No Injury 267.6 179.1 2472 1,099,523 $9,041,888,254  
Possible Injury 28.4 20.8 275 116,652 $8,441,878,352  
Non-Incapacitating Injury 13.5 9.7 114 55,330 $7,284,213,036  
Incapacitating Injury 4.9 3.9 40 20,287 $9,217,372,280  
Fatal Injury 0.7 0.9 7 2,725 $25,323,439,334  
Unknown 1.7 1.9 27 7,071 $0 
PDO Vehicle* 197.1 134.9 19971 810,055 $4,823,938,279  

Total       $64,132,729,534  

* Unit: Crash cost per vehicle 
** Only Reflects Tennesseans’ Part   
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 2 

Figure 24 Geographical distribution of the comprehensive crash cost at the zonal level ($ million) 3 
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Model Comparison 
Table 12 presents the result of the Poisson model and Geographically Weighted Poisson Regression with 

the adaptive bi-square kernel for predicting CCCAZ. We also tested the sensitivity of the model with fixed 

Gaussian, fixed bi-square and adaptive Gaussian kernels for model estimation. The adaptive bi-square 

kernel had the lowest value of the AICc. Therefore, to maintain concision, we only included the adaptive 

bi-square kernel results. Notably, we found that the results were largely consistent with the adaptive bi-

square kernel.  

The value of the Lagrange multiplier for the GWPR model and global model are 0.10, 0.13, respectively, 

which is less than the critical value of Lagrange multiplier (𝜒(1)
2 = 3.84). Therefore, we can conclude the 

overdispersion is not an issue in this study. Moreover, the comparison of the AIC, AICc, deviance, MAE, 

and RMSE presented in Table 4 also indicate that the GWPR model is more suitable compared to the 

global model. The value of the Moran’s I of residuals (Moran’s I = 0.009) indicate that in the GWPR model 

the residuals are not spatially correlated. Furthermore, the VIF values (average = 1.6, max = 2.9) also 

indicate that the multicollinearity in not an issue.  

Parameter Estimation 
Results of the stationary test indicated in the GWPR model, all the covariates in the GWPR model have a 

local effect. Figure 25 presents the spatial effect of the estimated parameter on CCCAZ. Only those 

variables that have a significant effect are presented in Figure 25; the insignificant coefficients are 

presented with a white color. It is worthy to mention that the estimated coefficients in the traditional fixed 

models always fall into the range of correspondence counterparts in the spatial models (Xu and Huang 

2015), indicating that the estimated parameters in the global models (i.e., fixed models) characterize the 

average effects of the factors on the dependent variable. The sign of the median of all the variables in the 

GWPR model (except mean of the proportion of road users who use bus and proportion of road users 16 

years old and younger) is consistent with the Poisson model which attest the aforementioned.  

Analysis of the local distribution of the estimated coefficients indicates that in most variables (except 

population density, median family income, and household size) the sign of the variables vary from 

negative to positive, which is some cases are unexpected. The counterintuitive sign is not an uncommon 

issue considering the geographically weighted regression models and has been reported in previous 

studies (Hadayeghi, Shalaby, and Persaud 2010b; Chow et al. 2006; Pirdavani, Brijs, Bellemans, and 

Wets 2013; Xu and Huang 2015). Some studies attributed this issue to the local multicollinearity 

(Hadayeghi, Shalaby, and Persaud 2010b); however, this was not the case for this study. Results of the 

VIF test on areas where signs were counterintuitive did not raise the local multicollinearity issue; VIF 

values ranged between 1.01 to 3.05. Another issue could be the presence of over-dispersion in the 

dependent variables (Xu and Huang 2015). As a result, the Poisson model could produce more significant 

variables compared to the negative binomial model (Lord and Mannering 2010). This issue needs to be 

investigated in future studies.  
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Table 12 Results of the Poisson model for predicting CCCAZ ($100,000)  1 

Variable 
Estimate 

Stand. 

Error 
z(Est/SE) Mean STD Min 

lwr 

Quartile 
Median 

Upr 

Quartile 
Max Local 

Constant -3.2939 0.0233 -141.23 -3.1656 0.4972 -4.4814 -3.5978 -3.2531 -2.7313 -1.9068 yes 

Age Cohorts            
16 Years And Younger -0.0004 0.0003 -1.55 0.0017 0.0053 -0.0147 -0.0013 0.0007 0.0062 0.0140 yes 

60 Years Old and More -0.0070 0.0002 -35.42 -0.0044 0.0037 -0.0110 -0.0077 -0.0049 -0.0013 0.0031 yes 

Proportion of Minor Race 0.0032 0.0001 47.10 0.0033 0.0020 -0.0056 0.0026 0.0034 0.0045 0.0080 yes 

Travel to Work Mode            
Motorcycle 0.0442 0.0017 26.20 0.0351 0.0392 -0.0638 0.0094 0.0364 0.0635 0.1522 yes 

Bus 0.0019 0.0004 4.28 -0.0033 0.0133 -0.0365 -0.0143 -0.0034 0.0038 0.0481 yes 

Non-Motorized Modes -0.0043 0.0004 -11.06 -0.0056 0.0094 -0.0366 -0.0117 -0.0079 0.0022 0.0292 yes 

Average Travel Time To Work 0.0141 0.0002 63.57 0.0101 0.0045 -0.0031 0.0065 0.0093 0.0137 0.0251 yes 

Household Size -0.0223 0.0014 -15.75 -0.0571 0.0519 -0.2342 -0.0953 -0.0316 -0.0180 0.0544 yes 

% Educated Over 25 Years Old 0.0079 0.0003 30.90 0.0092 0.0067 -0.0121 0.0077 0.0096 0.0137 0.0198 yes 

Median Family Income 

($1,000) 
-0.0044 0.0001 -73.89 -0.0048 0.0013 

-0.0080 -0.0056 -0.0051 -0.0039 -0.0008 yes 

% Vacant Household 0.0057 0.0001 40.06 0.0089 0.0050 -0.0015 0.0059 0.0084 0.0112 0.0216 yes 

Vehicle Per Capita 0.6573 0.0152 43.21 0.5253 0.4432 -0.8005 0.1758 0.3955 0.8985 1.9799 yes 

Vehicle Miles Traveled 

(1,000,000) 
0.2708 0.0165 16.38 0.0061 0.4124 

-1.3157 -0.2697 0.0232 0.3177 0.7178 yes 

Population Density (Population 

Per Square Kilometer) 

-9.00E-

05 
2.0E-06 -39.80 -1.3E-04 6.1E-05 -3.7E-04 -1.6E-04 -1.5E-04 -8.4E-05 -1.9E-05 yes 

Metropolitan Indicator -0.0059 0.0032 -1.85 0.0005 0.1083 -0.2598 -0.0631 0.0285 0.0721 0.2895 yes 

AIC 184877    163309        
AICc 184877   163324        
Deviance 184845  

 162961        
Percent Deviance Explained 0.145  

 0.246        
Lagrange Multiplier 0.125  

 0.106        
RMSE  7743.11   6861.31        

Mean Absolute Deviation 66.59  
 62.63        

R2 Poisson 0.41  
 0.49        

Moran’s I  0.065     0.009        
 2 

 3 
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 4 

Figure 25 Local effect of the estimated coefficients in the GWPR model 5 
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Means of travel to work have a significant impact on CCCAZ. The proportion of road users who use 

motorcycle also has a positive sign in most of Tennessee; however, the sign of the estimated coefficients has 

a negative association with CCCAZ in the Knoxville metropolitan area. Moreover, means of estimated 

coefficients of non-motorized modes (i.e., walk and bicycle) and bus in the local model have a significant 

negative association with the CCCAZ. Local model estimation indicates that non-motorized modes of 

transportation has a negative association with CCCAZ in Memphis and Nashville metropolitan areas, 

whereas, in Knoxville and Chattanooga metropolitan areas this variable has a positive association with 

CCCAZ. In the Knoxville, Nashville and Chattanooga metropolitan areas, the estimated coefficients for the 

proportion of road users who use public transit has a negative association with CCCAZ. In the Memphis 

metropolitan area, this variable has a significant positive association with CCCAZ; however, the magnitude of 

the estimated coefficients is close to zero. One explanation for the negative sign of both bus and non-

motorized road users could be a reduction in motorized vehicle volume in the surrounding of the residential 

area, which reduces traffic conflicts and eventually exposure to motorized traffic to other residents of the 

census tract. On the other hand, the poor design of a multimodal network could adversely impact the safety of 

non-motorized and public transit users. The difference between signs of the estimated coefficients in the 

different metropolitan areas needs to be investigated in more details in future studies. 

Population density also has a negative association CCCAZ; the model predicts that as density increases the 

CCCAZ decreases. The sign of the population density is intuitive and is in agreement with the previous 

studies. For example, population density is associated with higher crash frequency for all traffic crashes, and 

vulnerable road user crashes (Zwerling et al. 2005; Marshall and Ferenchak 2017). Crash frequency in high-

density areas such as urban areas or metropolitan areas is usually higher than rural or non-metropolitan 

areas; but, the crash severity is relatively lower (Zwerling et al. 2005; Clark 2003; Dumbaugh and Rae 2009). 

As a result, the overall effect of the population density is constructive and reduces the comprehensive cost of 

traffic crashes. The Metropolitan indicator also is a proxy for urban areas. Interestingly, Knoxville and 

Memphis Metropolitan areas coefficients have a negative association with CCCAZ, which is different from the 

corresponding signs in the Nashville Metropolitan. 

Along with previous literature, findings indicate that age cohorts have a significant relationship with the crash 

outcome (e.g., Wier et al. 2009; Gomes, Cunto, and da Silva 2017; Dong et al. 2016). The proportion of 

population 16 years and younger has a varying sign across the state. While the percentage of individuals over 

60-years-old has a significant negative association with CCCAZ (except in the Memphis metropolitan area). 

One may expect the senior population due to their vulnerability will suffer from higher injury severity (Yee, 

Cameron, and Bailey 2006); conversely, senior population have a lower trip rate (e.g., exposure to traffic) 

compared to other groups (KRTPO 2008; Williams and Carsten 1989; Massie, Campbell, and Williams 1995). 

As a result, in this study percent of the senior population has a negative effect on CCCAZ (with the exception 

of the Memphis metropolitan area) compared to other age cohorts. 

Considering racial distribution, the estimated model indicates that the population of non-white residents has a 

significant association with increasing CCCAZ. This finding agrees with previous research (Marshall and 

Ferenchak 2017; McAndrews et al. 2013). The percentage of the population educated over 25 years old 

(except in some rural areas in West-Tennessee), and the percentage of a vacant houses in a census tract 

also has a significant positive impact on CCCAZ. Although one may expect safer behavior from educated 

people, it was surprising that this variable’s estimated coefficients’ sign is counterintuitive. The negative sign 

could be attributed to a higher trip rate of this group. This issue needs further analysis. Household size also 

has a negative association with CCCAZ, which indicates as average household size increases the CCCAZ 

decreases. One explanation could be the lower per-capita trip rate of individuals in families with bigger 

household size compared to smaller households in the study area (KRTPO 2008).  

Variables that explain the economic status of each census tract are also associated with the CCCAZ. Median 

family income is a significant predictor of the CCCAZ; a negative sign of the variable suggests that as family 

income increases the CCCAZ decreases. The sign agrees with previous studies that show road users with 

lower income are more prone to traffic crashes (Lee, Abdel-Aty, and Choi 2014; Males 2009; World Health 

Organization 2015; Lee and Abdel-Aty 2018). Furthermore, lower-income families’ vehicles usually have 

fewer safety features which may increase the likelihood of severe injuries (Girasek and Taylor 2010). In 

contrast, vehicles per capita has a significant impact on the CCCAZ; the positive sign indicates that as this 

variable increases, the social outcome of traffic crashes gets worse. Vehicles per capita also could be used 
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as a proxy for activity (i.e., amount of vehicle traveled) or lack of multi-modality; we expect a higher trip rate in 

areas with higher vehicle ownership (e.g., Khattak and Rodriguez 2005; KRTPO 2008). These findings are 

also in agreement with studies that focused on human factors that show that some groups (e.g., lower 

income, lower education, young road users) are more prone to aberrant behaviors (Nordfjærn, Hezaveh, and 

Mamdoohi 2015; Hezaveh et al. 2017; Hezaveh et al. 2018; Davey et al. 2007; Elliott, Baughan, and Sexton 

2007; Özkan et al. 2006). 

VMT and average travel time to work could be interpreted as proxies to exposure. The expectation was to see 

higher crash cost as these two variables value increase. The models indicate that VMT in the surrounding 

area of residents has a positive association with CCCAZ. However, considering the local effect and 

geographical distribution of this variable in Figure 4, we noticed that in the Knoxville metropolitan area and 

some rural area, VMT has a negative association with CCCAZ. Analyzing the local coefficient indicate that the 

multicollinearity was not an issue in the areas with counterintuitive signs. This issue needs to be investigated 

in future studies.  

Average travel time to work, which represent the amount of time that individuals spend in traffic on their work 

trips also has a significant positive association with CCCAZ. The positive sign in the model indicates that as 

travel time increases the crash cost at zonal level increases. Travel time could be interpreted as an indicator 

of accessibility (Merlin et al. 2019; Marshall and Ferenchak 2017). Increase in accessibility would decrease 

the travel time (by reducing trip length), VMT and eventually would reduce the comprehensive cost of traffic 

crashes.  

Conclusion 
In this study, we used the Home-Based Approach crash frequency at the zonal level to calculate the 

comprehensive crash cost at the zonal level. Unlike traditional road safety analysis that aggregates crashes at 

the location of the crash, the HBA attributes road safety to the home-address of individuals in a traffic crash. 

Consequently, we measured the comprehensive cost of traffic crashes at the zonal level by using person-

injury crash cost.  

Findings indicate that the burden of traffic crashes does not affect the study area in equitable ways. Moreover, 

over-dispersion is not an issue regarding CCCAZ analysis in this study, hence the Poisson model is suitable 

for evaluation of the relationship between sociodemographic variables and CCCAZ at the zonal level. 

Comparison of the performance of the GWPR and Poisson models shows the substantial existence of spatial 

heterogeneity in the analysis.  

This study’s findings are broadly in agreement with road safety literature. We find that an increase in 

population density reduces the societal cost of traffic crashes at the zonal level; increase in residential 

density, particularly in the urban areas is correlated with the reduction in speeds. On the other hand, an 

increase in travel time and consequently higher traffic exposure adversely affect the social cost of traffic 

crashes.  

Comprehensive crash cost at the zonal level could be used as a tool for assigning proper countermeasures or 

interventions to the areas where the disproportionate economic burden of traffic crashes exists or to promote 

vertical equity in the distribution of road safety countermeasures. Moreover, the HBA could be an 

advantageous element for developing policies that support groups that are more prone to burden from road 

traffic crashes. 

There are several possible extensions for this study; first we can learn to reduce the injury misclassification 

error by linking police crash reports to health-oriented databases (Cherry et al. 2018) to get a better 

understanding of injury outcome and subsequently a more accurate measurement of the injury. Second, the 

variables that we used in this study was mostly limited to the demographics of residents extracted from the 

US Census. Adding extra variables regarding transportation network and travel behavior would help us 

understand the relationship between travel behavior and the comprehensive cost of traffic crashes. Third, 

based on our findings, we are recommending the use of the home address of the road users to target the 

areas that are more prone to the burden of traffic crashes by proper education and enforcement 

countermeasures.  
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