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Introduction 
Ridesourcing is a term used to describe the operation of transportation network companies such as Uber, 
Lyft, DiDi Chuxing, and RideAustin where the rider can hail a vehicle from the convenience of their smartphone 
using a web or smartphone application. Ridesourcing services are offered in more than a hundred cities in the 
US and hundreds of cities worldwide. As an example, ridesourcing trips have grown exponentially, with Uber 
providing ten billion trips globally in 2018 [1]. 

Transportation network companies' service can bridge mobility supply gaps, offering a convenient and 
competitive mode alternative with pooled-service capabilities [2], enhancing urban transportation options [3], 
potentially reducing private vehicle ownership [4], and even providing emergency services by replacing 
expensive ambulances [5,6]. However, empirical studies uncover adverse effects of ridesourcing travel, 
including associations with congestion [7], competition with public transportation modes [3,8], increased net 
energy use [9], and environmental externalities [10].  

Ridesourcing operations could lead to road safety benefits by reducing road crashes, driving while intoxicated 
(DWI) offenses, and the welfare losses associated with those [11]. Road safety improvements are a focus of 
several initiatives around the world, such as the United Nations' sustainable development goals and in the 
United States through vision zero efforts [12]. Ridesourcing use in a city could be associated with a reduction 
of DWI offenses in locations where other transport modes are not provided or are less attractive than driving 
one's vehicle under the influence of alcohol (use of ridesourcing due to "alcohol consumption" was highly 
rated by survey’s respondents) [13]. On the other hand, ridesourcing use could be positively associated with 
crashes based on existing empirical evaluations of the impact of ridesourcing on road safety at the 
metropolitan level. Existing literature has found that ridesourcing is associated with an overall increase in 
vehicle miles traveled due to drivers deadheading between offering rides as well as cruising when waiting to 
be assigned to the next passenger pick-up [9,14]. There is also evidence of induced travel contributing to 
vehicle miles traveled rise [15] which does not only result in congested city centers but is also related to 
increased road crash rates [16]. 

In this study, we investigate how the use of ridesourcing influences the rate of vehicular crashes, injuries, 
fatalities, and DWI offenses, and we capture safety-related externalities of ridesourcing use. To our 
knowledge, this is the first empirical study that uncovers such associations while accounting for the intensity 
of ridesourcing use by leveraging actual ridesourcing pick-up and drop-off coordinates. Previous evaluations 
of ridesourcing impacts on road safety outcomes focused on effects across metropolitan regions and used 
dichotomous indicators of ridesourcing presence or absence as a predictor variable. Instead, we utilize more 
granular data on ridesourcing trips per census tract for Travis County, Texas. Spatial panel data models are 
employed to demonstrate associations between ridesourcing trips and road safety outcomes.  

 
Literature Review 
Existing studies focus on uncovering associations between ridesourcing entry and road safety outcomes, DWI 
offenses, and alcohol consumption. As shown in Table 1, almost all empirical studies examine the impact of 
ridesourcing services entry on the relative change in road crash rates (e.g., [17]). Out of seven economics and 
epidemiology studies in this field, only one attempts to capture ridesourcing intensity. Barrios et al. use 
Google search count data as a ridesourcing exposure proxy due to the absence of real-world information on 
this type of trips [16]. Even though safety-related literature highlights significant spatio-temporal associations 
between traffic and road safety outcomes [18,19], the studies mentioned above do not capture such effects. 
Our analysis at a local spatial scale is more appropriate for local management and policy response than 
metropolitan scale [18].  

Across studies, safety outcomes examined vary between crash, injury, and fatality rates, as well as DWI 
offense rates. A subset of studies focuses on modeling alcohol-related fatalities and injuries [11,20,21]. 



 

Difference-in differences models are the primary approach in the existing literature to capture causal 
relationships between ridesourcing entry and road safety outcomes but a few researchers also conduct time-
series analysis to track trends over time [21,22]. Among the studies reviewed, the following variables serve as 
controls: vehicle miles traveled, annual average daily traffic or population are included as traffic measures, 
and indicators of socio-demographic and economic characteristics, driving-related laws, vehicle ownership, 
and public transit use. Time units of such analysis vary between weeks, months, or quarters. The smallest 
spatial unit of the observations used in such analysis is more commonly a city, a county, or a metropolitan 
statistical area, primarily due to the lack of more granular data of transportation network companies' travel 
patterns. 

Table 1  Summary of Methods from Existing Literature 

Reference Method Dependent 
Variable 

Ridesourcing 
Indicator Controls Spatial-Unit Time-Unit 

Greenwood 
and Wattal, 
2017 

DiD, OLS, 
QMLE 

Alcohol-
related 
motor 
vehicle 
deaths, all 
driving 
fatalities, 
alcohol-
related 
deaths on 
weekends 
and major 
drinking 
holidays 

UberX and 
Uber Black 
launch dates 

Age, college 
graduates, 
population, 
median 
income, 
population 
living under 
poverty, law 
enforcement 
population 

Townships 
(CA, US) 

Quarter (2009-
2014) 

Brazil and 
Kirk, 2016 

DiD 
Poisson, 
Negative 
binomial 

Total, 
alcohol-
involved, 
weekend and 
holiday 
traffic 
fatalities 

Uber launch 
date 

State laws, 
state beer tax, 
unemployment 
rate 

US metro area 
counties (100 
largest) 

Month  

(2009-2014) 

Martin-Buck, 
2016 

DiD Alcohol-
related fatal 
accidents, 
DUI, and 
other 
offenses 

Uber and Lyft 
launch dates 

City 
population, 
unemployment 
rate, light-rail 
transport 
availability and 
use  

US Cities; 

273 cities of 
>100,000 
population)  

Month (2000-
2014) 

Morrison et 
al., 2018 

ARIMA (with 
transfer 
functions) 

All, alcohol-
involved, 
serious injury 
and fatality 
crashes 

Uber launch, 
cease, and 
resume dates 

n.a. US Cities 
(Portland, OR, 
Las Vegas 
NV, Reno NV, 
San Antonio 
TX) 

Week  

(2013-2016) 



 

Dills and 
Mulholland, 
2018 

DiD Fatal 
accidents 
per thousand 
persons  

(total, 
alcohol-
involved, 
night-time), 

Offenses per 
thousand 
persons 
(Assaults, 
motor 
vehicle 
thefts, DUIs, 
Liquor law 
violations) 

UberX launch 
date 

State driving 
laws, state 
beer tax, age, 
race, 
unemployment 
rate, 
population 
density 

US Counties Month (2007-
2015) 

Barrios et al., 
2019 

DiD Total, drunk, 
pedestrian-
involved, 
non-drunk 
crashes and 
fatalities 

Intensity of 
rideshare use 
(Uber and Lyft 
Google 
search) for 
conventional 
and pooled 
ride service 

Population, per 
capita income, 
vehicle 
ownership, 
public 
transportation 
use, VMT, new 
car 
registrations, 
quality of 
drivers 

US Cities; 
population 
greater than 
10,000 people 

Quarter (2010-
2017) 

Huang et al., 
2019 

DiD, ARIMA Road traffic 
deaths 

Uber launch 
date 

Age, sex, birth 
province 

South African 
province 

Week  

(2010-2014) 

Kirk et al., 
2020 

Negative 
binomial 

Traffic 
injuries 

Uber 
availability 
(binary) 

Employment 
rates, fuel 
price, taxis 

Great Britain 
local 
government 
authorities 

Monthly (2009-
2017) 

Morrison et 
al., 2018 

ARIMA (with 
transfer 
functions) 

All, alcohol-
involved, 
serious injury 
and fatality 
crashes 

Uber launch, 
cease, and 
resume dates 

n.a. US Cities 
(Portland, OR, 
Las Vegas 
NV, Reno NV, 
San Antonio 
TX) 

Week  

(2013-2016) 

Note: DiD stands for difference-in-differences, OLS for ordinary least squares, QMLE for Poisson quasi-
maximum likelihood estimator, and ARIMA for autoregressive integrated moving average. 

Findings are not consistent across studies, even when comparing those that follow similar methods and use 
similar spatio-temporal units of analysis. For example, Brazil and Kirk conclude that transportation network 
companies entry is not significantly associated with any of the categories of traffic fatalities examined in their 
work for the US [17]; a similar conclusion is reached by Huang et al. [22] in their South African-focused study. 
Morrison et al. hypothesize that the resumption of ridesourcing operation in specific US cities is associated 



 

with a decrease in alcohol-involved road crashes [21]; their hypothesis is partially supported for the cities of 
Portland, Oregon and San Antonio, Texas. However, the studies above do not account for actual ridesourcing 
travel patterns, which are much needed to capture local effects by overlaying ridesourcing pick-up and drop-
off locations and safety outcomes. Other studies also report findings that are in general agreement with the 
aforementioned outcomes. As an example, Dills and Mulholland indicate that Uber's launch is associated with 
a reduction in fatal traffic crashes and DWI offenses after a certain number of months of operation, 
uncovering lags [23]. 

On the contrary, Barrios et al. find that road fatalities (including pedestrian and non-vehicle occupants) 
increase with ridesourcing use and that these trends persist over time [16]. They also demonstrate that the 
road crash rate increase is significant in cities with greater population levels, higher income quartiles, greater 
vehicle ownership share and public transportation use, as well as higher carpooling use. Barrios et al. is the 
only work that captures such exposure, using a proxy for adoption intensity, by adopting Google trends search 
counts [16]. We find that the existing literature fails to assess how the intensity of ridesourcing services in 
smaller geographic areas is related to road safety since it does not leverage actual locations of crashes and 
other road safety outcomes data.  

Ridesourcing operation resembles that of a taxi service. Evidence from safety research of the operation of 
taxis examines the impact of fatigue [25], driver behavior, and working conditions [26], as well as taxi driver 
offenses [27] on taxi crashes. Associations of these factors with taxi crashes and fatalities are examined 
through Poisson and logistic regression models without considering spatial and temporal characteristics. 
Such models, along with multivariate regressions models (e.g., [28]), seemingly unrelated regressions (e.g., 
[29]), and geographically weighted regressions (e.g., [30,31]) are leveraged in a variety of road safety 
outcomes modeling studies. Note that after systematically searching for evidence, we have not identified 
studies that examine associations of taxi use and road safety outcomes the way  ridesourcing use 
relationships have been studied with safety outcomes. 

Our analysis aims to bridge literature gaps by leveraging granular local-scale data to shed light on the 
relationship between transportation network companies' operation and road safety outcomes. In our analysis, 
these associations are captured by using real-world ridesourcing trip data. It is crucial to uncover these 
effects since ridesourcing could be incentivized by city managers and policymakers to contribute towards 
traffic crashes and injury reduction under a vision zero's plan. Prioritizing successful interventions could be 
crucial to achieving substantial road safety improvements. 

 

Methods 
To measure the association between ridesourcing travel and road safety, we use spatial panel data models. 
Such models have been previously applied in transportation safety research [32–34]. The natural logarithm of 
crashes, injuries, fatalities, and DWI offenses, as well as ridesourcing exposure, addresses the variables' right 
skewness via normalization [35]. We leverage data on safety outcomes, ridesourcing and traffic volumes, and 
socio-demographics from January 2012 to the beginning of April 2017. To conduct the proposed analysis, we 
aggregate variables by census tract and month-year units. The data used here (described in greater detail in 
the next section) are longitudinal, containing repeated observations of the same census tract units over time. 
Cross-sectional data and models suffer from an inability to capture intertemporal dependence of events, 
which the panel data models that are used here are expected to capture. The proposed models with spatial 
and time fixed-effects enable reducing bias from unobserved factors that are changing over time but are 
constant over each spatial unit and controls for unobserved factors that change over space but are constant 
over time [35]. 

Previous studies attempt to answer a similar research question with empirical data through the difference-in-
differences estimation which compares how the trajectory of road safety outcomes differs before and after 
the launch of ridesourcing. Due to the absence of a control group in our study since RideAustin ridesourcing 
operation was launched in Travis County in all census tracts simultaneously (June 2016), we cannot deploy a 



 

DiD model. Instead we employ spatial panel fixed-effects lag and error models and Spatial AutoRegressive 
with additional AutoRegressive error structure (SARAR) models that allow for the disturbances to be 
generated by a spatial autoregressive process [36]. The index of each spatial unit is i ∈ {1, … , I}, and each time 
unit is t ∈ {1, … , T}. A fixed-effects spatial lag specification is presented in equation (1), according to [37]: 

yit = λ�wijyjt
i≠j

+ βxit + ai + γt + uit (1) 

where yit is each road safety outcome (e.g., the number of total crashes that occurred in the spatial unit i 
during month t, and similar for injuries, fatalities, and DWI offenses), wij is a spatial weighted matrix in which 
neighborhood relationships are defined between the spatial units of analysis (which is constant over time t, 
with diagonal elements equal to zero), ∑ wijyjti≠j  is the spatially lagged dependent variable which denotes that 
the value of y at time t is explained not only by the values of exogenous independent variables but also those 
y neighboring the spatial unit i, λ is the scalar spatially autoregressive coefficient of the spatially lagged 
dependent variable, ai is the spatial unit fixed-effect, γt is the time unit fixed-effect, β the vector of parameters 
to be estimated, xit a vector of explanatory variables, and the error terms uit~N(0,σ2). The census tract fixed-
effects control for all time-invariant census tract specific factors that are potentially correlated with safety 
outcomes, such as area. Similar assumptions hold for the time fixed-effects that control for census tract 
invariant factors that vary by month like travel patterns. For all models, wij weights are defined based on 
binary contiguity, where wij = 1 when the intersection of the boundaries of i and j spatial units is not empty, 
otherwise wij = 0. 

The spatial error with fixed-effects model is presented in equations (2) and (3), according to the specification 
by [38]: 

yit = βxit + ai + γt + uit (2) 

uit = ρ∑ wijujti≠j + εit  (3) 

where the disturbance term uit follows the first order spatial autoregressive process of the equation 
presented in [3], and ρ is spatial autoregressive coefficient where |ρ| < 1. The rest of the terms have been 
specified in the previous paragraph. Comparing the spatial lag and spatial error models, the former suggests 
a diffusion, where road safety crashes in one spatial unit predict an increased likelihood of road crashes in 
neighboring places; the latter suggests that we have omitted spatially correlated covariates that would affect 
inference. 

 Last, the SARAR model is defined as presented in equations (4) and (5) [36,39]: 

yit = λ�wijyjt
i≠j

+ βxit + ai + γt + uit (4) 

uit = ρ∑ wijujti≠j + εit  (5) 

where both λ and ρ are spatially autoregressive coefficients. SARAR accounts for both neighboring effects 
and omitted spatially correlated covariates. Maximization of the likelihood function results in the estimation 
of the unknown coefficients β, per the existing notation for the spatial lag and error models [37] and for the 
SARAR model [40]. 

We conduct specification tests to confirm that fixed-effects are most appropriate over random effects. The 
Hausman test [41] is applied that denotes that a fixed-effects model is at least as consistent as the random-
effects specification, and thus, a fixed-effects specification is chosen. Locally robust panel Langrage 
Multiplier (LM) tests are used to test the absence of each spatial term, for spatial dependence [38]. The LM 
statistics tests are used to test for spatial autocorrelation in the form of an endogenous spatial lag variable 
and spatially autocorrelated errors [39]. 

 



 

Data 
Datasets representative of Travis County, Texas are analyzed including detailed historical road safety 
measures from the Texas Department of Transportation Crash Records Information System [42] and DWI 
offenses from the Austin Police Department Crime Reports [43]. For both road safety and DWI offense 
records, apart from temporal variability, we have access to their exact locations as longitude and latitude 
coordinates. Ridesourcing use is captured based on actual, comprehensive1 trip-level data from RideAustin's 
open record. RideAustin is a company that operated in Travis Countywithout competing with Uber and Lyft 
between June 2016 and May 2017. RideAustin offered approximately 1.5 million rides [44] during that period. 
Note that during the period Uber and Lyft exited the Austin market, RideAustin was launched and other 
transportation network companies, such as Fare and Fasten [45]. We are not aware of the ridership share that 
the rest of ridesourcing companies attracted, thus we might underestimate the use of ridesourcing services in 
the region. However, we know that 47% of those that used the new transportation network companies in 
Austin chose RideAustin from a local survey's findings [46]. RideAustin's market share is sufficient to suggest 
high representativeness of ridesourcing patterns [2]. 

In our analysis, we aim to control for overall traffic in the region after conducting monthly travel demand 
analyses using the StreetLight Data platform [47]. Normalized trip counts for all census tracts within Travis 
County during the period of interest are used. The normalized vehicular traffic counts data do not include 
commercial, ridesourcing, and delivery data according to the specifications of the StreetLight Data platform. 
The normalized trip counts, used here as a proxy for the travel demand in Austin, are calibrated with annual 
average daily traffic (AADT) data available at the network level for every link in the Austin metropolitan region 
[48]. Unfortunately, the shapefiles of the annually variant daily vehicle miles traveled (DVMT) in the Austin 
region are only suitable for calibrating the StreetLight Data trips counts and not for running the model with 
DVMT as a control variable. Using annually variant DVMT would result in losing the monthly granularity that 
we are interested in maintaining across both the ridesourcing use and the overall transportation network use 
covariates. Additional controls that capture socio-demographic characteristics and their change over the 
analysis period are available from processed American Community Survey data. The socio-economic data 
capture demographic and land use variations across census tracts and years. Variables of interest include 
median household income, population density, employment density, and percent of zero vehicle ownership 
[49]. 

 

Road safety outcomes rates 
The analysis period is from January 2012 to April 2017. We showcase in Figure 1 the time series of the 
monthly crash, injury, fatality, and DWI offense rates (per thousand people) averaged by census tract in Travis 
County. Note that we use the KABCO scale for injury severity [50]; the injuries used to compute the 
corresponding rate include incapacitating (A), non-incapacitating (B), and possible injuries indicated by 
behavior but not visible wounds (C) [51]. We observe similarities between the crash and injury rates seasonal 
trends, even though for the former the fitted linear trend over the total period of time is increasing and for the 
latter decreasing.  

In Figure 1, we overlay the monthly ridesourcing operation timeline in Travis County with traffic safety 
outcome rates. The period between January 2012 and June 2014 is characterized by no ridesourcing 
operation. Uber and Lyft launched in the region during June 2014 and operated there until May 9, 2016 when 
they stopped offering services due to the city of Austin's regulation that required fingerprint background 
checks on their drivers [52]. At the time of Uber/Lyft entry, crashes and injuries rates were declining; while 
operating and before Uber's and Lyft's exit, crash and injury rates were rising. Other effects might play a role 
in that, such as the city's population growth and the significant gasoline price drops in 2014, which are 
positively associated with additional travel demand. RideAustin, a ridesourcing service, was launched in 

 

1 Based on the dataset’s description provided directly by RideAustin in an openly accessible repository. 



 

Travis County in June 2016 and operated until May 29, 2017, when Uber and Lyft returned. Due to the 
unavailability of ridesourcing use data from these major transportation network companies between June 
2014 and May 2016, we exclude that period from our analysis. The group of observations before ridesourcing 
entry in June 2014 until the end of May 2014 are denoted as a "before ridesourcing" group and the 
observations group after RideAustin's launch in June 2016 up to the beginning of April 2017 as the "after 
ridesourcing" group.  

 

FIGURE 1  Road safety outcomes rates in Travis County, Texas. 

 
 

Ridesourcing use 
The monthly timeline presenting the number of RideAustin trips that were conducted in Travis County is 
presented in Figure 2, using RideAustin (2017) data. Specifically, the line graph presents the monthly number 
of rides given (corresponding right y-axis), and the bar graph shows the monthly number of drivers that 
offered rides (corresponding left y-axis). The number of rides offered between RideAustin entry's and October 
2016 is increasing exponentially; then, the number of rides keeps increasing at a lower rate, reaching a peak 
during the South by Southwest festival and conference season. Partial trip data for a few days in April 2017 
are available; we truncate the dataset to include ridesourcing trip origin and destination (OD) counts only up 
to the beginning of April 2017.  

 



 

 

Figure 2  Ridesourcing use in Travis County, Texas. 

The average monthly crash rate and RideAustin passengers' pick-up and drop-off rate for each census tract in 
Travis County are portrayed in Figure 3. We are grouping together ridesourcing trips origins and destinations 
that fall in our spatial units of analysis (i.e., census tracts) without double counting trips that have both their 
origin and destination in the same census tract. Due to this grouping we might not be able to capture that 
loading and dropping off of customers might have different impacts on the congestion across census tracts 
and can result in traffic stress levels. We present these indicators in Figure 3, denoting their shares before 
and after the entry of ridesourcing in the region, without accounting for the excluded period shown in Figure 1. 
In June 2016, RideAustin started offering rides mainly in the downtown Austin region (smaller area census 
tracts in the center of the map) and then, over the months, expanded their service radius to cover all census 
tracts within the Travis County.  

 

Figure 3  Road crash rate and ridesourcing rate before and after the introduction of the ridesourcing service 
in Travis County Texas census tracts. 

 

 



 

With highway networks spanning the suburban Austin region, we observe an increase of average crashes per 
1000 people in the aftermath of RideAustin launch there. Figure 3 also suggests that after RideAustin's entry, 
the rate of total crashes increased in the suburbs of Travis County but not in the downtown regions that the 
ridesourcing operation covered at a higher rate. The crashes increase in the suburbs could be associated with 
population and firm growth and could reflect changes in travel patterns that resulted from spatial differences 
due to the region's economic development. 

 

Other controls 
Various measures are introduced as control variables in our model. Their selection is based on prior evidence 
(as shown in Table 1) and includes median household income [11,16], percent of zero vehicle ownership [16], 
population density [11,16,23], and percentage of employment [16,17,20,23]. All these covariates are available 
through the American Community Survey for every census tract on an annual basis [49]. We make the 
assumption that such socio-demographic changes would be mainly observed on an annual basis since 
decisions of household relocation are made on an annual basis (e.g., Clark and Lisowski 2017). Given the 
land use changes in Travis County the latest years, we control for the monthly spatial variation in trip OD 
counts per spatial-time unit of analysis using normalized trip count data from the StreetLight Data platform 
[47]. The normalized OD trips, derived from the underlying data sample per census tract per month, is 
available as an output of the StreetLight Data travel demand modeling. Unfortunately, we can only estimate 
traffic exposure from January 2016 to December 2018 within the StreetLight Data platform due to the 
unavailability of historical datasets. This period slightly overlaps with our analysis period. Time series 
analysis is performed to estimate traffic exposure historical data (see Appendix).  

The hypotheses that support the inclusion of the aforementioned control variables are as follows: 

• Population density, employment percentage, and traffic (provided through the StreetLight Data's 
platform) are expected to capture the market's size.  

• The median household income is controlling the market's wealth [11].  
• Traffic crashes are significantly increased in cities with lower average per capita income [16].  
• The percentage of zero vehicle ownership is expected to capture likely users who do not own a 

personal automobile and may rely on other modes of transport [3].  

Note that, commonly, when examining factors contributing to crash risk, exposure measures tend to include 
roadway length [54]. In our case, the number of roadway miles does not vary at the monthly level per each 
spatio-temporal unit of analysis. Thus, any unobserved effects can be captured with the spatial effects' 
parameter entered in our proposed models.   

Table 2 presents descriptive statistics for our sample for 8,720 census tracts-month-year units, 
corresponding to 218 different census tracts in Travis County and 40 monthly periods. The mean, standard 
deviation, and median values of the safety outcomes, as well as the rest of the socio-economic, travel, and 
transportation-associated covariates are presented there. Only road crashes, fatalities, and injuries that 
involve light-duty vehicles are considered in the analysis (excluding crashes that only involve trucks, buses, 
and rail). 

 

Table 2  Summary Statistics of Census Tract-Month-Year Units of Analysis 

 Mean Standard 
Deviation Median Minimum Maximum 

Crashes 6.16 5.65 5.00 0.00 49.00 

Fatalities 0.041 0.22 0.00 0.00 3.00 



 

Injuries 4.13 4.70 3.00 0.00 75.00 

DWI Offenses 2.09 4.29 1.00 0.00 66.00 

Ridesourcing 
Trips 336.5 3,041.13 

0.00 0.00 163,788 

Med. 
Household 
Income ($) 

65,757 33,387 58,539 0 216,875 

OD Trips  27,507 22,941 20,703 12,405 219,626 

Gas Price 
(2018 
$/gallon) 

3.00 0.61 3.23 1.94 3.78 

Population 
Density (pop 
/sq ft) 

44,923 41,373 40,004 0 293,348 

Percent of 
Zero Vehicle 
Ownership 

3.2% 3.7% 2.0% 0.0% 25.3% 

Percent of 
employment 72.0% 11.6% 73.9% 0.0% 94.1% 

Records  8,720 

 
Results & Discussion 
Descriptive statistics of our sample of 8,720 census-tract month units, categorized by ridesourcing presence 
in Travis County, are presented in Table 3. Ridesourcing was operating in 27.50% of the total census tract-
month units of our analysis. Crash and injury rates are higher during the months when ridesourcing was 
offered. On the contrary, DWI offenses rate and fatality rates are lower, even though the averages' difference 
is much smaller. We observe an increase in the normalized trip counts rate per census tract and month unit, 
accompanied by an increase of the median household income and a significant decrease in gas prices, as 
well as an increase of the average population in the region, after the ridesourcing entry. 

TABLE 3  Descriptive Statistics: Before and After Ridesourcing Entry Periods 

 
Before 

Ridesourcing After Ridesourcing 

Period Jan 2012-May 2014 Jun 2016-Apr 2017 

 Mean (Std. Dev.) Mean (Std. Dev.) 

Crash Rate 1.65 (3.22) 2.20 (11.54) 

DWI Offense Rate 0.59 (1.35) 0.53 (2.56) 

Injury Rate 1.17 (2.97) 1.38 (9.93) 

Fatality Rate 0.014 (0.17) 0.010 (0.07) 

Ridesourcing Rate - 0.28 (1.05) 



 

Med. Household 
Income ($) 63,744 71,068 

Population 
Density (pop /sq 

ft) (32,930) (34,002) 

OD Trips Rate 
(trips/population) 6.27 7.60 

Percent of 
employment (8.31) (14.91) 

Records (%) 72.50% 27.50% 

Note: Rates covariates are measured per 1,000 people (based on the population variable of the American Community 
Survey, which is annually available for each census tract spatial unit)[49]. 

 

The spatial fixed-effects panel data model estimates, with all controls included, are presented in Table 4. 
Lagrange Multiplier tests results are noted there. Signs and magnitudes of the β coefficients are consistent 
across the three models, supporting the robustness of our findings. 

Ridesourcing use is found significantly associated with three road safety outcomes: crashes, injuries, and 
DWI offenses. For a 10% increase in ridesourcing use, we expect a 0.12% decrease in road crashes (p<0.05), a 
0.25% decrease in road injuries (p<0.001), and a 0.36% decrease in DWI offenses (p<0.0001). Ridesourcing 
use is not found associated with fatalities at the 0.1 significance level. These results are well aligned with 
Dills and Mulholland findings as well as Morrison et al. that associate the entry of ridesourcing with a 
decrease in DWI offenses and alcohol-involved crashes, respectively [21,23]. However, Morrison et al. find no 
significant association between ridesourcing entry and road injuries. Our findings are also aligned with two 
other studies that found no significant association between ridesourcing entry and fatalities [17], while we 
also account for the ridesourcing induced demand effects that the aforementioned studies do not capture.  

The magnitude of percentage decrease of road safety externalities associated with ridesourcing use can be 
considered small compared to the effectiveness of other strategic road safety interventions. Seatbelt laws 
enforcement may result in up to 9% reduction in road injuries [55], while speed limit reduction and traffic 
calming measures may enable to reach 10-15% decrease in traffic crashes [56]. Therefore, promoting the use 
of ridesourcing as Vision Zero policy might not be as effective as prioritizing infrastructure improvements, 
speed limit changes, and other educational or policing vision zero initiatives. However, a ridesourcing 
initiative to reduce DWI offenses and increase road safety could benefit groups most likely to ride those such 
as younger drivers [23]. 

TABLE 4  Spatial Fixed Effects Panel Data Models 
  Log(1+Crashes) Log(1+Injuries) Log(1+Fatalities) Log(1+DWI) 

  𝜷𝜷   𝜷𝜷   𝜷𝜷   𝜷𝜷   

Spatial Lag Fixed Effects Panel Data Model           

Percent of 
Employment 

-0.009  0.337  -0.111 * 0.036  

[0.165]  [0.222]  [0.052]  [0.159]  

Median HH Income 
-1.75 10-6 . -1.07 10-6  0.56 10-6 . -0.19 10-6 . 

[1.05 10-6]  [1.41 10-6]  [0.33 10-6]  [1.01 10-6] 
 



 

Percent of Zero 
Vehicle Ownership 

-0.837 ** -0.851 * 0.116  -0.0862 
 

[0.309]  [0.417]  [0.097]  [0.298] 
 

Population Density 3.65 10-6 ** 2.56 10-6  -1.23 10-6 ** 1.70 10-6 
 

 [1.33 10-6] 
 

[1.79 10-6]  [0.42 10-6]  [0.13 10-6] 
 

OD Trips 3.35 10-8 
 

0.86 10-6  0.13 10-6  1.23 10-6 * 

 [6.24 10-7] 
 

[0.84 10-6]  [0.19 10-6]  [0.60 10-6] 
 

Log 

(1+TripsRideAustin) 
-0.013 

. 
-0.026 ** -0.0009  -0.0372 

*** 

 [0.007] 
 

[0.009]  [0.002]  [0.007] 
 

𝜆𝜆  
0.114 *** 0.055 ** 0.003  0.050 ** 

[0.018]   [0.018]   [0.018]   [0.018]   

LM test (df=1) 42.36 *** 9.43 . 0.03  7.56 . 

Spatial Fixed Effects Error Panel Model           

Percent of 
Employment 

0.004  0.342  -0.111 * 0.0378  

[0.165]  [0.222]  [0.052]  [0.1589]  

Median HH Income -1.70 10-6  -1.05 10-6  0.56 10-6 . -1.85 10-6 . 

 [1.05 10-6]  [1.41 10-6]  [0.33 10-7]  [1.00 10-6]  

Percent of Zero 
Vehicle Ownership 

-0.785 * -0.829 * 0.116  -0.0770  

[0.312]  [0.419]  [0.098]  [0.299]  

Population Density 3.51 10-6 ** 2.44 10-6  -1.23 10-6 ** 1.68 10-6  

 [1.32 10-6]  [1.79 10-6]  [0.42 10-6]  [1.28 10-6]  

OD Trips 7.61 10-8  8.65 10-7  0.13 10-6  1.28 10-6 * 

 [6.44 10-7]  [8.55 10-7]  [0.198 10-6]  [0.61 10-6]  

Log 

(1+TripsRideAustin) 
-0.0133 . -0.026 ** -0.0008  -0.0381 *** 

 [0.007]  [0.009]  [0.002]  [0.007]  

𝜌𝜌  

  

0.112 *** 0.112 ** 0.0038  0.0473 ** 

[0.018]   [0.018]   [0.0183]   [0.0181]   

LM test (df=1) 40.01 *** 8.95 . 0.04  6.68 ** 

SARAR Panel Model               

Percent of 
Employment 

-0.029 
 

0.326 
 

-0.108 * 0.034 
 

[0.159] 
 

[0.2024] 
 

[0.0515] 
 

[0.158] 
 



 

Median HH Income -1.80 10-6 . -1.13 10-6 
 

0.59 10-6 . -1.97 10-6 * 

 [1.02 10-6] 
 

[1.40 10-6] 
 

[0.33 10-6] 
 

[1.00 10-6] 
 

Percent of Zero 
Vehicle Ownership 

-0.922 ** -0.899 * 0.121 
 

-0.103 
 

[0.293] 
 

[0.410] 
 

[0.099] 
 

[0.294] 
 

Population Density 3.89 10-6 ** 2.86 10-6 
 

-1.23 10-6 ** 1.73 10-6 
 

 [1.46 10-6] 
 

[1.78 10-6] 
 

[0.41 10-6] 
 

[1.27 10-6] 
 

OD Trips 1.13 10-8 
 

8.55 10-7 
 

0.135 10-6 
 

1.13 10-6 . 

 [5.60 10-7] 
 

[8.04 10-7] 
 

[0.21 10-6] 
 

[0.59 10-6] 
 

Log 

(1+TripsRideAustin) -0.011 . -0.024 ** -0.001 
 

-0.036 *** 

 [0.006] 
 

[0.009] 
 

[0.003] 
 

[0.008] 
 

𝜆𝜆  
0.359 *** 0.186 

 
-0.296 *** 0.136 

 
[0.058] 

 
[0.129] 

 
[0.089] 

 
[0.170] 

 
𝜌𝜌  

  

-0.290 *** -0.141 
 

0.272 *** -0.092 
 

[0.075]   [0.146]   [0.073]   [0.186]   

LM: lag (df=1) 28.09 *** 6.67 * 1.26  11.23 * 

LM: error (df=1) 25.74 *** 6.203 . 1.27  10.36 . 

Hausman test (df=6) 
chi-squared 205.6 *** 110.31 *** 10.32 . 158.68 * 

Note: Symbol *** corresponds to p<0.0001, ** to p< 0.001, * to p< 0.01, and . to p<0.05. 

Road crashes and fatalities are significantly associated with population density, as expected. Crashes 
increase with increased population density, but road fatalities decrease. Population density as fatalities' 
predictor might serve as a proxy for speed's effect, given that roads in lower density environments tend to be 
characterized by higher speed limits. The percentage of vehicle owners is positively associated with road 
crashes and injuries in Travis County. This result is aligned with other literature findings [16]; lower levels of 
vehicle ownership hint at greater public transit and/or active transportation usage. We note, though, that 
ridesourcing use could endogenously influence vehicle ownership positively by incentivizing more to drive for 
transportation network companies. In our analysis, ridesourcing use is positively (but weakly) correlated 
(corr = 0.12) with the percentage of zero vehicle ownership. 

The number of DWI offenses would decrease when a greater number of alternative transportation options are 
available, as expected. This finding also suggests that ridesourcing in Travis county may not only serve as a 
substitute for taxis and other modes of transportation but also for drunk driving. However, this outcome could 
also be a result of enforcement, educational, and other efforts, which we are unable to capture here. 

 
Robustness checks 
The concurrent launch of RideAustin and the exit of Uber and Lyft from the Austin region [52] during the 
period of May and June of 2016 might result in skewing our modeling outcomes since the association of 



 

ridesourcing use with road crashes, DWI offenses, and other road safety indices might be attributed to the 
departure of the popular ridesourcing services. We conduct a robustness check to examine whether the 
magnitude and sign of the ridesourcing use parameter remain the same when using only the last six months 
of the ride data of our RideAustin treatment period. This enables us to exclude data representative of the 
initial and transitory RideAustin operation period and focus only on the operation between October 2016 to 
March 2017, assuming the impacts of the exit of Uber and Lyft will have subsided. Table A3.1 is presented in 
the Appendix. Even though the significance of the relationship between ridesourcing use and road safety 
outcomes is weaker in this case, we observe that the sign of the parameter remains negative. In accordance 
with the base RideAustin operating period definition, we observe that ridesourcing use is associated with a 
reduction in DWI offenses and traffic injuries but does not seem to be related to road crashes and fatalities.  

Note that existing literature findings suggest that once Uber and Lyft services depart from Austin, the crashes 
and DWI offenses decline [16]. In such a case, some of the observed declines in road crashes might be 
attributed to reductions in the number of cars on the road. Therefore, the treatment might be the departure of 
Uber and Lyft, not the arrival of RideAustin. To explore such a notion, we would need information about the 
trips conducted by ridesourcing services over the excluded period of analysis.  

 
Conclusions 
We use RideAustin OD trips to examine the effect of ridesourcing exposure on road safety outcomes, such as 
road crashes, injuries, fatalities, and DWI offenses. Spatial fixed effects panel data models are employed to 
establish that RideAustin use is significantly associated with a decrease in total road crashes, injuries, and 
DWI offenses in Travis County, Texas. On the contrary, our findings do not demonstrate significant 
relationships between ridesourcing use and road fatalities. Given the significant costs associated with road 
safety outcomes and DWI offenses [57], ridesourcing services can be a low-cost option that could assist 
cities and counties with meeting goals for road injuries and DWI offenses decrease. At the same time, the 
magnitude of the road safety externalities reduction associated with ridesourcing trips is smaller compared 
to the effectiveness that has been documented after the application of other interventions, including seatbelt 
laws, reduced speeds, and traffic calming design. This outlines the need for determining population segments 
that ridesourcing-related solutions or policies could be more impactful for improving road safety, like 
focusing on younger ridesourcing demographics). 

 Our analysis augments existing work in this field by accounting for spatial distributions of 
ridesourcing use, road safety outcomes, and other socio-economic characteristics in the given region. Instead 
of testing associations of the launch of ridesourcing with road injuries and the rest of safety outcomes, we 
account for spatio-temporal characteristics and capture actual ridesourcing use via real-time trip data 
analytics in Travis County. The spatial panel data modeling outcomes show that spatial dependence is of 
significance. Thus, granular longitudinal travel, road safety, and socio-demographic panel data can provide 
transportation and traffic safety agencies that opportunity to uncover associations and plan for appropriate 
safety interventions. 

Additional research efforts should be put towards addressing this study's limitations, including 1) testing the 
effect of alternate travel demand exposure methods, such as vehicle miles traveled instead of the OD trips, 2) 
exploring whether effects might not manifest immediately from ridesourcing use, accounting for lags [11], 
and 3) examine results robustness by performing similar analysis in additional regions in the US and around 
the world, since the generalizability of the results can be questioned. Future research should also uncover for 
which populations and subpopulations road safety outcomes can be improved through ridesourcing use by 
(a) exploring the relationship of ridesourcing and road safety outcomes for different household income and 
employment percentage panels and (b) identify critical drivers of where potential public health benefits of 
ridesourcing utilization can be the greatest.  
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