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Introduction: Safe Systems

« Creating new knowledge to advance
transportation safety through a
systems-based approach

 Distraction & impairment can
substantially lower driver
performance
« Limit drivers’ attention to driving tasks
* Increase reaction time
* Increase driver workload

 Distracted & impaired driving
contribute to ~35% of all
transportation-related deaths

 In 2016: 10,497 fatalities had distracted
& impaired driving as main contributors
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eTypes of impairment
eAlcohol
eDrug
eFatigue
eDuration of distraction
*Type of distraction

-

e Low-risk Tire Strike
e Minor Crash

* Moderate Crash

e Severe Crash

\_

eDriving speed
eDriving instability
eSpeed volatility

eAcceleration/Deceleration
volatility

Impairment Driving

J
/Distraction f§j Performance
Crash
Severity N

*Risk of involvement in a safety
critical event

eNear-crash

eCrash

J

L

This project explores the association of impairment & distraction on crash
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Research objectives

» Develop a systems framework to integrate & analyze driver
biometrics, vehicle kinematics, & roadway/environment data

« Conduct in-depth analysis of impairment & distracted driving
using detailed Naturalistic Driving Study (NDS-SHRP 2) data

« Quantify instantaneous crash risk by real-time monitoring of
driver biometrics, vehicular movements, & instability in driving
using Al techniques

 Demonstrate collection & processing of driver biometric,
vehicle, & roadway surroundings data using experimentation in
simulated & naturalistic settings
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Framework for impairment & distraction
association with driving performance




Study Highlights

Overall goal:

* Role of impairment/distraction on driving performance (instability in driving) & crash
intensity (severity)

Framework:

« Systems-based path analysis for how a system of predictors correlates with multiple
dependent variables

Data
« SHRP 2 NDS data contains:
— Crash severity (Dependent Variable)
— Distraction & impairment; secondary tasks based on gaze
— Vehicle kinematics before, during, & after crash
— Driver behavior
— Driver instability (Dependent Variable)
— Roadway/environmental factors

« Key results

« Distracted & aggressive driving increase instability in driving
 Distraction directly & indirectly increases crash intensity
« Instability in driving is strongly associated with crash intensity
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System dynamics framework

Research guestions:

« How is distracted & impaired driving related to instability in driving
performance?

 What is the direct & indirect role of distraction & impairment on crash

Severity? associated factors, X

'/Drn rer Behavior: )
Distracted driving . -
Aggressive driving Driving instability, ¥}
Seatbelt use p1 Speed volatility
Both hands on wheel J Acceleration volatility
*  Deceleration volatility
6.03(1“}134’ and \
environmental factors:
Location of crash
Relation to junction
Intersection influence 14
Traffic density
Road ali ent
Traffic ﬂ?ﬂl Crash intensity, Y,
Light condition B ] ] ]
Weather condition 2 *  Low-rigk Tire Strike ﬁ3 —
. ' «  Minor crash — Driving speed ]
\ Surface condition / * Police-reportable crash [ )
____________________ \ *  Most severe
! Vehicle-specific factors |
s Vehicle type ;
' s+ Vehicle age |
' Safety features I
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Final model - Pathway diagram

Distraction & aggressive driving:
* Increase driving instability
« Directly & indirectly increase chances of involvement in a severe crash

Distracted Driving

Aggressive Driving

Intersection Influence

Crash intensity:

N

)l Speed Volatility |
Low-risk tire strike
(base)

I
Deceleration
Volatility
Minor crash

Traffic Density ‘—4 * Police-reportable crash
*  Most severe
Relation to Junction

Legend

Driver Behavior Factors

Locality

4

Weather

Driving Stability Factors

Roadway/Environmental
Factors
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Summary

Analyzed high resolution naturalistic driving data with information on
distraction/impairment, driver behavior, vehicle kinematics, & severity
of crashes

Developed a system dynamics pathway diagram to explore
* Role of impairment/distraction on driving performance (instability in driving)

* Quantified direct and indirect associations of distraction and impairment on
crash intensity (severity)

Driving volatility is used as a proxy of driving instability
Distracted & aggressive driving increase driving instability

Distraction directly & indirectly (through driving instability) increases
crash intensity
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Inference-based assessment of
Impairment & distraction on crash risk




Overall framework

« SHRP 2 NDS data
« Baseline-non-event driving (N=7394)

* Near-crash (N=1228) - Assoctated factors. X
« Crash (N=617) gf: ( \_ —————
2 L
- Available data i [ et )
« 15 sec. of observations for each ' Control variables 1
event | | Driver Behavior:
- Instantaneous vehicle kinematics Y | By
* Driver distraction profile Y| I mrmrm—r i i S
fndmérswlion influence : 4 7

*  Weather condition

. . raffic density « Baselin
Key results o N ] lmgdzm?m .. e
. . . . i} S | . . +  Tmaffic flow '
* Longer distraction duration - Higher [ 5] [ 0! | e Light condition ;

probability of involvement in safety- ‘ : = ‘ N
critical event 8 "'““"“”"“’“\JWWM‘\ || s

* Substantial variation in how duration of | 4, : - ‘{,.‘ R s
different distraction types (e.g., mobile- ==
phone, radio control) associate with
crash risk
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Data processing framework

Input;
* Event summary
* Timeseries data

Remove errors

Recode
distraction
types

}

Identify

Creation of timeseries distraction
profile

Identify type of
distraction from
event summary
'
Identify start and end
time of distraction
from event summary

}

Label distraction

r— -

e

distraction
themes

allchwreiter Acdences Comierdar
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times in timeseries
data

-
=

- s Example of exclusion of evasive maneuver for a randomly selected crash \\\\

Distraction

Speed (Kmv/he)
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Exclusion of evasive maneuver

Identify impact time and
reaction time from event
summary
Evasive maneuver
Initiation time (£, qivet):
mi"(lnlrl;)rl.'l,l ’ ‘rr‘m Ih‘m.l)
Remove trajectories after
the t,pasive s from
timeseries data

Time ()

Time (s)

——

Reacton Bme (£, q. i

Calculate duration of distraction

Subset 15 seconds of
data before .50

}

Calculate duration of
distraction

|

Calculate average speed
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Categorization of secondary tasks during driving

== Celiphons-Dial
| Celiphone Tatk
7] Celiphone-Texting Cell-orianted

J Celiphone-Reaching -
@8 Celiphone-Other

] Chimate

N Radwo -

U Internal object

Object-onented
Extemnal object

0 Atypacal activity
B Drninking
(71 Eatine

] tygine

Intaraction Activity-onented

B Reaching
1 Smoking

I~
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Role of distraction duration in crash risk

Probability of extreme event occurance for different distraction durations

1.04

» Probability of crash/near-
crash events with
iIncreasing duration of
distraction for different
types of secondary tasks

distraction

— Actinty-Atypical
Activity-Drink

w— Activty-Eat
Actinty-Hygine
Activity-Intaracton

w— Activity-Reaching
Activty-5inging
Activity-Smoking

* This increase varies
substantially among
different distraction types

Cell-Dialing
Cell-Other

Probability

+ Cel-Reaching
= * CellTaking
= = Cal-Texting
= + Object-Climate
=+ Object-Extemnal
=+ Object-Internal

“ « Dbject-Redio

g 12
Distraction duration (s)
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Summary

* Develop a systems framework to analyze driver biometrics (gaze),
distractions, vehicle, and roadway/environment factors

» Analysis of how duration of distraction and impairment relate to safety-
critical events using naturalistic data
» Classified secondary tasks performed by drivers prior to crash or
near-crash
* Longer distraction durations, especially by cellphones, substantially
Increase crash risk
 Alcohol & drug impairment also substantially increase crash risk

» Use of inference information from this study can be used to design safer
systems in the future
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Safety critical event prediction through
unified analysis of driver & vehicle
volatilities: Al Application




Study Highlights

Overall goal:

 Real-time prediction of critical event occurrence using vehicle kinematics & driver
distraction profile

Framework:

« System dynamics-based Al for how volatility in driving and distraction can be
leading predictors for crash risk

Data:
« SHRP2 Naturalistic Driving Data

— 1,925 critical events & 7,566 baselines
* 15 seconds of observations for each event
* |Instantaneous vehicle kinematics
* Driver distraction profile

Key results:

» Al method confirms higher driving volatility & distraction are associated with
higher crash risk

« 1 Dimensional Convolutional Neural Network-Long Short Term Memory (1D-
CNN-LSTM) model predicts 73% of extreme events correctly

» Very low false-alarm rate in non-event driving (0.57%)

www.roadsafety.unc.edu | February 22,2021



Conceptual framework

Sensing phase
// ——————————————————————— \‘
J Vehicle Data I
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Deep learning structure to capture time dependency

Input: Output:

For each event 15 seconds of « Baseline
« Distraction profile « Crash/near-crash
« Speed

» Acceleration
« Speed volatility
» Acceleration volatility

CNN
Feature extraction LSTM Layers Fully connected Layers
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Performance of Al models

Highlights: . Accuracy = 7‘!’+;;i£,:+FN
 Correctly predicts 73.4% of safety Precision, = — ¢ _
critical events with the precision of the tiRe i
95.7% Recally= 35 P, Pfltwe N?Tﬁve
« Very low false-alarm rate in non- Fi=Y 20w e ety |8 I posiive | Negathe
event driving (0.57%) ' ' S8 Ba || e
Positive Negative
Train Data Test Data
Performance DNN éNDN LSTM 1ESC'II'\II\I/\II DNN éIEN LSTM 1II?SC'II'\II\I/\II
Test time (millisecond) - - - - 0.181 0.194 19.65 0.345
Accuracy | 0.9446 0.9502  94.62  96.1912 | 9210 9454 9432  95.4648
Overall | Loss 0.18 0.16 0.16 0.15 0.24 0.18 0.18 0.16
AUC 0.9472 0095412 0.9536 09836 | 0.9085 0.9535 09371  0.9626
Precision | 0.9470 0.9489 009458  0.9686 | 0.9426 0.9440  0.9461  0.9563
Baseline | Recall 0.9956 0.9992  0.9949  0.9987 | 0.9913 09941  0.9899  0.9943
Fl-Score | 09707 09734 09697 09834 | 0.9663 009685 09675  0.9749
Precision | 0.9674 0.9943 09615  0.9606 | 0.9267 09517  0.9193  0.9567
CNC Recall 0.6988 07090  0.6915  0.8107 | 0.6171 0.6547  0.6701  0.7340
Fl-Score | 08114 0.8278 08045 0.8793 | 0.7409 07758  0.7751  0.8307
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Accuracy & loss for the training & validation datasets

Model convergence implies that overfitting is not a problem

Model Accuracy and Loss
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Model Accuracy and Loss
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Summary

« Quantified instantaneous crash risk by real-time monitoring of driver and
vehicular movements using Al techniques

» Al-based model shows:
» Successful prediction of safety-critical events using naturalistic
streaming data
* Low false alarm rates in non-event driving

« Can use model to predict hazards by monitoring driver biometrics

« Distraction and driving volatility can be leading indicators for crash
prediction
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Driving experimentation in simulated &
naturalistic settings




Data collection set up: On-going

« Biometric sensors record data in naturalistic driving to
monitor driver’s physiological response to changes in
cognitive load while driving, including:

— Galvanic Skin Response (GSR)
— Electrocardiogram (EKG)
— Electromyographic (EMG)

« Simultaneously, vehicle dynamics data are collected with
an advanced driver assistance system (ADAS)
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Data collection

Galvanic Skin Response

Phe PR PR R Cigree  Prewe 11K

Time

Acceleration Pulse Rate
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a) Camera data, b) LiDAR point cloud, c) Galvanic Skin Response & vehicle
acceleration, d) Acceleration data, e) Pulse rate recorded
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Overall

« Developed a systems framework to integrate driver biometrics, vehicle
kinematics, & roadway/environment data

* Inference-based analysis of role of impairment & distracted driving on
crash risk using naturalistic driving

* Predictive Al techniques to foretell crash risk in real-time by using
streaming naturalistic data of driver gaze and venhicle kinematics

 Demonstrated collection & processing of driver biometric, vehicle, &
roadway surroundings data using experimentation in simulated &
naturalistic settings

« Suggest the use of distraction and volatility information as leading
predictors to improve crash prediction and driver safety
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