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Introduction 
With rapid advances in data analytic tools, machine learning techniques are increasingly being used to study 
large transportation crash data sets. The objective of such approaches is to reveal underlying and potentially 
unknown patterns of influence between driver and pedestrian characteristics, environment factors, vehicle 
attributes, and crash fatalities. However, machine learning results can be greatly affected by the subjectivity 
of the machine learning practitioner, where the practitioner subjectively selects the machine learning 
algorithm and algorithm parameters for a specific data set, and either this person or perhaps other people 
then interpret the results. As depicted in Figure 1, when combined with biases that can be inadvertently 
introduced due to underlying sample selection bias (e.g., Samimi, Mohammadian et al. 2010, Gianfrancesco, 
Tamang et al. 2018), these practitioner-induced subjective biases introduced into a machine learning 
modeling process can make any resulting conclusions questionable.  

 

 

 

Little work has been conducted to study the practitioner-induced subjectivity problem in order to understand 
its causes, influences, and methods for avoidance, particularly in transportation settings. To help fill this gap, 
two transportation datasets examining car and pedestrian accident fatalities were analyzed with two different 
machine learning techniques of low and high complexity (logistic regression and neural networks 
respectively). While there are many other types of machine learning models that could be used (e.g., see 
Figure 2 and Cummings and Stimpson (2019)) these models were selected since they represent different 
model complexities and are both commonly used. 

 

Figure 2. Complexity map of common machine learning models 

1011 
1101 
1001 
1010 
… 

Figure 1: Depicted by a dashed line, sources of human bias in any machine learning modeling process 
including human subjectivity in model and parameter selection as well as sample selection bias coming 
from the data.  
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Using both a large and small transportation data set that use various features to predict driver and pedestrian 
injuries and fatalities, the results of these models are compared with one another, as well as with different 
possible interpretations of the neural net features. The results demonstrate that both the type of model and 
feature interpretation method produce different results in terms of model performance and assessment of 
feature importance. In addition, examples of practitioner interpretations are included that span novice to 
expert which also exemplify how experience can modify one’s interpretation of the results. These outcomes, 
which highlight the more than ten opportunities for subjective decisions, suggest that more work is needed in 
looking at how such subjective modeling and interpretation choices affect the use of machine learning 
models in support of decision making. 
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Transportation Data Set #1: The Role 
of Road Infrastructure in Accidents 
The first data set analyzed used the Highway Safety Information System1 (HSIS), a roadway-based data 
repository that provides data on a large number of accidents that include a number of roadway and traffic 
variables. It was developed by the Federal Highway Administration (FHWA) to help highway engineers to 
make better decisions about roadway design. For the purposes of this effort, the target variable (aka, the 
predicted or dependent variable) is whether a driver was seriously injured or killed vs. no serious injury. In 
machine learning modeling, once the target variable is known, the next step is to select the features, also 
known as predictor or independent variables. 

Methodology 
The selection of features in any machine learning model 
development effort represents a significant subjective decision 
point. For large data sets, there could be up to hundreds of possible 
features. The winnowing of such choices should be guided by the 
overarching research question and associated hypotheses as well 
as a thorough literature review and previous research and analyses 
using the dataset of interest. 

For the HSIS data set, there were 248 features that could be 
selected, but using all would result in data overfitting and a loss of 
generalizability. We chose a set of variables that would help answer 
a representative transportation-related question that such a big data 
set could help answer which is “What road design elements most 
influence serious road accidents?” Given that previous research has 
shown that other elements like driver age, poor weather, and the type 
of vehicles drivers are in are also significant predictors (Peden, 
Scurfiled et al. 2004, Hermans, Brijs et al. 2006), we included variables from four classes as depicted in Figure 
3.  

We down-selected to 16 HSIS variables, as depicted in Table 1, and used data from two states, California and 
Washington, since they have similar data collection methods. Appendix A provides the exact categories and 
units for each of these variables. The final 16 features selected represent the four classes in Figure 3, but 
include a higher number of road safety variables since these were the primary focus. The target variable was 
the severity of injury in the accident, with 1 including both fatal and severe injuries because fatalities account 
for a very small percentage of crashes and 0 including all other injuries that were not severe. 

The data had to be collected from the HSIS site in 3 separate files, which include accident, road, and vehicle 
files, and the files were linked using road keys, mileposts and accident keys. There were 968,371 accidents in 
the original data, but 53,481 records were dropped due to invalid data including outcomes, and more than 
three predictor variables missing. For those accident records with missing variables (N=660,675), a k-nearest-
neighbor method was used to impute the missing values. K was initialized at 400 for records missing one, 
two, and three variables respectively. After selection and imputation, the final data set resulted in a total of 
914,890 accidents.  

Such complexity is typical of such large data sets but also represents potential sources of error. Two-sample 
Kolmogorov-Smirnov tests were performed on the original and cleaned data to examine whether the cleaned 
data still followed the distribution of the original data. Appendix B and C provide more details about the 
original dataset and cleaned dataset. Moreover, the HSIS dataset is imbalanced in that there were 23,949 

 

1 https://www.hsisinfo.org/  

Figure 3: Classes of variables that 
potentially influence severity if 
vehicle accidents 

https://www.hsisinfo.org/
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fatal / severe observations and 890,941 non-severe observations. Thus there are only 2.62% positive 
observations which is also typical for such large data sets describing extreme events like deaths in healthy 
populations. This imbalance in the data is important when evaluating such models, and this issue will be 
revisited in the results section. 

 
Table 1. Variables selected for HSIS dataset 

 

As mentioned previously, Logistic Regression (LR) and Neural Network (NN) analyses were both used to 
model the relationship between the injury severity and selected variables in Table 1. The following sections 
demonstrate how the two models performed and what insights were gained.  

Logistic Regression for HSIS 
Logistic Regression (LR) is a classification modeling approach that predicts a categorical variable from a set 
of predictor variables, also known as features. In binary LR, the variables/features attempt to predict a 
classification of 1 or 0 using a sigmoid function as depicted in Figure 4.  

 

Model Accuracy  
An accurate model is one that has a high success rate for predicting both fatalities and non-fatalities. 
However, in the case of this HSIS data set, if a model predicted every observation to be negative (non-fatal), 

Figure 4. Logistic regression function 
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the overall accuracy would be 97.38% since there is only a 2.62% occurrence of fatalities. Thus, to develop an 
accurate model we must first select the statistical threshold to determine what constitutes a 0 or 1, without 
skewing the predictive results to just one class.  

To determine the threshold, we iterated the threshold from 0 to 1 with step 0.01 to see how different 
thresholds would affect model performance, assuming the logistic regression model contains all 16 variables 
in Table 1. This threshold is in the region where the true positive rate (TPR) and overall accuracy cross beyond 
which the TPR falls exponentially. Thus, the threshold of 0.0234 balances model accuracy and TPR (Figure 5). 
At this value the model accuracy is 72.63% and the TPR is 71.14%.  

For imbalanced data sets with binary outcomes, which is the case with this HSIS data set, model accuracy is 
often not a good indicator of model performance (Menardi and Torelli 2014). Another potential method that 
can be used to assess model performance, especially for imbalanced data, is examining the area under the 
Precision-Recall curve (Saito and Rehmsmeier 2015). Similar to Receiver Operator Characteristic (ROC) 
curves that plot true positive against false positive rates, precision-recall plots incorporate additional 
information.  Precision is defined as the ratio of true positives to the sum of true and false positives. Recall is 
defined as the ratio of true positives to the sum of true positives and false negatives. Figure 6 demonstrates 
that the area under the curve is 0.1250 which suggests the model is correctly classifying samples it predicts 
as fatalities but may miss many classifications. 

Feature Weights 
Given that the model is acceptable, although not a particularly strong model, we then need to understand how 
the different 16 features contributed to the overall model. Table 2 lists the weights, exp(weights) and p-
values. Those variables with a p value less than .0031 were considered significant. Because LR models 
produce regression coefficients for each feature that are log odds as shown in Figure 5, taking the 
exponential of the coefficient weights estimates the expected change in the log odds of the target variable 
per unit increase in the corresponding predictor variable holding the other predictor variables constant. Take, 
for example, variable 8 in Table 2 which is the section length. A one-unit increase in this variable increases the 
odds of a fatality by 6.2564 (6.2564:1). The weights less than zero decrease the odds of a fatality by 
1/exp(W), so Table 2 details all the odd ratios accounting for those features with positive and negative 
weights. 

  

Figure 5. Different accuracies with different thresholds using LR. FPR = False Positive Rate, TPR = True 
Positive Rate 
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Figure 6. Precision-recall curve of the LR model. The baseline is the percentage of fatalities for the global 
dataset.  

Table 2. Feature weight results of LR for HSIS, * indicates significance at p < 0.0031, which uses a family-
wise error correction rate of 𝜶𝜶/16, where 𝜶𝜶= 0.052 

Feature 
 

1 2 3 4 5 6 7 8 
Weight 0.0280 -3.8286 0.0158 0.8704 -0.0052 -0.3087 -1.4184 1.8336 
Exp(W) 1.0284 0.0217 1.016 2.3879 0.9948 0.7344 0.2421 6.2564 
p-value 0.5522 0* 0.6124 0* 0.9610 0.0277 0* 0* 
Sig. Odds 
Ratio  45.9979  2.3879   4.1304 6.2564 
Feature 9 10 11 12 13 14 15 16 
Weight 0.7460 -0.1598 0.5811 0.4164 2.0926 1.6240 -0.7059 -0.1879 
Exp(W) 2.1085 0.8523 1.7879 1.5164 8.1064 5.0733 0.4936 0.8287 
p-Value 0* 0* 0* 0* 0* 0* 0* 0.0171 
Sig. Odds 
Ratio 2.1085 1.1733 1.7879 1.5164 8.1064 5.0733 2.0257  

 

As depicted in Figure 1, determining which features are the most important is a subjective decision with 
different decision criteria producing different results. One common interpretation is all those features that are 
statistically significant should be in the model and in this case, 11 different variables mattered the most 
(Tables 1-3). However, another interpretation could be that only those odds ratios greater than 2 should be 
considered since every integer over 1 represents a 100% increase in likelihood, and such a rule would capture 
the features with the largest contributions to the model. As depicted in Table 3, if this threshold was selected, 
then the odds ratios suggest the important features would drop from 11 to 8, with Average Annual Daily 
Traffic (2), Vehicle type (13), Section length (8), Sobriety (14), median width (7), Left shoulder width (4), Light 
(9), and Urban/Rural (15) mattered the most, in this order. 

 

2 The selection of the .05 criteria for a p value is a subjective decision, and was selected for this study 
because it is a conventional norm. 
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In answer to the research question, “What road design variables are the most important?” the answer would 
be left shoulder width (feature 4), median width (feature7, more is better (Stamatiadis and Pigman 2009), and 
section length (feature 8, roads with longer consistent sections have more accidents) which has been seen in 
previous research (Hadi, Aruldhas et al. 1995). While previous research has shown that increasing the 
shoulder width generally leads to less fatalities (Neudorff, Jenior et al. 2016), this HSIS data set was initially 
slightly biased in the opposite direction (Appendices B and C). The slight difference in means of shoulder 
width (5.30 ft for people with serious or fatal injuries vs. 5.28 ft for those not seriously injured) may be 
statistically significant but is not practically significant. 

Table 3. LR variable importance by decision criteria 

Selection 
Criteria Important Features 

Statistically 
significant 2 4 7 8 9 10 11 12 13 14 15 

Odds Ratios 
> 2 2 4 7 8 9 13 14 15    

 

So, if a transportation engineer wanted to know what road design features mattered the most in preventing 
fatalities, it appears that with this model, section length is the most important (with the highest odds ratio). 

Ultimately, the choice of what variables are the most important has to be made by the practitioner, and 
budgetary and complexity constraints could drive threshold selection. Understanding real dollars are at stake 
when making such decisions, and given that the LR model was not particularly strong due to the lower model 
accuracy, developing another model based on the very popular machine learning approach of neural networks 
can be investigated for comparison. This approach is detailed in the next section. 

HSIS Neural Network Analysis 
 

 

Figure 7. Demonstration of a Neural Network 

Figure 7 is a representation of a neural network (NN), where black shadow and white circles represent input 
neurons (model inputs), hidden neurons, and output neurons (model outputs), respectively. For each link, 
there is a weight parameter. Looking left to right is the forward propagation (predicting process), while right 
to left is back propagation (the learning process). Such models must first be trained on a subset of the overall 
data set. In the training process, all the parameters in the network must first be initialized to make the first 
forward propagation. Then the cost (deviation between output and true result) is calculated. After that, 
parameters will be adjusted to minimize the deviation between model predictions and the desired outputs. 
This process is repeated until overall model accuracy cannot be improved.    
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Due to their multi-layered complicated structure, NNs can be very powerful and can represent non-linear high-
order relationships. However, interpreting NN models can be very difficult. Unlike LR models, there are no 
individual weights associated with the features. Since the weights are distributed across the network, 
ultimately partial feature weights combine in an unknown non-linear manner to contribute to the overall model 
(Ibrahim 2013). Thus, interpreting features important in a NN can carry significantly more subjectivity, as 
depicted in Figure 1, than with LR. This will be illustrated in the results section. 

In order to develop a NN3 for the same HSIS data set described earlier, we first initialized parameters of the 
neural network, including:  

• Input: The input layer included 16 variables which included categorical, ordinal, and continuous data 
(Appendix A). 

• NN structure: For the hidden layer size (number of neurons in each layer), we selected 10 but 
examined up to 100 which did not seem to make a difference in model performance.  

• Output: The output layer consisted of a single node to predict 0 (non-fatal accident) or 1 (Serious 
injury or fatal accident). 

• Ratios: When training a NN, the data must be divided into three sets such that the first set, the training 
set, is iteratively used for backpropagation, the second set is for validation used to avoid overfitting, 
and the third set is the final testing set, used only once. The final ratios used in this effort were 68% 
for training, 12% for validation, and 20% for testing.  

During the training process, network weights were randomly initialized. In each backpropagation iteration, the 
cross-entropy loss is calculated, and the model generated a gradient towards the direction the parameters 
were adjusted. After the NN was trained, this NN model was then used for testing. Similar to LR, the outputs 
from the NN model need to be discriminated by a threshold to determine the positive and negative 
predictions.  

Model Accuracy 

Often when NNs are generated, the typical primary performance metric is the overall accuracy of such a 
model. In the case of the imbalanced HSIS data, as explained earlier in the LR section, we need both overall 
accuracy and true positive rate to evaluate the model. We took the intersection of the TPR curve and the 
accuracy curve as the threshold, as shown in Figure 8. The model performance is then given in Table 4, with a 
threshold equal to 0.0259, the intersection of the accuracy curve and TPR curve. Table 4 also shows how 
these accuracies compare to the LR model, which are similar.  

As with the LR model, given the imbalanced data set, the area under the precision-recall curve was calculated. 
Table 4 indicates that the NN model has a higher area under the curve as 0.1604 which suggests it may be 
the better performing model. 

While this analysis is useful in determining whether the NN model is accurate enough to be useful, the above 
results do not lend to any clarity in terms of how features contributed to crash fatality predictions. Thus, we 
explored various ways to determine the influence of the relative weighting of individual features, similar to 
that of LR. We selected different approaches for NN feature interpretation given their prevalence on various 
machine learning discussion boards (Computer Science 2013, Cross Validated 2017) which suggests these 
are commonly used methods in practice. They are explained in detail below. 

 

 

3 The neural nets in this paper were all developed using MATLAB R2018b and the Pattern Recognition 
toolbox.  
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Figure 8. Different model performances with different thresholds for HSIS using NN 

Table 4. Model performance for HSIS NN and LR 

 

 

 

Method 1: Feature analysis using “Leave one out” 
One widely-used method in selecting important features in machine learning models is called “leave one out,” 
e.g., (Xing, Jordan et al. 2001, Sung and Mukkamala 2003). In this form of a sensitivity analysis, a single 
feature was removed, and the NN model was re-developed with the remained features. In theory, if the 
removal of a feature leads to decreased model accuracy, this feature can be considered important, and vice 
versa. For model stability, ten NN models were separately developed with the original 16 features, and the 
average accuracy of the ten models became the threshold to evaluate the performance change of removing a 
feature.  

 

 NN LR 

Accuracy 71.84% 72.63% 
Area under the curve (Precision-Recall) 0.1604 0.1290 
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Figure 9. NN model accuracy after applying “Leave one out” calculations for the HSIS data. The dashed line 
represents average model accuracy. 

Using this method on the model, Figure 9 demonstrates that features 13 (vehicle type) and 14 (sobriety) are 
the most important. An interesting observation is that after individually removing features 4 (left shoulder 
width), 5 (right shoulder width), 6 (number of lanes), 15 (urban/rural), or 16 (lane width) the performance of 
the new model increased. This increase suggests that under this model, those individual features may 
introduce noise in modeling the fatality relationship. As noted in the LR model, left shoulder width was a 
significant variable so there is a clear discrepancy between the two approaches. 

Method 2: Feature analysis using first layer weights 
Another approach in interpreting feature weights is looking at the weights of the first layer in a shallow neural 
network which is a NN of 1-2 layers (Intratora and Intratorb 2001, Guha, Stanton et al. 2005). We trained ten 
shallow NNs with no hidden layers, and Figure 10 shows the average weight and standard deviations of each 
feature across the 10 different models. Using the mean first layer feature weights in Figure 10, Table 5 
summarizes those features with weight magnitudes higher than a varied weight threshold from 0 to 1.  

 

Figure 10. Feature weights generated from 10 shallow NNs for the HSIS data 

Table 5 illustrates another issue with subjectivity which is where to draw the line of criticality of feature 
weights, understanding that the combination of features underpins a NN model. Weight thresholds are 
difficult to conceptualize for NNs, but given that this shallow NN is effectively the same as a LR model, it is 
possible to take an odds ratio approach just as for the LR model. If we subjectively decide that 2 is the correct 
odds ratio number (e.7), then variables 2 (AADT), 8 (section length), 13 (vehicle type) and 14 (sobriety) are the 
most important for this interpretation of the NN. These results generally align with that of the LR model. 

Table 5. Variable selection for weights using a shallow NN 

Weight 
Threshold Features that have mean higher weights than the weight threshold 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
0.1 1 2 4 6 7 8 9 11 12 13 14 15     
0.2 2 4 6 8 9 11 12 13 14 15       
0.3 2 4 6 8 9 11 13 14 15        
0.4 2 4 8 13 14            
0.5 2 4 8 13 14            
0.6 2 4 8 13 14            
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0.7 2 8 13 14             
0.8 2 8 13 14             
0.9 2 8 13              
1.0 2 8 13              

Method 3: Feature analysis using weights & standard deviation 
Using only weights to assess feature importance ignores how much the weights vary through multiple 
modeling iterations, as seen by the error bars in Figure 10. To address this problem with feature stability, we 
also investigated a weighted mean metric using the ten shallow NN models which used mean feature weight 
/ standard deviation (SD) and is illustrated in Figure 11.  

One limitation in this approach is the loss clear mapping of the feature weights, since odds ratios cannot be 
computed. Figure 11 illustrates that features 13 (vehicle type), 14 (sobriety), 9 (light), and possibly 15 
(urban/rural) could be seen as the most important, but this is clearly a subjective judgment.  Using this 
interpretation, no road design variable would be seen as important. 

 

Figure 11. Feature weights/SD generated by 10 shallow NNs for the HSIS data 

Method 4: Feature analysis using weights, standard deviation & the 
NN accuracy drop 
While normalizing the feature weights by their variance helps to address the instability of some features, such 
a method does not examine how each feature ultimately influences overall model accuracy. To account for 
this, each feature weights/standard deviation was then multiplied by the overall model accuracy drop if that 
variable were removed (Figure 12). Thus, we combined methods 1 and 3 for a new evaluation method 4. This 
method, similar to other feature permutation approaches (Breiman 2001, Fisher, Rudin et al. 2018), suggests 
feature 13 (vehicle type) and 14 (sobriety) were dominant in model with negligible contribution by other 
features. 
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Figure 12. Feature weight/SD * accuracy drop for the HSIS data 

Comparison of Results 
Given the 4 different methods for NN feature interpretation, we wanted to compare the outputs with the LR’s 
outcome. In order to make meaningful comparisons, we ranked the variables in order of importance for each 
method, understanding that the distance between these rankings is not directly comparable, particularly 
between LR and NN models. The results are listed in Table 7 with the top 5 features shaded in each set given 
that there were 5 models. The exception is the fourth NN interpretation method which only demonstrated two 
important features.  

Table 7. HSIS rank orderings by different methods 

Feature LR Method 1 Method 2 Method 3 Method 4 
1 Speed limit 14 11 11 11 - 
2 AADT 1 3 1 9 - 
3 Access control 15 7 16 15 - 
4 Left shoulder width 6 14 5 10 - 
5 Right shoulder width 16 12 15 13 - 
6 Number of lanes 11 13 8 12 - 
7 Median width 5 6 12 16 - 
8 Section length 3 4 2 5 - 
9 Light 7 9 6 3 - 
10 Weather 13 5 13 7 - 
11 Maximum age 9 10 9 6 - 
12 Minimum age 10 8 10 8 - 
13 Vehicle type 2 1 3 1 1 
14 Sobriety 4 2 4 2 2 
15 Urban / Rural 8 15 7 4 - 
16 Lane width 12 16 14 14 - 

 

Not surprisingly, the LR model and Method 2 were in close but not exact alignment. Method 2 uses a shallow 
NN which is similar to LR. Method 4 for NN interpretation is a derivative of Methods 1 and 3, so this outcome 
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is also not surprising, save for the fact that 14 of the 16 feature contributions were negligible. In aggregate, all 
5 models agreed that sobriety and vehicle type (where people driving motorcycles were at higher risk for 
fatalities) were relatively strong predictors of fatal or near-fatal accidents, but there was not strong 
consensus across the NN models about other features. 

It is important to recognize that while the model interpretations are not radically different, they are different 
enough to cause issues if such results were used to justify policy decisions. It is unlikely that in any practical 
setting, a data scientist would take the time to evaluate all 5 models, and indeed, likely would just complete 
one if time and resource pressure existed. So, it is clear from Table 7 that the choice of machine learning 
model can affect results, as can the choice of feature weight interpretation if NNs are used.  

Understanding that interpretation of these results is a highly subjective process, a master’s student in 
Electrical and Computer Engineering, a junior machine learning engineer, and the PI examined these results 
and provided their interpretation, as follows: 

Interpretation #1 (Student Engineer):  
For the LR model, method 3 and method 4 are the most reasonable models, so features are important if at 
least two of three metrics rank in the top 5. Features 8 (section length), 13 (vehicle type), and 14 (sobriety) are 
the most important.  

Interpretation #2 (Junior Engineer):  
By counting how many times a feature ranked in the top 5, features were divided into three groups. Group 1 
has features 8 (section length), 15 (vehicle type), and 16 (sobriety) both ranked in the top 5 above four times. 
Group 2 has feature 2 (AADT) which ranked three times in the top 5. The remaining features belong to Group 
3.  

Interpretation #3 (PI): 
This analysis adds more evidence that sobriety and vehicle type are significant causes of fatalities for drivers, 
but because the model accuracy is too low, no other conclusions should be drawn from this data.  

Conclusions from Transportation Case Study #1 
A large transportation data set concerning driver fatalities and injuries was examined with two different 
machine learning models and 5 quantitative representations of the results. The two models and 5 
representations were similar in some aspects but not in alignment, illustrating that the choice of model and 
representation strategy can alter the results. Such differences in model prediction performance has been 
noted in the use of other machine learning models applied to similar data sets (Iranitalab and Khattak 2017). 
Moreover, three different interpretations of the results by practitioners with different levels of experience 
demonstrate how much variability can be introduced when drawing conclusions from such studies.  

If such an approach were to be used by transportation engineers to determine whether some aspect of road 
design is a good candidate for investment, the choice of the model could dramatically affect the outcome and 
ultimately dollars spent. If these engineers do not fully understand the ramifications of their choices and 
assumptions in the modelling process, it is not clear that the outcomes would be in the best interest of public 
safety. 

In the next section, this exact same approach will be replicated with a pedestrian accident data set to 
determine how such approaches affect results from a smaller data set.  
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Transportation Data Set #2: A Not-So-
Big Data Approach to Pedestrian Safety  
While the first data set was very large with hundreds of thousands of accidents and 248 features, not all data 
sets are as populated, so we wanted to examine a traffic safety data set that was not as large. With the recent 
rise in pedestrian deaths (National Center for Statistics and Analysis 2018), it would be useful to do a similar 
machine learning analysis but such complete data sets about pedestrians are difficult to find. To this end, we 
elected to use the 1996 National Automotive Sampling System (NASS)4, which attempts to establish the 
relationship between vehicle and pedestrian contact parameters along with injury type and severity, as well as 
impact speeds in Buffalo, Fort Lauderdale & Hollywood FL, Dallas, Chicago, Seattle, and San Antonio.5 

 

Methodology  
The first step was to preprocess the dataset. Despite the large number of cities, there were only 549 
observations of pedestrian fatalities in this dataset with 189 possible features. Such a large number of 
predictor variables would cause overfitting, so we needed to down select by at least an order of magnitude to 
preserve degrees of freedom. In addition, there were many invalid variable values. We ended with 310 
observations of pedestrian fatalities with 16 features listed in Table 8, categorized by the same 4 features as 
in the first section with the additional category of pedestrian characteristics (Figure 13) which often account 
for si. Appendix D details these parameters. We elected to use 16 variables to show a comparison with the 
large HSIS model that also had 16 features. The target variable indicated the level of injury with 1 = fatal injury 
and 0 = non-fatal injury. There were no missing data in this set.  

This dataset is substantially smaller than the first, which represents real world constraints but is also limiting 
in that machine learning algorithms perform best with much more data. In addition, this dataset is also 
imbalanced with 26 fatal observations and 284 non-fatal observations, so there are only 8.39% positive 

 

4 https://ftp.nhtsa.dot.gov/PED/96PedMan.pdf 
5 There have been recent efforts to standardize data elements between NHTSA’s Fatality Analysis Reporting 
System (FARS) and the NASS General Estimates System (GES), more information can be found at 
https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars. 

Figure 13: Model characteristics for the NASS 
   

https://ftp.nhtsa.dot.gov/PED/96PedMan.pdf
https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars
Brown, Sarah
?
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observations. While not as imbalanced as the HSIS data set, there are similar issues in determining the 
relevant thresholds. In this small dataset, there were no missing values.   

As with the first dataset, Logistic Regression (LR) and Neural Network (NN) models were developed with 
similar feature weight investigations, detailed in the next sections. 

Table 8. Variables selected from the NASS dataset 

 

NASS Logistic Regression 
Model Accuracy 
As with the HSIS data, the NASS dataset is imbalanced, so the model accuracy must be considered alongside 
the definition of the threshold between 1 and 0. The LR model with all variables gives a predicted value for 
each observation, and the threshold between fatal and non-fatal values decides the overall accuracy and true 
positive rate. To examine the appropriateness of threshold values, we iterated the thresholds from 0 to 1 with 
step 0.01 to see how different thresholds affect the modeling performance, Figure 14. To this end, we set our 
threshold = 0.0988 at which the accuracy curve intersects with the TPR curve.  

As with the previous case study, model performance is given in Table 9 for both model accuracy and area-
under-the-precision-recall-curve approaches. The area under the precision-recall curve is 0.4254. This is much 
larger than the area of LR model in the HSIS data, which suggests LR functions better for this NASS data.  
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Figure 14. LR model performance with different thresholds for NASS 

 

Table 9. LR model performance for NASS 

 

 

 

Feature Weights 
Table 10 shows weights, exp(weights) and p-values. According to this table, only feature 4 (pedestrian age) 
and  feature 10 (speed limit) were statistically significant and the strongest predictors of fatalities for 
pedestrians, which has been noted in other studies (McLean, Anderson et al. 1994, Richards 2010). By these 
results, the odds ratio is more than 2,000:1 that a pedestrian will be killed if hit by a car at higher speed limits, 
the highest of which was 65 mph in the NASS dataset. This result is in line with previous research that has 
shown similar outcomes (Swanson, Yanagisawa et al. 2016). 

Table 10. Feature weight results of NASS LR, * indicates significance at p < 0.0031, which uses a family-
wise error correction rate of 𝜶𝜶/16, where 𝜶𝜶= 0.05 

Feature 1 2 3 4 5 6 7 8 
Weight 0.4455 1.9689 2.1563 4.1080 -1.3572 3.1362 0.8849 -17.4539 
Exp(W) 1.5613 7.163 8.6392 60.8274 0.2574 23.0153 2.4227 0 
p-value 0.6504 0.1188 0.2695 0.0024* 0.2851 0.1476 0.5990 0.1167 
Sig. Odds  
Ratio    60.8274     

Feature 9 10 11 12 13 14 15 16 
Weight 24.7249 7.7414 -0.3979 -8.1344 -1.6829 -1.8427 0.7744 -1.0495 
Exp(W) 5.47E+10 2301.702 0.6717 0.0003 0.1858 0.1584 2.1693 0.3501 
p-Value 0.5262 0.0018* 0.8183 0.2611 0.2071 0.1618 0.4957 0.1227 
Sig. Odds  
Ratio  2301.702       

 

Accuracy 84.84% 

Area under the curve (Precision-Recall) 0.4254 
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Neural Network for NASS 
To develop a NN for this dataset, the process was very similar to that described for the HSIS dataset:  

• Input: The input layer included 16 variables which included categorical, ordinal, and continuous data 
(Appendix D). 

• NN structure: For the hidden layer size (number of neurons in each layer), we selected 15.  
• Output: The output layer consisted of a single node to predict 0 (non-fatal accident) or 1 (fatal 

accident). 
• Ratios: The training, validation, testing ratios used were 0.68, 0.12, and 0.2, respectively. 

Model Accuracy 
Similar to the NN in the HSIS dataset, we took the intersection point of the TPR and accuracy curves as the 
threshold, and Figure 15 shows the TPR, FPR, and accuracy curves when iterating thresholds over 0 to 1. With 
a threshold of 0.1635, a single NN model achieved an accuracy of 80.65% and a true positive rate of 85.71%. 
However, because there is a small amount of data, the threshold could take on other values under different 
NN instances. When another nine NN models were separately trained using the NASS dataset, the threshold 
at the intersection of the TPR and accuracy curves then ranged from 0.0776-0.1924. The average model 
accuracy of all ten NN models was 79.84%, summarized in the Table 11.  

The model accuracy varied because of the small size of the data set and represents model instability. As in 
the previous case study, the areas under the precision-recall curves were calculated and summarized in Table 
11, which demonstrates the LR model performed better than the NN model in terms of higher accuracy and 
higher area under the precision-recall curve.  

 

Figure 15. NN model performance with different thresholds for NASS 

Table 11. Model accuracy for NASS (10 iterations for the NN) 

 
 
 

 

 

This model was then used to generate the feature weights in the same four ways described for the HSIS data 
set, detailed in the next section. 

 NN LR 

Accuracy 79.84% 84.84% 

Area under the curve  (Precision-Recall) 0.4231 0.4254 
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Method 1: Feature analysis using “Leave one out” 
In this method, a single feature was removed with ten NN models, and the change in model accuracy was 
recorded, Figure 16. Using this method, Figure 16 demonstrates feature 1 (month), 4 (pedestrian age), and 6 
(pedestrian motion) are the most important features as they resulted in the largest accuracy drops. 

 

 

Figure 16. NN model accuracy after applying “Leave one out” accuracies for the NASS data. The dashed line 
represents average model accuracy. 

Method 2: Feature analysis using first layer weights 
Just as for the HSIS dataset, we trained ten shallow NNs for the NASS dataset, and Figure 17 shows this 
result. If we apply the same threshold criteria as for the HSIS data set of 0.7, features 3 (pedestrian weight), 4 
(pedestrian age), 6 (pedestrian motion), 8 (first avoidance action), 9 (driver drinking), and 10 (speed limit) are 
the most important. 

 

Figure 17. Feature weights generated by a shallow NN for pedestrian data 
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Method 3: Feature analysis using weights & standard deviation 
As with the HSIS data, we also used mean weights / standard deviation (SD) from the shallow NNs to account 
for the stability of a particular feature. From Figure 18, feature 4 (pedestrian age), 8 (first avoidance action), 9 
(driver drinking), and 16 (traffic light functioning) are the most important.  

 

Figure 18. NN feature weights / SD for the NASS data 

Method 4: Feature analysis using weights, standard deviation & the 
NN accuracy drop 
Lastly, we examined weighting the feature weights by the NN model accuracy changes. From Figure 19, we 
can see that feature 3 (pedestrian weight), 4 (pedestrian age), 6 (pedestrian motion), 8 (first avoidance 
action), and 9 (driver drinking) are the most important in this combined method.   

 

Figure 19. (Weights * accuracy drop / SD) generated by NN for NASS pedestrian data 
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Comparison of Results 
As with the HSIS data, we ranked the features by order of importance for the different methods, with the top 5 
highlighted. For the LR model, only variables that were statistically significant are listed. There is overall 
agreement across the methods that pedestrian age (feature 5) is a significant factor in whether a pedestrian 
will be killed if hit which has been seen in other research (Swanson, Yanagisawa et al. 2016). However, there 
was no consensus across the models for the leading factor. The speed limit and whether a driver had been 
drinking compete for the first and third spots, but none of the NNs agree with the LR model about speed limit. 

Table 12. NASS rank orderings by the different methods 

Feature LR Method 1 Method 2 Method 3 Method 4 
1 Month - 3 16 16 7 
2 Time - 14 7 7 - 
3 Pedestrian weight - 5 6 5 5 
4 Pedestrian age 2 2 2 2 2 
5 Pedestrian sex - 8 11 9 8 
6 Pedestrian motion - 1 5 8 1 
7 Action relative to vehicle - 15 13 11 - 
8 First avoidance action - 6 4 3 4 
9 Driver drinking - 7 1 1 3 
10 Speed limit 1 12 3 6 - 
11 Vehicle curb weight - 16 12 13 - 
12 Driver attention  - 11 9 10 - 
13 Traffic way flow - 4 15 15 6 
14 Number of travel lanes - 9 10 12 9 
15 Surface condition - 10 14 14 - 
16 Traffic light functioning - 13 8 4 - 

 

If the goal of a transportation engineer in analyzing this data was to determine roadway elements that could 
contribute to pedestrian deaths, the only variables that seemed potentially relevant were the traffic way flow, 
ranked 4th in method 1 and whether a traffic light was functioning, ranked 4 for method 3. However, because 
of the model instability due to the small sample size, the NN results should be viewed with caution. 

Again, to demonstrate how much interpretation of these data can vary, three different perspectives are given 
regarding the outcomes. 

Interpretation #1 (Student Engineer):  
Features are important if at least three ranked in the top 5. Given this, feature 3 (pedestrian weight), 4 
(pedestrian age), 6 (pedestrian motion), 8 (first avoidance action), and 9 (driver drinking) are the most 
important features.  

Interpretation #2 (Junior Engineer): 
By counting how many times a feature ranked in the top 5, features were divided into three groups. Group 1 
has features 4 (pedestrian age) that ranked five times in the top 5. Then Group 2 has features 3 (pedestrian 
weight), 6 (pedestrian motion), 8 (first avoidance action), 9 (driver drinking), and 10 (speed limit) which ranked 
in the top 5 three times and twice. Other features belong to Group 3, the least important group.  

Interpretation #3 (PI): 
Given the low model accuracy of the NN model as well as its instability, I have more confidence in the LR 
model. Speed limit and pedestrian age appear to be strong predictors for fatalities, which is in agreement with 
previous studies, and so future work should target interventions that specifically address these two variables.  
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Conclusion 
Transportation analysts are inundated with requests to apply popular machine learning modeling techniques 
to data sets to uncover never-before-seen relationships that could potentially revolutionize safety, congestion 
and mobility. To demonstrate some of the pitfalls in engaging in such analytics, which include subjectivity at 
several points in the modeling process, we developed Logistic Regression (LR) and Neural Network (NN) 
models for a driving injury/fatality and pedestrian fatality datasets. We then developed 5 different 
representations for each data set, one LR and one NN, with 4 different feature interpretations commonly used 
in the machine learning community. 

This study showed that when attempting to determine if road design variables significantly influenced driver 
injuries and fatalities, the answer is unclear, with many possible interpretations of the results. In the 
pedestrian model, results indicated that speed and age mattered, but any conclusions could not be drawn 
about road design variables. However, interpretations could be very different depending on the model and 
parameters selected.  

These modeling attempts highlighted several points of subjectivity: 

• Picking the model to be used 
• Picking which features should be included out of large data sets 
• Determining whether to drop cases with missing data or to generate missing data estimates 
• Picking a p value for LR significance 
• Deciding numbers of neurons for hidden NN layers 
• Picking the maximal training iteration for the NN training process 
• Picking stopping rules for training performance factors (software dependent) 
• Selecting data training and testing ratios 
• Picking threshold values between fatal/non-fatal values 
• Choosing thresholds between important/unimportant features 
• Deciding across models with slightly different results, what the actual important features were 

These models highlighted other core issues not often discussed in practical applications of these methods 
which include issues with imbalanced data which occurs when one class of data (non-fatalities in our data 
sets) significantly dominates over the other (fatalities). Unfortunately, such imbalance is a typical 
characteristic of transportation data sets, and if practitioners blindly apply statistical packages without 
understanding the underlying nature of the assumptions, then results could be negatively affected.  

Another significant issue with the use of such powerful but potentially brittle analytical tools is a lack of 
checks and balances for result generation and interpretations. In this study, we generated 5 different 
interpretations for two different data sets, but it would be very unusual for practitioners to go to this level of 
analysis to determine how different models may differ and why. Experience (or lack thereof) ultimately guides 
the construction and interpretation of such models, and this reality represents a significant source of 
subjectivity. Thus, there is a very real possibility that decisions could be made from results generated by 
models that are not exactly wrong, but also are not exactly correct. Such inherent data analytic weaknesses 
need to be accounted for when policymakers make decision based on machine learning-generated results. 
 

Acknowledgments 
This research was funded by the US Department of Transportation’s University Transportation Center grant 
through the University of North Carolina’s Collaborative Sciences Center for Road Safety. Yaoyu Wang aided 
in collecting, cleaning, and processing the data. 

 

 



 
www.roadsafety.unc.edu 26 

 

References 
Breiman, L. (2001). "Random Forests." Machine Learning Journal 45(1): 5-32. 

Computer Science. (2013). "What can be learned from the weights in a neural network?"   Retrieved 24 July, 
2019, from https://cs.stackexchange.com/questions/10295/what-can-be-learned-from-the-weights-in-a-
neural-network. 

Cross Validated. (2017). "Deep learning: How do I know which variables are important?"   Retrieved 24 July, 
2019, from https://stats.stackexchange.com/questions/261008/deep-learning-how-do-i-know-which-
variables-are-important. 

Cummings, M. L. and A. Stimpson (2019). Identifying Critical Contextual Design Cues Through a Machine 
Learning Approach. AAAI AI Magazine Special Issue on Computational Context. W. Lawless and D. 
Sofge. Palo Alto, CA. 

Fisher, A., C. Rudin and F. Dominici (2018). "All Models are Wrong but many are Useful: Variable Importance 
for Black-Box, Proprietary, or Misspecified Prediction Models, using Model Class Reliance." 
arXiv:1801.01489  

Gianfrancesco, M. A., S. Tamang, J. Yazdany and G. Schmajuk (2018). "Potential Biases in Machine Learning 
Algorithms Using Electronic Health Record Data." JAMA internal medicine 178(11): 1544–1547. 

Guha, R., D. T. Stanton and P. C. Jurs (2005). "Interpreting Computational Neural Network Quantitative 
Structure−Activity Relationship Models:  A Detailed Interpretation of the Weights and Biases." Journal of 
Chemical Information and Modeling 45(4): 1109-1121. 

Hadi, M. A., J. Aruldhas, L. Chow and J. A. Wattleworth (1995). " Estimating safety effects of cross-section 
design for various highway types using negative binomial regression." Transportation Research Record 
(1500): 169-177. 

Hermans, E., T. Brijs, T. Stiers and C. Offermans (2006). The Impact of Weather Conditions on Road Safety 
Investigated on an Hourly Basis. 85th Transportation Research Board (TRB) Annual Meeting. Washington 
DC. 

Ibrahim, O. M. (2013). "A  comparison  of  methods  for assessing  the relative importance  of  input  variables  
in artificial neural networks." Journal of Applied Sciences Research, 9(11): 5692-5700. 

Intratora, O. and N. Intratorb (2001). "Interpreting neural-network results: a simulation study." Computational 
Statistics & Data Analysis 37(3): 373-393. 

Iranitalab, A. and A. Khattak (2017). "Comparison of four statistical and machine learning methods for crash 
severity prediction." Accident Analysis & Prevention 108: 27-36. 

McLean, A. J., R. W. G. Anderson, M. J. B. Farmer, B. H. Lee and C. G. Brooks (1994). Vehicle Speeds and the 
Incidence of Fatal Pedestrian Collisions. Federal Office of Road Safety. Australia, The University of 
Adelaide. I. 

Menardi, G. and N. Torelli (2014). "Training and assessing classification rules with imbalanced data." Data 
Mining and Knowledge Discovery 28(1): 92–122. 

National Center for Statistics and Analysis (2018). 2017 Fatal Motor Vehicle Crashes: Overview. NHTSA. 
Washington, DC, Department of Transportation,. 

Neudorff, L., P. Jenior, R. Dowling and B. Nevers (2016). Use of Narrow Lanes and Narrow Shoulders on 
Freeways: A Primer on Experiences, Current Practice, and Implementation Considerations F. H. 
Administration. Washington DC, US Department of Transportation. 

Peden, M., R. Scurfiled, D. Sleet, D. Mohan, A. A. Hyder, R. Scurfield, E. Jarawan and C. Mathers (2004). World 
report on road traffic injury prevention Geneva, Switzerland, World Health Organization. 

https://cs.stackexchange.com/questions/10295/what-can-be-learned-from-the-weights-in-a-neural-network
https://cs.stackexchange.com/questions/10295/what-can-be-learned-from-the-weights-in-a-neural-network
https://stats.stackexchange.com/questions/261008/deep-learning-how-do-i-know-which-variables-are-important
https://stats.stackexchange.com/questions/261008/deep-learning-how-do-i-know-which-variables-are-important


 
www.roadsafety.unc.edu 27 

 

Richards, D. C. (2010). Relationship between Speed and Risk of Fatal Injury: Pedestrians and Car Occupants. 
Transport Research Laboratory. London, Department of Transport,. 

Saito, T. and M. Rehmsmeier (2015). "The Precision-Recall Plot Is More Informative than the ROC Plot When 
Evaluating Binary Classifiers on Imbalanced Datasets." PLoS One 10(3): e0118432. 

Samimi, A., A. Mohammadian and K. Kawamura (2010). An online freight shipment survey in US: Lessons 
learnt and a non-response bias analysis. 89th Annual Transportation Research Board Meeting, 
Washington DC, Transportation Research Board of the National Academies. 

Stamatiadis, N. and J. Pigman (2009). Impact of Shoulder Width and Median Width on Safety. Washington 
DC, Transportation Research Board. 

Sung, A. H. and S. Mukkamala (2003). Identifying important features for intrusion detection using support 
vector machines and neural networks IEEE Symposium on Applications and the Internet, Orlando, FL. 

Swanson, E. D., M. Yanagisawa, W. Najm, F. Foderaro and P. Azeredo (2016). Crash Avoidance Needs and 
Countermeasure Profiles for Safety Applications Based on Light-Vehicle-to-Pedestrian Communications 
John A.Volpe National Transportation Systems Center. Washington DC, US Department of 
Transportation. 

Xing, E. P., M. I. Jordan and R. M. Karp (2001). Feature Selection for High-Dimensional Genomic Microarray 
Data Eighteenth International Conference on Machine Learning, Williamstown, MA. 

 

 

 

  



 
www.roadsafety.unc.edu 28 

 

Appendix A: Variables in HSIS dataset 
 

Table A-1: Variables, Descriptions and Categories of the HSIS Variables 

 Variables Description Category  
1 Speed limit Miles per hour from 10 to 70 Road Design 
2 AADT Average annual daily traffic ranging from 0 to 775,446 

cars 
Environment 

3 Access control 0: no access control; 1: expressway - partial access 
control; 2: freeway - full access control 

Road Design 

4 Left shoulder width Left should width (in increasing direction of the 
roadway), feet, ranging from 0 to 80. 

Road Design 

5 Right shoulder width Right shoulder width (in increasing direction of 
roadway), feet, ranging from 0 to 40 

Road Design 

6 Number of lanes From 1 to 25 Road Design 
7 Median width Feet ranging from 0 to 800 Road Design 
8 Section length Stretch of road that is consistent in terms of certain 

road characteristics (e.g. shoulder widths, lane 
number, lane width …). Miles, ranging from .01 to 
13.543. 

Road Design 

9 Light 0: daylight, 1: dusk/dawn, 2: dark but with street light, 
3: dark without street light, 4: dark with street light not 
functioning 

Environment 

10 Weather 0: clear or cloudy, 1: weather may influence driving, 
including raining, snowing, wind and fog 

Environment 

11 Maximum age Maximum age of driver involved in the accident, 
ranging from 0 to 105 

Drivers 

12 Minimum age Minimum age of driver involved in the accident ranging 
from 0 to 104 

Drivers 

13 Vehicle type 0: normal, 1: heavy, 2: motorcycle Vehicles 
14 Sobriety 0: not impaired, 1: impaired Drivers 
15 Urban / Rural 0: rural, 1: urban Environment 
16 Lane width Feet ranging from 0 to 150 Road Design 
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Appendix B: Comparison of HSIS 
Original and Cleaned Data 
 

Two-sample Kolmogorov-Smirnov tests were performed on the original and processed data. The mean and 
median values are listed below. A p-value less than 0.0031 indicates the original data and processed data 
have different distributions, highlighted in grey.  

Table B-1: HSIS Original vs. Cleaned Data 

  Original Processed p-value from KS 
test 

Fatal Nonfatal Fatal Nonfatal Fatal Nonfatal 
1 Speed limit 
(miles/hour) 

Mean 61.8528 64.104 61.7897 63.5592 
0.0003 0 

Median 70 70 65 70 
2 AADT Mean 81,381.17 127,366.6 82,410.72 127,924 

1 0.0066 
Median 37,500 123,793 39,500 125,000 

3 Access control Mean 1.7709 1.7655 1.7713 1.7656 
1 1 

Median 2 2 2 2 
4 Left shoulder 
width (feet) 

Mean 5.3011 5.2813 5.3114 5.2831 
0.9988 0.0015 

Median 5 5 5 5 
5 Right shoulder 
width (feet) 

Mean 7.4593 7.9696 7.5126 7.9963 
0.9958 0 

Median 8 10 8 10 
6 Number of lanes Mean 5.1141 6.4949 5.1551 6.5247 

1 1 
Median 4 6 4 6 

7 Median width 
(feet) 

Mean 25.1334 26.8089 25.4172 26.9297 
1 1 

Median 15 20 16 20 
8 Section length 
(miles) 

Mean 0.7619 0.4156 0.7574 0.4119 
0.9774 0 

Median 0.344 0.21 0.34 0.21 
9 Light Mean 1.1167 0.6965 1.1208 0.6949 

1 0.5021 
Median 0 0 0 0 

10 Weather Mean 0.0649 0.0906 0.0640 0.0841 
1 1 

Median 0 0 0 0 
11 Maximum age Mean 46.2080 46.2169 46.011 46.2775 

1 0.0050 
Median 47 47 46 46 

12 Minimum age  Mean 35.1059 32.1884 35.0022 32.1289 
1 0 

Median 31 28 30 28 
13 Vehicle type  Mean 0.5117 0.1489 0.5067 0.1506 

0.1511 1 
Median 0 0 0 0 

14 Sobriety Mean 0.2593 0.0621 0.2527 0.0604 
1 0.2292 

Median 0 0 0 0 
15 Urban/Rural Mean 0.1305 0.2312 0.0860 0.1649 

0 0 
Median 0 0 0 0 

16 Lane width (feet) Mean 27.6578 34.2761 27.9214 34.4224 
1 0.9540 

Median 14 30 15 30 
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Appendix C: Histograms of HSIS 
variables before and after data 
imputation.  

 

  Fig. C-1 Distributions of the speed limit 

 

  Fig. C-2 Distributions of the AADT 

 

  Fig. C-3 Distributions of the access control 

 

  Fig. C-4 Distributions of the left shoulder width 1 
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  Fig. C-5 Distributions of the right shoulder width 1 

 

  Fig. C-6 Distributions of the number of lanes 

 

 

  Fig. C-7 Distributions of the median width 

 

  Fig. C-8 Distributions of the section length 

 

  Fig. C-9 Distributions of the light 

 

  Fig. C-10 Distributions of the weather 
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  Fig. C-11 Distributions of the maximum age 

 

   Fig. C-12 Distributions of the minimum age 

 

 

 

  Fig. C-13 Distributions of the vehicle type 

 

  Fig. C-14 Distributions of the sobriety 

 

  Fig. C-15 Distributions of the urban/rural 

 

  Fig. C-16 Distributions of the lane width 
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Appendix D: Variables in the NASS 
Pedestrian Dataset 
 

Table D-1: Variables, Descriptions and Categories of the NASS Variables 

 

 

 Variables Description Category 

1 Month 1-12: the month Environment 
2 Time 3 or 4 digits representing time, e.g. 1523 means 15:23, 

830 means 8:30 
Environment 

3 Pedestrian weight Weight in kg ranging from 9 to 150 Pedestrian 
4 Pedestrian age Actual age ranging from 2 to 93 Pedestrian 
5 Pedestrian sex 1: male, 2: female Pedestrian 
6 Pedestrian motion 0: not moving, 1: walking slowly, 2: walking rapidly, 3: 

running or jogging, 4: hopping, 5: skipping, 6: jumping, 7: 
falling/ stumbling or rising 

Pedestrian 

7 Action relative to 
vehicle 

00: stopped, 01: crossing road straight, 02: crossing road 
diagonally, 03: moving in road with traffic, 04: moving in 
road against traffic, 05: off road approaching road, 06: off 
road going away from road, 07: off road moving parallel, 
08: off road crossing driveway, 09: off road moving along 
driveway 

Pedestrian 

8 First avoidance 
action 

00: no avoidance actions, 01: stopped, 02: accelerated 
pace, 03: ran away (along vehicle path), 04: jumped, 05: 
turned toward vehicle, 06: turned away from vehicle, 07: 
dove or fell away, 11: vault corner of vehicle, 12: vault onto 
vehicle, 13: brace against vehicle, 14: crouched and 
braced hands against vehicle 

Pedestrian 

9 Driver drinking 0: not drinking, 1: drinking Driver 
10 Speed limit Speed limit in km/h ranging from 16 to 105 Vehicle 
11 Vehicle curb 

weight 
Actual value / 10 in kilogram ranging from 73 to 293. Vehicle 

12 Driver attention 
(prior to 
recognition of 
critical event) 

1: full attention to driving, 2: distracted by other occupant, 
3: distracted by moving object in vehicle, 4: distracted by 
outside person/object/event, 5: talking on cellular phone 
or CB radio, 6 sleeping or dozing while driving 

Driver 

13 Traffic way flow 1: not physically divided (two-way traffic), 2: divided 
trafficway - median strip without positive barrier, 3: 
divided trafficway - median strip with positive barrier, 4 
one-way trafficway 

Road Design 

14 Number of travel 
lanes 

Ranging from 1 to 7 Road Design 

15 Surface condition 1: dry, 2: wet, 3: snow and slush, 4: ice, 5: sand/dirt/oil Environment 
16 Traffic light 

functioning 
0: no traffic control, 1: not functioning, 2: functioning Environment 
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