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Introduction 
 OVERVIEW 

The social and economic costs of transportation crashes have reached a staggering $1 Trillion in the United 
States. A recent study showed that the critical reason (the last event in crash event chain) relates to drivers 
in a majority of crashes (Singh 2015). In order to reduce or eliminate traffic crashes and their social and 
economic consequences, the profession needs a more nuanced understanding of the reasons why crashes 
occur. A broad spectrum of traffic safety literature has focused on examining the key factors contributing to 
crash occurrence and/or injury outcomes given a crash (Frawley and Eisele 2004, Huang, Klauer, Guo et 
al. 2014). To better understand the contribution of these factors, studies have classified correlates of crash 
occurrence/injury outcomes into three major categories: driver, vehicle, and roadway-environment factors 
(Sabey and Staughton 1975, Treat, Tumbas et al. 1979, Singh 2015). Driving behavioral factors were found 
to be the most prevailing contributing factors in more than 90% of crashes (Sabey and Staughton 1975, 
Treat, Tumbas et al. 1979, Singh 2015). While understanding that human factors are predominant crash 
contributing factors, studies classified errors and developed taxonomies for driver’s errors and violations 
focusing on different themes (Treat, Tumbas et al. 1979, Reason, Manstead et al. 1990, Petridou and 
Moustaki 2000, Wierwille, Hanowski et al. 2002, Stanton and Salmon 2009). Given previous taxonomies, 
some key driving errors include recognition errors, decision errors, and performance errors (Treat, Tumbas 
et al. 1979, Wierwille, Hanowski et al. 2002). Recognition and decision errors were the leading and critical 
errors resulting in crashes (Treat, Tumbas et al. 1979, Wierwille, Hanowski et al. 2002, Iden and Shappell 
2006). Due to variations in driver characteristics and behavioral patterns, different types of roadways and 
environments can induce different errors and violations, potentially resulting in crashes or near-crashes 
(Dumbaugh and Li 2010). Behavioral factors are associated with most crashes (Frawley and Eisele 2004, 
Dumbaugh and Li 2010, Huang, Abdel-Aty et al. 2010, Klauer, Guo et al. 2014, Dingus, Guo et al. 2016). 
In particular, driver distraction was found to be one of the most critical (Klauer, Guo et al. 2014). Also, local 
demographics, and socio-economic conditions contribute to higher crash risks (Huang, Abdel-Aty et al. 
2010). The chances of crashes are higher with higher local population density, higher traffic intensity, and 
urbanization (Huang, Abdel-Aty et al. 2010). Similarly, freeways were associated with lower crash risk than 
arterials (Huang, Abdel-Aty et al. 2010). While the literature acknowledges that different roadways and 
environments can have diverse impacts on crash occurrence (Dumbaugh and Li 2010), this issue is lightly 
addressed. Most of the aforementioned studies used traditional police crash reports, which have an element 
of subjectivity as the police officer typically does not observe the crash as it happens (Wali, Khattak et al. 
2018). Likewise, traditional crash data do not provide objective information on pre-crash driver behavior 
and performance – in fact it is very difficult on part of the reporting officer to determine the exact behavior 
or speed profile that could have contributed to the crash. Also, other inaccuracies exist such as non-
reporting of low severity (property damage) crashes Washington, Karlaftis et al. 2010). The Naturalistic 
Driving Study (NDS) data provide an opportunity to extract extensive real world information not only on 
crashes (with all severity levels) but near-crashes and baselines as well (Hankey, Perez et al. 2016). In 
view of the above discussion, this project aims to: 

• Developing a systematic taxonomy for driving errors and violations and exploring their contribution 
to the occurrence of safety-critical events (i.e., crashes and near-crashes) using naturalistic driving 
study data. 

• Exploring the pathways of errors and violations that lead to safety-critical events in diverse roadway 
and built environments.  

To achieve the aforementioned objectives, this project first quantifies the contribution of key factors (i.e., 
human, vehicle, and roadway/environment) resulting in crashes. A safety matrix is developed to understand 
the sole as well as simultaneous contribution of human factors with vehicle and roadway/environment 
factors. Furthermore, the project develops a systematic taxonomy for driving errors and violations. Using 
extensive NDS data, and after embedding the driving errors and violations in the analysis framework, the 
study conducts a rigorous path analysis to explore the direct and indirect effects of different built 
environment factors on occurrence of safety-critical events through driving errors and violations. 
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RESEARCH QUESTIONS 
This project addresses the following research questions: 

a) What types of driving errors and violations (human factors) result in safety-critical events in 
naturalistic settings? 

b) How do driving errors and violations vary across different roadway and built environments? 
c) What are the implications of the study for how human errors and violations will impact crashes 

when some vehicles are human-driven while others have some level of automation?  

MULTI-PRONGED APPROACH 
This report describes work performed as two distinct efforts. Each effort is listed as a chapter: 
 
Chapter 2. “A taxonomy of driving errors and violations: Evidence from the naturalistic driving study” 
quantifies the contribution of key factors (human, vehicle, and roadway/environment) resulting in crashes, 
and then develops a systematic taxonomy for driving errors and violations (TDEV) in a naturalistic 
environment. It classifies driver errors and violations based on their presence during the theoretically-based 
perception-reaction process and analyzes their contribution in safety-critical events. To empirically explore 
their role in diverse built environments, this study harnesses a unique and highly detailed pre-crash sensor 
data collected in the SHRP2 Naturalistic Driving Study (NDS). 
 
Chapter 3. “Driver errors and violations: Pathways that lead to crashes in diverse built environments” 
explores pathways to uncover direct and indirect relationships between key roadway/built-environment 
factors, errors and violations, and crash propensity. Due to their complexity for drivers, urban environments 
were found to be associated with higher chances of crashes (by 7.66%), and they can induce more 
recognition errors, which associate with even higher chances of crashes (by 3.40% with the “total effect” 
amounting to 11.06%). Similar statistically significant mediating contributions of recognition errors and 
decision errors at school, playground, and construction zones were also observed. Other important results 
are discussed, along with real-world implications. The detail findings of this study are discussed in this part 
of the report. 
 

RESEARCH OUTPUTS 
Publications and Presentations 

• Khattak, A. J., N. Ahmad, B. Wali, and E. Dumbaugh, (2020). A taxonomy of driving errors and 
violations: Evidence from the naturalistic driving study. Accident Analysis & Prevention, 151, 
105873. 

• Khattak, A. J., B. Wali and N. Ahmad (2019). A Taxonomy of Naturalistic Driving Errors and 
Violations and Its Variations across Different Land-Use Contexts – A Path Analysis Approach. 98th 
Annual Meeting of the Transportation Research Board. National Academies, Washington D.C. 

• Khattak, A. J., N. Ahmad, B. Wali. Heterogeneity in Naturalistic Driving Errors, Violations, and 
Crash Risk in Diverse Environmental Context. Presented (#TRBAM-21-04104) at the 100th Annual 
Meeting of Transportation Research Board at Washington, D.C (January 2021). 

• Ahmad N., B. Wali, A. Khattak, and E. Dumbaugh. Driver Errors and Violations: Pathways that Lead 
to Crashes in Diverse Built Environments. (In-review, Accident Analysis & Prevention). 

  



 

 
www.roadsafety.unc.edu 7 

 

 A Taxonomy of Driving Errors and Violations: 
Evidence from the Naturalistic Driving Study 
Authors 
Asad J. Khattak1, Numan Ahmad1, Behram Wali2, Eric Dumbaugh3 

CHAPTER SUMMARY 
Driving errors and violations are identified as contributing factors in a majority of crash events. To examine 
the role of human factors and improve crash investigations, a systematic taxonomy of driver errors and 
violations (TDEV) is developed first. The TDEV classifies driver errors and violations based on their 
occurrence during the theoretically based perception-reaction process and analyzes their contributions in 
safety-critical events. To empirically explore errors and violations in diverse built environments, this study 
harnesses unique and highly detailed pre-crash sensor data collected in the SHRP2 Naturalistic Driving 
Study (NDS), containing 673 crashes, 1,331 near-crashes and 7,589 baselines (no-event). Human factors 
are categorized into recognition errors, decision errors, performance errors, and errors due to the drivers’ 
physical condition or their lack of contextual experience/familiarity, and intentional violations. Built 
environments are classified based on roadway functional classification and land uses, e.g., residential 
areas, school zones, and church zones. Human errors and violations contributed to 93% of the observed 
crashes, while roadway factors contributed to 17%, vehicle factors contributed in 1%, and 4% of crashes 
contained unknown factors. The most common human errors were recognition and decision errors, which 
occurred in 39% and 34% of crashes, respectively. These two error types occurred more frequently (nearly 
39% each) when business or industrial structures were present (but not in dense urban localities). The 
findings of this study reveal continued prevalence of human factors in crashes. The distribution of driving 
errors and violations across different roadways and environments found in this study can aid in the 
implementation of locality-specific countermeasures and has implications for connected and automated 
vehicle development, e.g., by understanding complex and unusual (fringe case) situations for safety, testing 
of connected and automated vehicles can be enhanced. 
 
Author affiliations: 
1Tickle College of Engineering, Civil & Environmental Engineering, University of Tennessee, Knoxville TN 
2Urban Design 4 Health, 24 Jackie Circle East Rochester, NY 14612. 
3School of Urban & Regional Planning, Florida Atlantic University, Boca Raton, FL 33431. 

INTRODUCTION AND BACKGROUND 
Traffic safety research classifies the pre-crash factors leading to a crash event as belonging to one or more 
of three factors: driver-related factors, vehicle-related factors, and environment- related factors ((Frawley 
and Eisele 2004, Huang, Abdel-Aty et al. 2010, Klauer, Guo et al. 2014, Ali, Ahmad et al. 2018, Ahmad, 
Ahmed et al. 2019; Sabey and Staughton 1975, Treat, Tumbas et al. 1979, Singh 2015). Studies using 
police-accident reports have found that driver-related factors are the prevailing contributing factor in crash 
events, associated with more than 90% of all crashes that occur (Sabey and Staughton 1975, Treat, 
Tumbas et al. 1979, Singh 2015). While police-reported crash data sources provide valuable information, 
the interpretation of the data they contain is necessarily subjective; rather than being based on direct 
observations of the events that immediately precede a crash, analysts are forced to infer these behaviors 
based on data collected after the crash event has occurred (Wali, Khattak et al. 2018, Hankey, Perez et al. 
2016, Ahmad, Ahmed et al. 2019). Other inaccuracies, such as non-reporting of low severity (property 
damage) crashes, exist in traditional crash data (Yamamoto, Hashiji et al. 2008, Washington, Karlaftis et 
al. 2010, Ye and Lord 2011).  
 
This study seeks to overcome these limitations through the use of Naturalistic Driving Survey (NDS) data. 
NDS data is collected from instrumented vehicles that record the behaviors of drivers, including their speed, 
breaking performance, and video recordings of a driver’s actions, providing the ability to directly observe 
real-world information from crashes of all severity levels, near-crashes, and baselines (Hankey, Perez et 
al. 2016). In addition, the chances of losing important information that exist in traditional data protocols are 
minimized. The NDS data provides information on real-world driving behavior and performance, along with 
real-world risks and safety consequences (Dingus, Klauer et al. 2006, Carney, McGehee et al. 2015, 
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Dingus, Guo et al. 2016, Arvin, Kamrani et al. 2019). This facilitates the examination of human factors in 
greater detail, e.g., errors due to driver inattention, distraction, drowsiness, and judgment-related errors, all 
of which contribute to crashes.   
 
Real-world driving performance and behaviors in time-to-collision can be examined using data from 
numerous geo-coded (location-based) driving parameters such as speed, acceleration, time to collision, 
secondary tasks/durations, distractions, and eye glance behavior of the drivers being continuously captured 
via advanced equipment (Dingus, Klauer et al. 2006, Dingus, Guo et al. 2016). All of these advanced 
features make NDS databases more unique and reliable compared to conventional police crash reports. 
Earlier studies have classified errors and developed taxonomies for driver errors and violations through 
different themes (Treat, Tumbas et al. 1979, Reason, Manstead et al. 1990, Petridou and Moustaki 2000, 
Wierwille, Hanowski et al. 2002, Stanton and Salmon 2009). Driver errors have been classified as slips, 
lapses, or mistakes (Reason, Manstead et al. 1990). In another study, the classification focused on 
differentiating behavioral factors affecting driving capabilities from those encouraging risky driving (Petridou 
and Moustaki 2000). From previous taxonomies, key driving errors include recognition errors, decision 
errors, and performance errors (Treat, Tumbas et al. 1979, Wierwille, Hanowski et al. 2002). Recognition 
and decision errors were found to be the leading and critical errors resulting in crashes (Treat, Tumbas et 
al. 1979, Wierwille, Hanowski et al. 2002, Iden and Shappell 2006). Due to variations in driver 
characteristics and behavioral patterns, different roadways and environments can induce different errors 
and violations (Dumbaugh and Li 2010).  
 
While previous taxonomies of driving errors and violations have led to valuable insights, none (to the best 
of our knowledge) have utilized real-world naturalistic driving datasets which provide detailed pre-crash 
driver behavior information for crashes, near-crashes, and baseline driving. Therefore, there is a need to 
develop a detailed and systematic taxonomy of real-world safety-critical driving errors and violations. Thus, 
the key objective of this study is to develop a systematic taxonomy of driving errors and violations (TDEV) 
which explores how different driving errors and violations vary in different roadway and environmental 
contexts using naturalistic driving study data. In addition, the study aims to develop a safety matrix to 
understand the contributions of human, vehicle, and roadway/land use environment factors based on new 
evidence. Importantly, this study sheds light on the risks associated with driving errors and violations made 
during no-event driving situations (baselines), which can potentially lead to safety-critical events (crash or 
near-crash) in the future. These efforts can in turn help accident investigations and provide insights into the 
development of automated vehicles. 

 
METHODOLOGY 
Data source 
This study uses data from the Naturalistic Driving Study, which were collected as part of the 2nd Strategic 
Highway Research Program (SHRP 2). The NDS SHRP2 is a comprehensive data collection effort in which 
a variety of volunteer drivers participated. Thousands of vehicles were equipped with advanced 
technologies (i.e., radars, sensors, and cameras) that continuously monitored and collected data on driver 
performance, driver behavior, speed, acceleration, lateral and longitudinal positions, and eye glancing 
behavior (Dingus, Guo et al. 2016). The NDS data consists of high-frequency and high-resolution 
information that was collected through an onboard data acquisition system (DAS) and multiple sensors 
(Hankey, Perez et al. 2016). The data includes roughly 3,200 drivers from six different states including New 
York, Washington, Pennsylvania, North Carolina, Indiana, and Florida (Hankey, Perez et al. 2016). The 
data was carefully collected in the appropriate study centers located in Bloomington, Indiana; Buffalo, New 
York; Durham, North Carolina; Seattle, Washington; State College, Pennsylvania; and Tampa, Florida. 
According to the NDS reports, these study centers encompassed several counties each with more than 
21,000 mi2 contained about 7.6 million registered vehicles of all types, and had a population of 
approximately 6.5 million people of driving age (greater than 15 years)-see Appendix Table A1 for 
geographic details of counties used for NDS recruitment. Efforts were made to have a representative 
sample of the population living in the counties surrounding the study areas, which included both rural and 
urban areas. Efforts were made to obtain a representative sample of driving population by age and gender. 
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They seem to be fairly representative of the population from which the sample was drawn. More details are 
provided in relevant SHRP reports (Blatt et al., 2015). A total of 3,247 volunteer participants were recruited 
for the NDS (SHRP-2) showing a good distribution among the aforementioned six regions (Blatt et al., 
2015). Out of these 3,247 participants, the distribution was Bloomington 7.82% (N=254), Buffalo 22.79% 
(N=740), Durham 16.29% (N = 529), Seattle 22.02% (N = 715), State College 8.47% (N = 275), and Tampa 
22.61% (N =734) (Blatt et al., 2015)—see Table in Appendix. These participants included around 45.80% 
(N = 1,487) males and 50% (N = 1,624) females, which were fairly distributed among various age groups 
which include: minor teens (with 16-17 years of age), adult teen (18-20), young adult (21-25), adult (26-35), 
middle adult (36-50), mature adult (51-65), older drivers (66-75), and older drivers that are 75+. Details on 
age distribution are available in the reference  (Blatt et al., 2015). Interestingly, there were 4.20% (N = 145) 
of the vehicles called AVT (Advanced vehicle Technology), equipped with advanced features such as 
collision avoidance radar, advanced cruise control, and electronic stability control (Blatt et al., 2015). 
Participants using these vehicles could be of any age or gender; for details, please refer to Blatt et al. 
(2015). While the NDS (SHRP2) data includes detailed information on all of the aforementioned 
participants, these variables were not included in the event sub-sample available for this study. Summary 
on these key variables for the overall NDS data can be found in the Appendix (i.e., Tables A2, A3, and A4). 
 
This study uses a subset of the original NDS-SHRP2 data, including a total of 9,593 trips with 7,589 no-
event baselines (20 to 30 seconds each), 1,331 near-crashes, and 673 crashes.  The baselines (i.e., driving 
instances when no safety-critical event happened) in the NDS data provide an opportunity to compare them 
with crashes and near crashes that represent safety-critical events. Although not fully representative of 
exposure, the baselines can provide a sense of crash risk through comparison of pre-crash behaviors 
(Hankey, Perez et al. 2016). The selection of baselines is one of the key new data sources in NDS. Through 
baselines, researchers can get a sense of typical driving behaviors across the sample (Hankey, Perez et 
al. 2016). In order to select baselines, a baseline sampling method was developed by VTTI. The sampling 
method was presented for expert review by the Expert Technical Group (ETG) who conduct review for the 
NDS studies as well as from the NDS (SHRP 2) Technical Coordinating Committee (Hankey, Perez et al. 
2016). In NDS, at least one baseline was selected for every driver with typical duration of 20-30 seconds. 
Driving speeds of 5 miles per hour were only included to mitigate the long stopping (Hankey, Perez et al. 
2016). For more detail on baseline selection and specification, please refer to a study (Hankey, Perez et al. 
2016).  
 
Notably, there is sufficient variation in the baselines based on roadway and land use variables. Also, the 
baselines are simply a sample (20 seconds to 30 seconds) of trips where drivers did not experience any 
abnormal or safety-critical event. They are helpful in assessing the behavior of drivers when no safety-
critical events are occurring.  The variables included in the NDS data are generally classified into three 
classes (Hankey, Perez et al. 2016):  
1. Safety-critical event variables, e.g., event nature, event severity, precipitating events, pre-incident 

maneuvers, and drivers’ reaction. 
2. Driver variables, e.g., driving behavior, type and duration of driver distraction/secondary tasks, seatbelt 

usage, and drivers’ steering control.  
3. Roadway and Land Use Variables, e.g., locality, roadway alignment, traffic flow, traffic density, and 

traffic control devices (Hankey, Perez et al. 2016). 

It should be noted that this study uses a non-random subsample of NDS data which was accessible to us 
for this analysis. In the NDS, the VTTI team randomly selected baselines with the goal of selecting at least 
one baseline for every driver (involved in a safety critical event) with a typical duration of 20-30 seconds. 
Note that the number of baselines for a specific driver was proportional to his/her total driving time in the 
NDS experiment (Hankey, Perez et al. 2016).  Driving speeds less than 5 miles per hour were excluded in 
order to disregard the influence of long stop times and to only consider time periods where the subject 
vehicle had the possibility of an at-fault crash (Hankey, Perez et al. 2016). 

To understand how safety critical events (crashes and near-crashes) were identified in NDS data, we 
provide the definitions as per the NDS dictionary. 

Crash: In NDS data, crash is considered as any contact of subject vehicle with an object (fixed or moving) 
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at any speed which results into transfer or dissipation of kinetic energy. It also includes non-premeditated 
departures of the roadway in which at least one tire of the subject vehicles leaves intended travel or paved 
surface of roadway. Furthermore, crash is considered to have occurred if the subject vehicle strikes any 
other vehicle, object, roadside barrier, animal, bicyclist, or pedestrian. 

Near-Crash: Near-crash is a situation where the subject vehicle, or other vehicle, cyclist, pedestrian, or 
animal requires a rapid evasive maneuver to escape crash. Note that rapid evasive maneuver includes 
accelerating, braking, steering, or combination of these three maneuvers. 

Safety Matrix 
A safety matrix was developed to provide insight into the prevalence of safety-critical human, vehicle, and 
roadway factors. The key objective for developing the safety matrix is to quantify the contributions of key 
factors in several combinations. Only the factors in the NDS data which data reductionists coded and clearly 
state that they contribute to crashes were considered. Note that the data reductionists who reviewed and 
analyzed the driving and video data used specific procedures. For instance, the procedures in the General 
Estimates System (GES) compiled by the National Highway Traffic Safety Administration were used as a 
reference for developing variables during data extraction from the NDS videos. This ensured that the key 
aspects of crashes are considered by the data reductionists and consistency in documenting variables. In 
this study, we use driver behavior (e.g., driving slowly and below the speed limit) and secondary tasks 
(given that secondary tasks contributed to crashes) to assess the contribution of human factors in crashes. 
Similarly, various factors in the NDS data were used to quantify the roadway and environmental factors. A 
detailed discussion on factors in the NDS data, which were used to derive crash contributing factors related 
to human, roadway/environment, and vehicle are discussed below. 

Human Factors 
Driver Behavior: The “Driver Behavior” factor in NDS data is defined by data reductionists as: “Driver 
behaviors (those that either occurred within seconds prior to the Precipitating Event or those resulting from 
the context of the driving environment) that include what the driver did to cause or contribute to the crash 
or near-crash. Behaviors may be apparent at times other than the time of the Precipitating Event, such as 
aggressive driving at an earlier moment which led to retaliatory behavior later.” For details on driver 
behavior in the NDS data, please refer to Figure 2.1. 
 
Secondary Task and Secondary Task Outcome: In some crashes no driver behavior was reported to have 
contributed to the crash. In such cases, we checked the “Secondary Task” and “Secondary Task Outcome” 
factors in the NDS data to determine whether a particular secondary task contributed to a crash. To 
determine whether a secondary task contributed to a crash, we evaluated the “secondary task outcome” in 
the NDS data which is defined by the NDS data reductionists as: “Determination of whether the Secondary 
Task contributed to the event sequence and severity. (Not whether the factor actually caused the event but 
contributed to it.)” These secondary tasks include cell phone use, talking/listening, and using hands-free 
communication, non-specific internal eye glance, and doing personal hygiene while driving. 

Roadway and Environment Factors 
The roadway and environmental factors include all of those factors which refer to roadway, weather, and 
visual obstructions which data reductionists state as crash contributors in NDS data. These roadway and 
environmental factors are separate from the “locality” factors in the NDS data which simply indicate in which 
roadway or land use environment the baseline or safety-critical event (near-crash or crash) was observed. 
The roadway and environment factors, which contributed to crashes, are derived from various factors in the 
NDS data including those coded as infrastructure, visual obstructions, surface conditions, and 
environmental conditions discussed as follows: 

• Infrastructure: The NDS data dictionary defines these factors as possible contributing causes to 
the occurrence or severity of the safety-critical event (i.e., in this case a crash). Examples of such 
factors include roadway alignment, roadway delineation, traffic control device, and roadway sight 
distance. 

• Visual Obstructions: Most of the visual obstruction factors relate to the blind spots or sight distance 
issues in the roadway. According to the NDS data dictionary, they had contributed to the occurrence 
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and severity of the safety-critical-event (i.e., in this case crash) or influenced the ability of the 
subject driver to effectively recognize and respond to the possible safety hazard and precipitating 
event. Some of the visual obstructions reported in the NDS crashes include curve or hill, inadequate 
roadway lighting system, parked vehicle, and other obstructions. 

• Surface Conditions: In some crashes, surface conditions such as snowy, muddy, and oily, were 
reported to have affected the vehicle’s coefficient of friction at the start of the precipitating event 
which resulted in crashes. 

Vehicle Factors 
This study considers the “vehicle contributing factors” available in the NDS data including faulty tires and 
brake system as the vehicle-related crash contributing factors. Based on NDS data reductionists, such 
factors might have contributed to the precipitating event or subject driver’s response which resulted in 
crashes. Some of the factors in the “Visual Obstructions” include inadequate defrost or defog system, 
inadequate vehicle headlamps, and faulty headlights, which can be more appropriately categorized as 
vehicle factors. Hence this study classified such factors as vehicle factors, which might have contributed to 
the occurrence or severity of the safety-critical events (i.e., a crash).  

A Systematic Taxonomy for Driving Errors and Violations 
This study uses NDS data to develop an evidence-based taxonomy for driving errors and violations. These 
are classified using a spatio-temporal framework consisting of perception, recognition, decision, and 
reaction (PRDR) (Khattak et al. 2020). The PRDR process consists of four phases: perception, recognition, 
decision, and reaction. During the perception phase, a driver perceives the presence of a potential safety 
hazard in the roadway through sight. Recognition is the next phase, where a driver realizes the actual 
identity of the safety hazard. Next comes the decision phase in which a driver decides the course of action 
to overcome the potential conflict. Finally, a driver initializes the course of action (i.e., start moving foot to 
the brake pedal or hand to the steering). While we developed and used the TDEV for driving errors and 
violations in this study, it can also be used to systematically classify driving behavior in near-crashes and 
baselines (Figure 2.1). Brief definitions of errors and violations are provided as follows: 

• Recognition errors occur when a driver fails to appropriately recognize the real situation, either due 
to distraction or poor judgement, requiring an evasive maneuver. This variable is coded by data 
reductionists (by reviewing video data) when proper attention is not maintained immediately prior 
to a safety-critical event. Specifically, according to the NDS data dictionary, in such cases the 
subject driver was reported as unable to maintain appropriate level of attention due to his/her 
involvement in one or more secondary tasks which occurred within seconds prior to the start of the 
precipitating event. The NDS data dictionary defines such situations as “the state of environment 
or action that began the event sequence under analysis”. The recognition error variable can be 
indicative of the higher risk associated with distraction compared with if the subject driver was not 
distracted. If the driver was not distracted, then they could have effectively responded to risky 
situation. 

• Decision errors happen when a driver is unable to decide or choose the appropriate response or 
action (e.g., brake or accelerate), having perceived, interpreted, and recognized the information 
correctly in the perception and recognition phase. For instance, some of the driver behaviors such 
as driving slowly below speed limit and exceeding safe speed but not the speed limit indicate 
inappropriate decisions of the subject drivers which the NDS data reductionists considered to have 
contributed to the crash occurrence or severity, which we classify as decision failures. For details 
on relevant driver behaviors related to decision errors, please refer to Figure 2.1. 

• Driver performance errors relate to a driver’s response in the reaction phase often reflecting poor 
lateral or longitudinal control or weak judgement of driving situations. For instance, if a driver 
intended to accelerate but did not accelerate enough, which resulted in a crash, then this would 
indicate a performance failure for the subject driver. If the driver had executed their intended course 
of action, i.e., accelerated enough, then they could have avoided the crash.  

• Physical condition errors are motivated by a driver’s physical or psychological state, e.g., 
drowsiness potentially leading to unsafe situations.  

• Experience or exposure errors can occur when a driver is either unfamiliar with the roadway and 
surroundings or lacks driving experience. This variable is determined and reported by the NDS data 
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reductionists. Further detail about the variable can be found in the “Driver Behavior” factor provided 
in the NDS data dictionary. 

• Violations of traffic laws can be categorized into sub-classes that include intersection-related 
violations (which can be intentional or unintentional), segment related violations, or simply speed 
related or illegal maneuvers. 
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Figure 2.1. Systematic Taxonomy for Driver Errors and Violations  
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The classification in Figure 2.1 is based on the “Driver Behavior” factors in the NDS data which are defined 
by the data reductionists as: “Driver behaviors (those that either occurred within seconds prior to the 
Precipitating Event or those resulting from the context of the driving environment) that include what the 
driver did to cause or contribute to the crash or near-crash. Behaviors may be apparent at times other than 
the time of the Precipitating Event, such as aggressive driving at an earlier moment which led to retaliatory 
behavior later.” In some of the safety-critical events, “no driving behavior” was reported. In such cases, we 
checked for “secondary task outcome” which is defined as: “Determination of whether the Secondary Task 
contributed to the event sequence and severity. (Not whether the factor actually caused the event but 
contributed to it.)” All of the “Driver Behavior” variables in the above TDEV are reported in the NDS data. 
There were a few cases where no contributing factor was mentioned, i.e., none of the driver behavior, 
secondary task outcome, infrastructure, roadway surface condition, or vehicle obstruction were identified 
in the NDS data as (marked with an asterisk (*)). In such cases, the research team evaluated the narrative 
(detailed description) of such cases to determine if any other human, vehicle, and roadway or environment 
factors could be identified as contributors. After evaluating the detailed descriptions in the narratives for the 
few cases, the research team found driver-related contributing factors and classified them in accordance 
with the proposed TDEV (Figure 2.1). 

Diverse Roadway Localities: NDS Data 
In the NDS data available to the research team, roadway and land use environments are classified under 
the variable “locality” into various categories (Table 2.1). The instructions for the data reductionist from the 
SHRP2 researcher data dictionary for this variable is as follows: “Best description of the surroundings that 
influence or may influence the flow of traffic at the time of the start of the precipitating event. If there are 
ANY commercial buildings, indicate as business/industrial or urban area as appropriate (these categories 
take precedence over others except for church, school, and playground). Indicate school, church, or 
playground if the driver passes one of these areas (or is imminently approaching one) at the same time as 
the beginning of the Precipitating Event (these categories take precedence over any other categories 
except urban, and divided highway).” The final variable includes the following categories: 
interstate/bypass/divided highway with no traffic signals, bypass/divided highways with traffic signals 
(principal arterials), open residential (which include few houses, signifying largely undeveloped land use), 
moderate residential, school, church, playground, business/industrial, urban, and open country (rural) 
settings (Table 2.1). Importantly, the open country and open residential locations are defined to include only 
vegetation and one/few housing units respectively. According to the NDS dictionary, open country and open 
residential areas are regarded as rural and rural/semi-rural locations respectively.  

Table 2.1 is presented in original format (source: NDS data dictionary) to understand the coding of various 
roadway localities. As defined in the table, Open Country indicates rural locations, while Open Residential 
(including one or few housing units) locations indicate rural or semi-rural locations are combined and 
considered as one category in the modeling in Chapter 3. The percentage of all events (i.e., including 
baselines, near-crashes, and crashes) reported on roadways within church, playground, and other locations 
like campground were very low; hence these three categories are collectively considered to have useful 
insights (also playground and campground locations somehow include similar activities which can influence 
driving behaviors in somehow similar way). 
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Table 2.1. Definition of Various Roadway Localities in the NDS Data (Source: NDS Data Dictionary) 

Value Definition Example and Hints 

Open country Other than the roadway, there is nothing but vegetation 
visible during the time surrounding the Precipitating Event 
that is described in any of the other categories. Road is not 
an Interstate or a bypass/divided highway with traffic 
signals. (Often appears as rural roads, 2 lanes undivided.) 

Includes roadways not 
defined as Interstate or 
divided highway, when no 
landmarks mentioned in other 
categories are visible. 

Open Residential Rural to semi-rural areas where there may be only one or a 
few houses around (i.e., farmland). 

 

Moderate Residential An area where multiple houses or apartment buildings are 
present, but is not as dense as an Urban Locality. 

e.g., residential subdivisions 

Business/industrial Any type of business or industrial structure is present, but is 
not as dense as an Urban Locality. (If there are also houses 
visible, this category takes precedence over Open 
residential and Moderate residential). 

 

Church One or more involved vehicle passes a church building at 
the time of the Precipitating Event. 

 

Playground One or more involved vehicle passes any type of 
playground or children's playing field at the time of the 
Precipitating Event. 

If playground/field is on 
school grounds, code as 
School. 

School One or more involved vehicles passes any type of school 
building or is in a school zone at the time of the Precipitating 
Event, including adult learning institutions. 

Include any training centers, 
universities, etc. as well as 
elementary and secondary 
schools. 

Urban Higher density area where blocks are shorter, streets are a 
mix of one and two way, and traffic can include buses and 
trams. (This category takes precedence over others when 
either businesses and/or residences are present.) 

 

Interstate/bypass/ 
divided highway with 
no traffic signals 

Vehicle is travelling on an interstate, bypass, or divided 
highway with no traffic signals (regardless of what buildings 
can be seen), at the time of the Precipitating Event. 

 

Bypass/divided 
highway with traffic 
signals 

Vehicle is travelling on a bypass or divided highway with 
traffic signals (no other category description is visible) at the 
time of the Precipitating Event. (Often appears as "Open 
Country", but with more lanes and/or as a divided road.) 

 

Other Locality at the time of the Precipitating Event is one not 
described in other categories. 

Ex. In campground. 

Unknown Cannot determine the Locality due to limitations in video 
views, lighting, visual obstructions, or limited perspective. 

Ex. Part of the video is 
missing or there is insufficient 
information in the video to 
make a determination. 
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RESULTS & DISCUSSION 
Most of the crashes (N = 673) in the NDS data available to the research team were not severe. The 
distributions and their severity based on NDS data dictionary are as follows: 

• Severe Crashes, 8.92% (N=60): “Any crash that includes an airbag deployment; any injury of driver, 
pedal cyclist, or pedestrian; a vehicle roll over; a high Delta V; or that requires vehicle towing. Injury 
if present should be sufficient to require a doctor's visit, including those self-reported and those 
apparent from video. A high Delta V is defined as a change in speed of the subject vehicle in any 
direction during impact greater than 20mph (excluding curb strikes) or acceleration on any axis 
greater than +/-2g (excluding curb strikes).” 

• Police-reportable Crashes, 13.22% (N=89): “Police-Reportable Crash. A police-reportable crash 
that does not meet the requirements for a Level I crash. Includes sufficient property damage that it 
is police reportable (minimum of $1500 worth of damage, as estimated from video). Also includes 
crashes that reach an acceleration on any axis greater than +/-1.3g (excluding curb strikes). If there 
is a police report this will be noted. Most large animal strikes and sign strikes are included here.” 

• Minor Crashes, 37.59% (N=253): “Physical Contact with another Object. Most other crashes not 
included above are Level III crashes, defined as including physical contact with another object but 
with minimal damage. Includes most road departures (unless criteria for a more severe crash are 
met), small animal strikes, all curb and tires strikes potentially in conflict with oncoming traffic, and 
other curb strikes with an increased risk element (e.g., would have resulted in worse had curb not 
been there, usually related to some kind of driver behavior or state).” 

• Low-risk Tire Strikes, 40.27% (N=271): “Tire Strike, Low Risk. Tire strike only with little/no risk 
element (e.g., clipping a curb during a tight turn).” 

 
On the one hand, with a prevalence of minor and low-risk/tire strike crashes (78%), a wide range of safety-
critical events are captured, most of which would not be available through police-reported crashes. On the 
other hand, only 22.14% of the overall crashes are police reportable, which means that the NDS data are 
not fully comparable with the widely available police-reported data. Simple cross-tabulations (not reported) 
showed that recognition errors were more frequently associated with severe crashes (51%) compared with 
other errors and violations. 
 
The near crashes are defined as follows in the NDS dictionary: “Any circumstance that requires a rapid 
evasive maneuver by the subject vehicle or any other vehicle, pedestrian, cyclist, or animal to avoid a crash. 
Near Crashes must meet the following four criteria: 1. Not a Crash. The vehicle must not make contact with 
any object, moving or fixed, and the maneuver must not result in a road departure. 2. Not premeditated. 
The maneuver performed by the subject must not be pre-meditated. This criterion does not rule out Near 
Crashes caused by unexpected events experienced during a pre-meditated maneuver (e.g., a premeditated 
aggressive lane change resulting in a conflict with an unseen vehicle in the adjacent lane that requires a 
rapid evasive maneuver by one of the vehicles). 3. Evasion required. An evasive maneuver to avoid a crash 
was required by either the subject or another vehicle, pedestrian, animal, etc. An evasive maneuver is 
defined as steering, braking, accelerating, or combination of control inputs that is performed to avoid a 
potential crash.4. Rapidity required. The required evasive maneuver must also require rapidity. Rapidity 
refers to the swiftness of the response required given the amount of time from the beginning of the subject’s 
reaction and the potential time of impact. Events classified as Near Crashes generally undergo further 
analysis.”  
  
Safety Matrix 
Crashes were categorized as having driver, vehicle, and roadway factors that contributed to their 
occurrence. Furthermore, the PDRT framework was used to characterize human factors. The roadway 
factors represent the data reductionist’s judgment on infrastructure-based contributing factor to the 
“…occurrence and severity of the event, wherein some aspect of the roadway design impacted the driver's 
ability to safely navigate the roadway, recognize potential safety risks, or respond effectively to the 
Precipitating Event.” (Virginia Tech Transportation Institute, 2019). A vehicle factor can be a “… vehicle 
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defect or factor appeared to contribute to the occurrence of the Precipitating Event.” (Virginia Tech 
Transportation Institute, 2019). These can include defect in tires, wheels, signals, powertrain, suspension, 
braking system, steering system, wipers, headlights, etc. All factors were based on the data reductionists 
review of the videos and other recorded information from the Data Acquisition System. 
 
The safety matrix for the NDS crashes reveals that human factors were the sole contributing factors in 
77.56% crashes (Table 2.2). The statistics indicate that human factors have a contribution in around 93% 
of crashes (Figure 2.2), this finding is consistent with previous studies (Sabey and Staughton 1975, Treat, 
Tumbas et al. 1979, Singh 2015). Roadway factors were the second most prevailing factors, contributing 
to around 17% of crashes (Figure 2.2). Vehicle factors were found to have the smallest impact on the 
number of crashes that were observed in the NDS data, with a percentage share of around 1%. This can 
be likely attributed to enhanced and modern vehicle technology in the NDS sample. 

Table 2.2. Safety Matrix: Contribution of Human, Vehicle, and Roadway Factors 

Human Factors Vehicle Factors Roadway Factors 
Crash 

Freq. % 
Y Y Y 2 0.30 
Y Y N 5 0.74 
Y N N 522 77.56 
N N N 30 4.45 
N N Y 18 2.67 
N Y Y 0 0.00 
N Y N 0 0.00 
Y N Y 96 14.26 

Total 673 100.0 
    

 
 

 
Figure 2.2. Contribution of Human, Vehicle, and Roadway Factors in Crashes 

Prevalence of Driving Errors in Safety-critical Events: Evidence from 
Naturalistic Driving Environments 
Using the NDS data, Table 2.3 provides summary statistics for driving errors and violations for safety-critical 
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events (crashes and near-crashes) and baselines (driving when no safety-critical event occurs). The 
methodology section explained how the error variables were created. The NDS data statistics show that at 
least one driving error or violation was reported in 92.87% of crashes and 61.31% of near-crashes 
respectively (Table 2.3). Recognition errors were the predominant driving errors that contributed in crashes 
and near-crashes with a percentage share of 38.63% and 34.03%, respectively (Table 2.3). Decision errors 
were reported as the second leading driving error, causing 34.32% and 13.82% crashes and near-crashes 
respectively (Table 2.3). Statistics reveal that drivers were involved in traffic violations in 9.06% of crashes 
and 10.74 of near-crashes. The safety hazard associated with different types of driving errors and violations 
was quantified using the ratio of the percentage share for each key error type as crashes/near-crashes over 
percent share in baselines as presented in columns 5 and 6 (Table 2.3). The findings reveal substantial 
safety risks are associated with recognition errors, as the percent share of recognition errors in near-
crashes and crashes were 155 and 176 times of their percent share in baselines (Table 2.3). Decision 
errors were reported in 2.69% (N = 204) of total baselines, and the percent share of decision errors in near-
crashes and crashes were 5 and 13 times their percent share in baselines. If these decision or recognition 
errors and violations are constantly repeated by drivers, then they can result in a safety-critical event. 
 
It is important to point out that the NDS data captures safety-critical events that did not necessarily result 
in police-reportable crashes. For example, according to the NDS data dictionary, the “impairments” factor 
is defined to influence the “driver behavior.” However, in only in about 1.04% of the crashes (N = 9 out of 
673 crashes), the subject drivers were reported to have been impaired with alcohol or other drugs. These 
impairments were in turn reflected in driver error variables and classified as recognition errors (N = 4 
crashes) and decision errors (N = 3 crashes).  

The remarks above provide an overview of how driving errors and violations are distributed among crashes 
and near-crashes. Recognition errors and decision errors contribute more frequently to crashes than other 
types of errors. Furthermore, crashes and near-crashes can be separated into single vehicle (SV) and multi-
vehicle (MV). While the contribution of a driver can be relatively straightforward in SV events, this may not 
be the case in MV crashes or near crashes. Specifically, in MV events, the human factors contributions 
may come from only the subject driver, other driver/s, both subject driver and other driver/s, or none of the 
drivers. Due to the nature of NDS data, this research focuses on exploring the pre-crash driving behaviors 
and contributions of subject drivers.  

Table 2.3 shows the distribution of driving errors and violations of subject drivers across SV and MV crashes 
and near-crashes. Out of the 673 crashes in the NDS subsample, 512 (76.08%) and 161 (23.92%) involve 
single vehicles and multiple vehicles, respectively (Table 2.3). Recognition errors of the subject drivers 
contributed to the highest percentage (57.76%) of MV crashes compared with SV crashes (32.62%).  
Similarly, in near-crashes involving multiple vehicles, recognition errors (e.g., distraction) by subject drivers 
were the leading contributing factors resulting in 35.47% of the MV near-crashes compared with 18.97% in 
SV near-crashes. These findings indicate that recognition errors dominate SCEs particularly in MV crashes. 
Recognition failures, e.g., due to distractions of the subject drivers seems to substantially contribute to 
harmful events involving multiple vehicles. Decision errors were more dominant in SV crashes, resulting in 
53.45% and 41.21% SV crashes and near-crashes, respectively (Table 2.3). In SV crashes and near-
crashes, poor decisions are the key contributors to safety critical events. The prevalence of errors in safety 
critical events relative to baselines is shown in the last two columns of Table 2.3.  The results indicate that 
recognition errors are much more likely to result in crashes, followed by performance errors.  For instance, 
the percent contribution of recognition errors in crashes is 175.59 (= 38.63/0.22) times their percent 
contribution in baselines (Table 2.3). Similarly, the percent contribution of performance errors in crashes is 
84.22 times their percent contribution in baselines (Table 2.3). Other errors show smaller relative 
contributions.  

To understand the contribution of non-subject drivers in multi-vehicle crashes, the fault variable provides 
insights. In 45 MV crashes where driving behavior (e.g., distraction, exceed speed limit) contributed to crash 
occurrence, other drivers were at-fault (i.e., coded in the “Fault” variable in NDS data), indicating that 
27.95% of MV crashes (N = 161) involved fault by non-subject drivers.
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Table 2.3. Prevalence of Driving Errors in Safety-critical Events (SCEs) 

Variable 

Event Type Prevalence of Errors in SCEs 

Baseline (%) Near-Crash (%) Crash (%) % 𝐢𝐢𝐢𝐢 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂
% 𝐢𝐢𝐢𝐢 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁

 
% 𝐢𝐢𝐢𝐢 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂

% 𝐢𝐢𝐢𝐢 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁
 

(N =7,589) Overall 
(N=1,331) 

SV 
(N = 116) 

MV 
(N = 1,215) 

Overall 
(N=673) 

SV 
(N = 512) 

MV 
(N = 161) 

Overall Near 
crashes (N = 

1,331) 

Overall 
Crashes (N = 

673) 
Driver’s Errors and Violations 
No error or 
violation 90.12 38.69 6.90 41.73 7.13 5.08 13.66 0.43 0.08 

Recognition error 0.22 34.03 18.97 35.47 38.63 32.62 57.76 154.68 175.59 
Decision error 2.69 13.82 53.45 10.04 34.32 41.21 12.42 5.14 12.76 
Performance error 0.09 0.68 2.59 0.49 7.58 7.42 8.07 7.56 84.22 
Physical condition 
error 1.25 1.43 2.59 1.32 1.34 1.76 --- 1.14 1.07 

Experience/exposu
re error 0.07 0.6 1.72 0.49 1.93 2.34 0.62 8.57 27.57 

Violation 5.56 10.74 13.79 10.45 9.06 9.57 7.45 1.93 1.63 
Total 100% 100% 100% 100% 100% 100% 100% --- --- 

Notes: SCEs indicate Safety-critical Events (near-crash, or crash). The ratio of percentage of errors in near-crashes and crashes to those in baselines are determined 
using values from the columns titled as baselines, overall near-crashes (N = 1,331) and overall crashes (N = 673) as presented in the two right-most columns, 
respectively.
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Variations of Driving Errors and Violations across Localities 
This section presents how driving errors and violations vary across roadway and environmental variables 
such as business/industrial and residential locations. Notably, local contexts may be associated with 
specific driving errors, and this analysis allows for the identification of hotspots of frequent errors and 
violations, which result in safety-critical events. The NDS subsample includes a total of 673 crashes out of 
which 38.63% (N = 260) and 34.32% (N = 231) crashes occurred due to recognition errors and decision 
errors, respectively (Table 2.3). As a next step, we were interested to see that how the two key driving 
errors (i.e., recognition and decision errors) are distributed across different roadway environments. We 
found that driving errors and violations resulting in crashes, occurred more frequently when business or 
industrial structures were present. Specifically, recognition and decision errors occurred more frequently 
with 47% (N = 121/260*100) and 52% (120/231*100) respectively, when business or industrial structures 
were present and thus resulted in crashes (Table 2.4). The next most frequent category was near moderate 
residential developments. To some extent these frequencies may reflect the exposure of the NDS sample 
in residential and business or industrial areas. While direct exposure of the vehicles in the sample is not 
available to researchers, the baselines provide a coarse surrogate for exposure. Therefore, crash 
percentage divided by baseline percentage is calculated to get a sense of the rate (Table 2.5). Also, 
business or industrial areas may be characterized by complexity of traffic, diversity of activities, and special 
roadway and environmental conditions that may lead to driving errors and subsequent crashes.
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Table 2.4. Distribution of Driving Errors and Violations across Different Roadways and Environments in Crashes, Near-Crashes, and Baselines 

Locality 

Types of Driving Errors and Violations 
No Error Recognition Decision Performance Violation Physical 

Condition 
Experience Total 

Freq. % Freq. % Freq. % Freq. % Freq. % Freq. % Freq. % Freq. % 
Baselines (N = 7,589) 

Interstate 1,743 25.49 1 5.88 52 25.49 0 0.00 125 29.62 22 23.16 0 0.00 1,943 25.60 
Open Country or Open 
Residential 654 9.56 0 0.00 25 12.25 0 0.00 31 7.35 8 8.42 0 0.00 718 9.46 

Moderate Residential 1,502 21.96 6 35.29 49 24.02 3 42.86 105 24.88 25 26.32 0 0.00 1,690 22.27 
 School 305 4.46 0 0.00 12 5.88 1 14.29 18 4.27 5 5.26 1 20.00 342 4.51 
Business/Industrial 2,214 32.37 8 47.06 51 25.00 3 42.86 119 28.20 27 28.42 3 60.00 2,425 31.95 
Urban 103 1.51 0 0.00 5 2.45 0 0.00 5 1.18 1 1.05 1 20.00 115 1.52 
Bypass or Divided 
Highways with no Traffic 
Signals 

203 2.97 2 11.76 7 3.43 0 0.00 13 3.08 6 6.32 0 0.00 231 3.04 

Others (e.g., Church, 
Playground and 
Campground) 

115 1.68 0 0.00 3 1.47 0 0.00 6 1.42 1 1.05 0 0.00 125 1.65 

Total 6,839 100 17 100 204 100 7 100 422 100 95 100 5 100 7,589 100  
Near-Crashes (N = 1,331) 

Interstate 104 20.19 74 16.34 36 19.57 0 0.00 26 18.18 7 36.84 3 37.50 250 18.78 
Open Country or Open 
Residential 19 3.69 17 3.75 18 9.78 1 11.11 16 11.19 1 5.26 1 12.50 73 5.48 

Moderate Residential 67 13.01 73 16.11 41 22.28 2 22.22 20 13.99 3 15.79 1 12.50 207 15.55 
School 35 6.80 38 8.39 13 7.07 0 0.00 8 5.59 0 0.00 0 0.00 94 7.06 
Business/Industrial 214 41.55 193 42.60 57 30.98 6 66.67 58 40.56 4 21.05 1 12.50 533 40.05 
Urban 45 8.74 31 6.84 10 5.43 0 0.00 7 4.90 3 15.79 1 12.50 97 7.29 
Bypass or Divided 
Highways with no Traffic 
Signals 

18 3.50 10 2.21 6 3.26 0 0.00 5 3.50 1 5.26 0 0.00 40 3.01 

Others (e.g., Church, 
Playground and 
Campground) 

13 2.52 17 3.75 3 1.63 0 0.00 3 2.10 0 0.00 1 12.50 37 2.78 
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Total 515 100 453 100 184 100 9 100 143 100 19 100 8 100 1331 100  
Crashes (N = 673) 

Interstate 9 18.75 15 5.77 13 5.63 1 1.96 2 3.28 0 0.00 1 7.69 41 6.09 
Open Country or Open 
Residential 2 4.17 11 4.23 14 6.06 2 3.92 10 16.39 1 11.11 0 0.00 40 5.94 

Moderate Residential 7 14.58 54 20.77 36 15.58 17 33.33 15 24.59 4 44.44 5 38.46 138 20.51 
 School 2 4.17 26 10.00 17 7.36 1 1.96 5 8.20 1 11.11 1 7.69 53 7.88 
Business/Industrial 24 50.00 121 46.54 120 51.95 19 37.25 19 31.15 2 22.22 6 46.15 311 46.21 
Urban 2 4.17 21 8.08 18 7.79 5 9.80 6 9.84 1 11.11 0 0.00 53 7.88 
Bypass or Divided 
Highways with no Traffic 
Signals 

2 4.17 6 2.31 4 1.73 3 5.88 2 3.28 0 0.00 0 0.00 17 2.53 

Others (e.g., Church, 
Playground and 
Campground) 

0 0.00 6 2.31 9 3.90 3 5.88 2 3.28 0 0.00 0 0.00 20 2.97 

Total 48 100.00 260 100.00 231 100.00 51 100.00 61 100.00 9 100.00 13 100.00 673 100.00 
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Table 2.5 provides the distribution of crashes, near-crashes, and baselines across different roadways and 
environments. The NDS data available for this study indicates that a total of 673 crashes were reported 
which are distributed across diverse roadways and environments. The highest percentage of crashes 
occurred on roadways passing through business or industrial localities and moderate residential locations 
making up 46.21% and 20.50% of the overall crashes. The percentage of baselines reported in these areas 
were also greater compared to other locations. Although the percentage of baselines reported on interstates 
was the second highest, the percentage of crashes on Interstates was relatively lower compared to other 
locations such as urban environments, school zones, and business or industrial.  
 
Notably, the NDS data available to the team does not have information on direct exposure (e.g., vehicle 
miles traveled), which could help in more appropriate comparison of crashes across different roadways and 
environments, a coarse measure in the form of baselines is available. Therefore, the percentage of 
baselines in different localities is used as the best possible but admittedly coarse surrogate for exposure to 
compare the safety risk across a diverse set of locations (Table 2.5). Based on the percentage of crashes 
per percentage of baselines in a specific locality, Interstate roadways and open country/open residential 
areas (rural and semi-rural settings) associate with lower risks. While urban, business/industrial, and school 
locations seem to have higher percentage of crashes per percentage of baselines and they can be 
considered as high crash risk locations (Table 2.5). 
 
 
TABLE 2.5. Distribution of Crashes, Near-Crashes, and Baselines across Different Roadways and 
Environments 

VARIABLE All Cases (N = 9,593) 
Percent (S.D.) 

Baseline 
(%) (N = 
7,589) 

Near-
Crash (%) 
(N = 1,331) 

Crashes (%) 
(N = 673) 

% of Crashes
% of Baselines

 

ROADWAY LOCALITY 
Interstate 23.29 (0.4226) 25.6 18.78 6.09 0.2379 
Open Country or 
Open Residential 8.66 (0.2813) 9.46 5.48 5.94 0.6279 
Moderate 
Residential 21.21 (0.4088) 22.26 15.55 20.50 0.9209 
School 5.10 (0.2199) 4.51 7.06 7.87 1.7450 
Business/Industrial 34.08 (0.4739) 31.10 40.04 46.21 1.4859 
Urban 2.76 (0.1639) 1.51 7.30 7.88 5.2185 
Bypass or Divided 
Highways with no 
Traffic Signals 

3.00 (0.1760) 3.04 3.00 2.53 
0.8322 

Others (e.g., 
Church, Playground 
and Campground) 

1.90 (0.1364) 1.66 2.78 2.98 
1.7952 

    Total 100% 100% 100% 100%  
 
This study explores the distribution of various driving errors and violations specifically across localities, 
roadways and land use categories coded in the NDS data. Notably, 6.09% (N = 41) crashes occurred in 
localities coded as interstates (Table 2.4). The distribution of various driving errors and violations on 
interstates, contributing to crashes, is shown in Figure 2.3. It can be seen that recognition and decision 
errors contributed to 36.59% and 31.71% of the overall crashes when locality was coded as interstates. 
The findings are in line with a recent study which indicates that chance of making decision errors was higher 
on interstates (Shaon, Qin et al. 2018). Violations were reported in nearly 4.88%, while each performance 
and experience/exposure errors were reported to have contributed to 2.44% of the crashes (Figure 2.3). 
Referring to the distribution of driving errors and violations in crashes occurring on bypass/divided highways 
with traffic signals, 35.29% of the crashes on this roadway occurred due to recognition errors, followed by 
decision and performance errors which contributed to 23.53% and 17.65% respectively (Figure 2.3). 
Notably, performance errors were substantially higher on these bypass/divided highways with traffic 
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signals. This finding is in agreement with recent studies (Shaon, Qin et al. 2018). This could be due to 
complex interaction of drivers with other roadway entities specifically at signalized intersections on principal 
arterials. Moreover, a good percentage (nearly 12%) of the crashes on bypass/divided highways with traffic 
signals occurred due to violations (Figure 2.3). 

 

Figure 2.3. Driving Errors and Violations on Interstates and Bypass/Divided Highways 
with Traffic Signals (in Crashes) 

A large percentage of crashes occurred in business/industrial areas (46.21%; N = 311) and 
moderate residential areas (20.51%; N = 138) (Table 2.4). Figure 2.4 illustrates how drivers were coded in 
the NDS data to make certain errors and violations in each of the moderate residential areas and 
business/industrial locations. In areas coded as business/industrial locations, recognition and decision 
errors each contributed to nearly 39% of the total crashes reported on roadways with such land uses (Figure 
2.4). Violations were coded to contribute to only about 6.11% of the overall crashes occurring on roadways 
within business/industrial locations (Figure 2.4). Referring to moderate residential locations, the percentage 
of crashes occurring due to recognition errors (39.13%) was significantly higher than that of decision errors 
(26.09%). A significant percentage of crashes in moderate residential areas (12.32%) also occurred due to 
violations. 
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Figure 2.4. Driving Errors and Violations in Business/Industrial and Moderate Residential Areas (in 
Crashes) 
The analysis of errors further reveals that 7.88% (N = 53) crashes were reported on roadways passing 
within school zones (Table 2.4). Interestingly, nearly 50% of the crashes were reported to have occurred 
within school zones due to recognition failures (Figure 2.5). Similarly, decision errors and violations 
contributed to 32.08% and 9.43% of the total crashes occurring on roadways passing through school zones, 
respectively (Figure 2.5). Only about 7.87% (N = 53) and 5.94% (N = 40) of the overall crashes (N=673) 
were coded by data reductionists to occur in urban and rural/semi-rural (open country/open residential) 
locations. Of the crashes that were coded to have urban areas as a key feature, 96% occurred due to 
driving errors. Among these, recognition and decision errors were the most prevailing errors contributing to 
nearly 40% and 34% of the total crashes in urban areas. In rural/semi-rural setups, the decision errors had 
a large contribution resulting in 35% of the crashes, followed by recognition failures which contributed to 
27,5% of crashes in these areas. Importantly, violations contributed to around 25% of the crashes in 
rural/semi-rural locations, perhaps partly due to comparatively lower level of traffic surveillance than other 
locations (e.g., business/industrial and urban areas). 
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Figure 2.5. Driving Errors and Violations in School Zone Area Crashes 

While this study explored the distribution of various driving errors and violations using information on various 
roadways and environments available in the “locality” factor in the NDS data (coded by the data 
reductionists, who followed procedures explained in the report). In the future, a more holistic approach can 
be followed where relevant variables are systematically classified to facilitate exploring the correlations of 
different roadways, activity centers, and land use on driving errors and violations (Figure 2.6). The roadways 
and environment can be divided into roadway classification, residential zones, business/commercial zones, 
industrial zones, and urban, suburban and rural areas. Perhaps a new activity-based land-use classification 
system can be used in the NDS context, along with the existing Federal Highway Administration (FHWA) 
roadway functional classification (FHWA 1989), and locality-based land-use classification (Sorensen 2000, 
Maret and Dakan 2003). To explain this further, using the locality variable, the categories are marked with 
() or () indicating whether NDS data does or does not include the category (Figure 2.6). For example, a 
complete FHWA roadway functional classification includes rural or urban: interstates, arterials 
(major/minor), collectors (major or minor), and local streets (major/minor) (FHWA 1989). However, the NDS 
data related to locality provides information only whether a safety-critical event occurred on interstates or 
principal arterials. While we acknowledge that residential, industrial, and business localities can be sub-
classes of built-up areas (LaGro Jr 2005), the NDS data reductionists considered the urban, residential, 
school, church, playground, business/industrial localities as separate locations (Figure 2.6). In short, the 
NDS data available to us through the locality variable does not include complete information on all 
categories which could completely fulfill the criteria of either the existing FHWA roadway functional 
classification or locality-based land-use classification or activity-based land-use classification (Figure 2.6). 
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Figure 2.6. Systematic Classification for Roadway Localities 
Note: All three roadway locality classifications use information from a single variable “locality” in the NDS 
data-hence complete information on all categories within any of the three classifications is not available. 
The categories marked with and  indicate factors on which information was available and unavailable, 
respectively. All known categories within the three roadway classifications add up to 100% (N = 9,593 
events). 

LIMITATIONS 
This study analyzed NDS data, which includes a finite number of drivers and geographical locations that 
do not explicitly cover all socio-geographical locations across U.S. The TDEV taxonomy proposed in this 
paper utilizes driving behaviors reported in the NDS data which may vary over time. In the original NDS 
data, the “locality” factor was classified by the data reductionists, who followed procedures explained in the 
report. They included information about the localities where safety-critical events occurred. These could be 
more systematically categorized, i.e., based on roadway as well as land use factor classifications. 
Unfortunately, the research team did not have access to NDS data that would provide more complete 
information regarding all categories of roadway and land use variables. In the future, it would be valuable 
if the NDS provided independent and complete data on roadway functional classification, activity-based 
land use, and locality-based land-use. Such data would result in a more complete picture of the distribution 
of driving errors across different roadways, activity centers, and land uses. Furthermore, information on 
driver demographics including driver age, gender, driving experience, and education are not available in 
NDS (SHRP2) subsample accessible to the authors. With data on driver demographics available in the 
future, it will be interesting to explore how they relate to driving errors, violations, and crash risk. 
 
CONCLUSIONS 
This research develops a taxonomy for human errors and violations that lead to crashes and it quantifies 
their contributions to crash occurrence. While it is possible to study driver behavior by examining police-
reported crashes, they cannot provide the insights that naturalistic driving data provides. Using sensor-
based technologies and video, the NDS data available in this study affords direct observation of pre-crash 
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driver behavior. Using such data, this study applies a systematic taxonomy of driving errors and violations 
in order to explore how they vary across roadway and land-use contexts. The taxonomic framework coupled 
with the data analysis can be used to identify human factors that are most strongly associated with vehicle 
crashes and highlight the critical ones.  
 
In the NDS data, and based on the categorization of variables as explained in the methodology section, 
human factors contributed to 93% of crashes; roadway factors contributed in 17% of the crashes, and in 
14% of the crashes both human and roadway and environmental factors (e.g., roadway conditions, visual 
obstructions, and weather conditions) were present. Digging deeper into human factors, in crashes, 
recognition errors (39%) were most frequently reported driving errors, followed by decision errors (34%), 
performance errors (8%), and violations (9%). These values indicate that in crashes, recognition and 
decision phases are critical phases. Using information from the “locality” factor in the NDS data, driving 
contexts were classified by roadway functions, activity-based land use, and locality-based land-uses. While 
recognition errors and decision errors were the most common, they occurred more frequently (47% and 
52% respectively) when business or industrial structures were present (but not in dense urban localities).  
 
The findings reveal that recognition errors can be particularly hazardous, given their prevalence in crashes 
compared with their share in baselines, and they were also more frequently associated with severe crashes 
(51%) compared with other errors and violations. Furthermore, the percentage contribution of performance 
errors and violations in crashes on principal arterials and interstates are almost 7 and 2.5 times higher 
respectively compared with baselines. Other land uses where certain types of errors are likely to occur are 
identified. The findings provide a foundation upon which to build a larger transportation safety program. The 
analysis provides valuable insights that can be aimed at reducing transportation crashes through data-
driven strategies. 
 

The distribution of driving errors and violations across different roadways and environments found in this 
study can aid in the implementation of locality-specific countermeasures and has implications for connected 
and automated vehicle development, e.g., by understanding complex and unusual (fringe case) situations 
for safety, testing of connected and automated vehicles can be enhanced. In the future, connected and 
automated vehicles have the potential to overcome a large portion of the driving errors and violations which 
presently contribute to a significant percentage of crashes. More research is needed on such safety 
intervention programs, e.g., collision warning systems and cooperative adaptive cruise control systems to 
explore how they may assist during the recognition, decision, and reaction phases, and re-engage the driver 
in hazardous situations.  
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CHAPTER SUMMARY 
Driving errors and violations are highly relevant to the safe systems approach as human errors tend to be 
a predominant cause of crash occurrence. In this study, we harness highly detailed pre-crash Naturalistic 
Driving Study (NDS) data 1) to understand errors and violations in crash, near-crash, and baseline (no 
event) driving situations, and 2) to explore pathways that lead to crashes in diverse built environments by 
applying rigorous modeling techniques. The “locality” factor in the NDS data provides information on various 
types of roadway and environmental surroundings that influence or may influence traffic flow when a 
precipitating event is observed. This variable was coded by data reductionists and it is used to quantify the 
associations of diverse environments on crash outcomes both directly and indirectly through mediating 
driving errors and violations. While the most prevalent errors in crashes and near-crashes were recognition 
errors such as failing to recognize a situation (39%) and decision errors such as not braking to avoid a 
hazard (34%), performance errors such as poor lateral or longitudinal control or weak judgement (8%) were 
the most strongly correlated with crash occurrence. Path analysis uncovered direct and indirect 
relationships between key built-environment factors, errors and violations, and crash propensity. Possibly 
due to their complexity for drivers, urban environments are associated with higher chances of crashes (by 
6%), and they can induce more recognition errors, which associate with even higher chances of crashes 
(by 2% with the “total effect” amounting to 8%). Similar statistically significant mediating contributions of 
recognition errors and decision errors near school zones, business or industrial areas, and construction 
zones were also observed. Other important results are discussed, along with real-world implications. 
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1Tickle College of Engineering, Civil & Environmental Engineering, University of Tennessee, Knoxville TN 
2Urban Design 4 Health, 24 Jackie Circle East Rochester, NY 14612. 
3School of Urban & Regional Planning, Florida Atlantic University, Boca Raton, FL 33431. 
 

INTRODUCTION AND BACKGROUND 
This chapter uses the Taxonomy of Driving Errors and Violations (TDEV) detailed in Chapter 2 to apply 
rigorous discrete outcome-based path analysis (reflecting systems thinking) to explore how environmental 
conditions correlate with errors, violations and crash occurrence. A unique aspect of this study is the 
utilization of NDS data, which provide more objective information about pre-crash or pre-near-crash driver 
behaviors in diverse spatio-temporal contexts. In addition to considering crash events, “no-event” driving 
events are analyzed vis-à-vis near-crash (near-miss) outcomes, as such “close calls” may foreshadow 
future crashes. The NDS database is ideal for this analysis as it contains human errors in baseline driving 
as well as near-miss (near-crashes) and crash situations throughout a diverse spectrum of behavioral and 
roadway/environmental conditions.  
 
Numerous studies have explored key factors contributing to crash occurrence and/or injury outcomes given 
a crash (Frawley and Eisele 2004, Huang, Abdel-Aty et al. 2010, Klauer, Guo et al. 2014). Several 
behavioral factors associate with crashes (Khattak, Khattak et al. 2002, Frawley and Eisele 2004, 
Dumbaugh and Li 2010, Huang, Abdel-Aty et al. 2010, Klauer, Guo et al. 2014, Dingus, Guo et al. 2016, 
Ali, Ahmad et al. 2018). Among them, driver distraction was found to be one of the most critical (Klauer, 
Guo et al. 2014). Also, local demographics and socio-economic conditions can contribute to higher crash 
risks (Huang, Abdel-Aty et al. 2010). The chances of crashes are higher with a higher density of local 
population, higher traffic intensity, and urbanization (Huang, Abdel-Aty et al. 2010). Similarly, freeways were 
associated with a lower crash risk than arterials (Huang, Abdel-Aty et al. 2010). From a roadway standpoint, 
the existence of a construction zone on a road facility increases crash risk (Khattak, Khattak et al. 2002).  
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While the literature acknowledges the contributions of roadway and environmental factors on crash 
occurrence (Dumbaugh and Li 2010), this issue is lightly addressed. Thus, there is a need to examine in 
greater depth how roadway and environmental (locality) factors correlate with safety-critical events. 
Furthermore, meager evidence exists on how roadway and environmental factors may induce certain errors 
and violations. Most of the literature is based on traditional police-reported crash data, which contains an 
element of subjectivity when it comes to pre-crash conditions (Wali, Khattak et al. 2018). Given these gaps, 
this study harnesses NDS data in order to examine the above issues in significant depth. 

 

METHODOLOGY 
Data Source 
This study also uses the NDS data collected as a part of the 2nd Strategic Highway Research Program 
(SHRP2), for details please refer to Chapter 2 of this report. In order to quantify the crash risk associated 
with different roadway localities and driving errors and violations, this study uses a subset of original NDS-
SHRP2 data including a total of 9,593 trips which include 7,589 baselines, 1,331 near-crashes, and 673 
crashes. As a first step, the proposed TDEV (i.e., discussed in detail in Chapter 2) classifies driving 
behaviors into six key types of driving errors and violations and these six types of driving errors and 
violations are integrated into the original NDS data in order to achieve the study objective. We also use the 
three diverse classification systems to categorize the diverse set of built environments in order to have 
more holistic picture of their influence on crash risk through driving errors and violations. 
 

Path Analysis Framework 
Methodologically, this study hypothesizes that roadways and environments (localities) may induce certain 
driving errors and violations (human errors) which may result in crashes (Figure 3.1). This study classifies 
driving behavior using the TDEV, a driving error taxonomy (Khattak, Wali et al. 2019), and then applies a 
two-stage path analysis framework in order to achieve the study objectives. In the first stage, a discrete 
outcome model was developed for driver errors and violations with locality type, intersection influences, 
presence of construction zones, and secondary task durations as explanatory variables (Figure 3.1). Given 
the discrete nature of the errors and violations related to the response variable, a multinomial logit 
framework was applied. In the second stage, a discrete outcome model was developed for crash propensity 
with the key explanatory variables of driver errors and violations (response outcome in Stage 1), locality 
types (roadways and environments), intersection influences, presence of construction zones, and 
secondary task durations (Figure 3.1). As the crash propensity outcomes exhibit a clear ordering pattern, 
an ordered probit model was estimated in the second stage (Ahmad et al. 2019, Wali et al. 2020, Wali et 
al. 2018) (Figure 3.1). Finally, path analysis was conducted to generate combined inferences from the two 
models. By using the path structure shown in Figure 3.1, the systems framework allows the decomposition 
of complex structures embedded in the data and the estimation of relevant direct and indirect effects, as 
discussed earlier (Liu, Khattak et al. 2015, Zhang, Khattak et al. 2018, Kamrani, Arvin et al. 2019).  In the 
path analysis framework, the marginal effects from both of the constituent models  are used to obtain the 
direct, indirect, and total effects of the associated factors on the final response variable (i.e. crash outcome 
in this case) (Liu, Khattak et al. 2015, Zhang, Khattak et al. 2018). The error terms (𝜀𝜀(1) and 𝜀𝜀(2)) in the two 
models (i.e. as shown in Figure 3.1) are assumed to be uncorrelated in this case. (Liu, Khattak et al. 2015, 
Zhang, Khattak et al. 2018). 
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Figure 3.1. Methodological Framework 
Notes: Dotted lines indicate indirect effects whereas solid lines indicate direct effects; 𝑍𝑍1 (Driving errors and 
violations) is categorical outcome which is modeled through a multinomial logit framework; 𝑍𝑍2 (event 
severity outcomes) being ordinal is modeled through an ordered probit regression.  
 
RESULTS AND DISCUSSION 

Descriptive Statistics 
Table 3.1 presents summary statistics of the two response variables and other key explanatory variables. 
The NDS data includes 9,593 observations containing 7,589 baselines (79%), 1,331 near-crashes (14%), 
and 673 crashes (7%). The descriptive statistics show that in 90.12% of the baselines, no driving error or 
violation was observed (as expected). However, at least one driving error or violation was present in a 
significant portion of the near-crash and crash events, 61.31% and 92.87%, respectively (Table 3.1). In 
both crash and near-crash events, recognition and decision errors were the predominant error types, 
collectively accounting for 47.85% of the near-crashes and 72.95% of the crash events (Table 3.1). Hence, 
recognition errors and decision errors respectively comprise 38.63% and 34.32% of the combined crashes. 
At least one error or violation was present in 10% of the total baseline events (Table 3.1). This indicates 
that other unobserved factors, when combined with such errors, could result in safety-critical events and/or 
grow the negative effects of the driving errors/violations. Given that these unsafe driving errors and 
violations did not result in crashes/near-crashes, strategies to prevent such errors and violations need to 
be explored and encouraged from a behavioral standpoint.  
 
The percentage of drivers traveling on roadways in business/industrial locations was 31.10%, 40.04% and 
46.21% for baselines, near-crashes, and crashes respectively. The ratio of baseline percentage to crash 
percentage is 1.49, which means that such commercial areas are a clear risk factor. This study is perhaps 
among the first ones to identify this hazard in a substantive way (Table 3.1). Furthermore, the percentage 
of the NDS drivers traveling on roadways within school zones is about 5% for baselines, but 7.06% for near 
crashes and 7.87% for crashes, indicating a 1.74 ratio between school zone percent and baseline percent 
(Table 3.1). This may reflect the relatively greater potential of unsafe outcomes in school zones. Also, based 
on the data coded in NDS, higher risk levels are observed in urban areas. Around 25% and 20% of the 
subject drivers were involved in crashes due to the influence of traffic signal/stop sign and parking 
lot/driveways respectively (Table 3.1). The crash percentage on roadways within construction zones were 
13.5% higher than the baselines observed at such locations. Of all the crashes, 4% were observed in 
construction zones compared with about 3% in baselines at construction zones.  
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Table 3.1. Descriptive Statistics of Key Variables 

VARIABLE 
All Cases (N = 

9,593) 
Percent (S.D) 

Baseline 
(%) 

 (N = 7,589) 

Near-Crash 
(%) 

(N = 1,331) 

Crashes 
(%) 

(N = 673) 

% of Crashes
% of Baselines

 

DRIVING ERRORS 
No Driving Errors 77.16 (0.4198) 90.12 38.69 7.13 0.0791 
Recognition Errors 7.60 (0.2652) 0.22 34.03 38.63 175.5909 
Decision Errors 6.45 (0.2457) 2.69 13.82 34.32 12.7584 
Performance Errors 0.69 (0.0833) 0.09 0.68 7.58 84.2222 
Violations 6.53 (0.2469) 5.56 10.74 9.06 1.6295 
Physical Conditions 1.28 (0.1125) 1.25 1.43 1.34 1.0720 
Experience or Exposure 
Errors 0.27 (0.0519) 0.07 0.60 1.93 27.5714 

Total 100% 100% 100% 100%  
ROADWAY LOCALITY 
Interstate 23.29 (0.4226) 25.6 18.78 6.09 0.2379 
Open Country or Open 
Residential 8.66 (0.2813) 9.46 5.48 5.94 0.6279 

Moderate Residential 21.21 (0.4088) 22.26 15.55 20.50 0.9209 
School 5.10 (0.2199) 4.51 7.06 7.87 1.7450 
Business/Industrial 34.08 (0.4739) 31.10 40.04 46.21 1.4859 
Urban 2.76 (0.1639) 1.51 7.30 7.88 5.2185 
Bypass or Divided Highways 
with no Traffic Signals 3.00 (0.1760) 3.04 3.00 2.53 0.8322 

Others (e.g., Church, 
Playground and 
Campground) 

1.90 (0.1364) 1.66 2.78 2.98 1.7952 

Total 100% 100% 100% 100% --- 
INTERSECTION INFLUENCE 
No Intersection Influence 71.75 (0.4497) 81.42 32.83 41.01 0.5037 
Interchange Influence 3.22 (0.1765) 2.33 8.41 2.97 1.2747 
Stop Sign or Traffic Signal 
Influence 15.78 (0.3646) 12.06 32.38 24.96 2.0697 

Uncontrolled Intersection 
Influence 3.38 (0.1807) 1.75 10.14 8.32 4.7543 

Parking Lot or Driving Way 
Entrance/Exit Influence 4.65 (0.2106) 1.98 11.95 20.36 10.2828 

Other (e.g., crosswalk, 
railroad crossing, 
roundabouts) 

1.22 (0.1097) 0.46 4.28 2.38 5.1739 

Total 100% 100% 100% 100%  
CONSTRUCTION ZONE 
INDICATOR 3.79 (0.1911) 3.40 6.01 3.86 1.1353 

SECONDARY TASK 
DURATION* (Min = 0; Max = 
24.1) 

2.0918 (2.719) 1.75 
(2.16) 3.28 (3.83) 3.58 

(4.19) --- 

 
Modelling Results and Discussion 
Both models are systematically derived to include the most important variables (locality type, intersection 
influence, secondary task duration, presence of construction zone, and errors/violations) on the basis of 
statistical significance, specification parsimony, and theoretical justification. A 95% confidence criterion was 
used for variables in either model, except for locality variables which were left in the model as per 90% 
confidence criteria given their conceptual importance and for the sake of completeness. The estimation 



 

 
www.roadsafety.unc.edu 35 

 

results of multinomial logit and ordered probit models along with marginal effects are presented in Table 
3.2 and 3.3 respectively. The marginal effects can be interpreted as an increase or a decrease in the 
probability of observing a specific outcome in the case an indicator variable switches from 0 to 1 or with a 
unit increase in the case of continuous variable (keeping all variables at their mean values). When multiplied 
by 100, the marginal effects can be interpreted as a percent change in the chance of observing a specific 
outcome (Ahmad et al. 2019, Wali et al. 2020). The results of path analysis, quantifying the direct effects 
of explanatory factors (such as locality type) each on crash propensity and human errors, as well as indirect 
effects of key locality-related factors on crash propensity through its mediation paths over human errors are 
computed (detail results available from authors) and simply illustrated in Figure 3.2. The key findings from 
the individual models and path analysis are briefly discussed below. 
 

Driver Error Model 
The multinomial logit model of driving errors and violations considered no error or violation as a base 
outcome. For the sake of completeness, all the explanatory variables were kept in the functions of all driving 
errors. However, for the sake of simplicity and understanding, the marginal effects are provided for only 
those variables which were found to have significant association with driving errors and violations (Table 
3.2). The variables, significantly correlated with the various types of driving errors and violations, belong to 
roadways and environments, especially the influence of intersections (using no intersection influence as 
the base category), construction zones, and secondary task durations (Table 3.2).  

Interstate/bypass/divided highway with no traffic signals was used as the base category to explore the 
correlations of all locality-related factors with driving errors and violations. According to the driver error 
model, secondary task duration was positively correlated with recognition, decision, performance, physical 
conditions, and experience errors. The marginal effects for all significant variables are computed which 
measures the change in the probability of the response variables (the six error types) relative to the base 
outcome (no driving errors/violation) with a unit increase in a specific explanatory variable (Table 3.2). The 
goodness-of-fit of the driver error model, as estimated by the McFadden Pseudo R2, was found to be 
0.1121, indicating a modest model fit with the data. The driver error model quantifies the changes in the 
probability of recognition errors and decision errors within the localities characterized by moderate 
residential, school zones, urban areas, business/industrial areas, and other localities (that include church, 
playground, and campground). The probability of recognition and decision errors increases by 5% and 3% 
in school zones compared to safety-critical events on interstates, respectively. This finding is reasonable in 
the sense that school zones typically include complex movements and vulnerable road users. As a result, 
the chances of a driver failing to recognize and decide correctly in hazardous situations increases (Gregory, 
Irwin et al. 2014). Furthermore, the modeling results indicate that, compared to a safety-critical event 
happening on interstate highways, the chance of recognition and decision errors on roadways in urban 
areas (presumably on local roads) is higher by 8%, 7% respectively. This is reasonable due to complex and 
highly densified traffic conditions and consistent with other studies (Huang, Abdel-Aty et al. 2010). Referring 
to business/industrial areas, modeling results reveal that the chance of making recognition and decision 
errors are higher by 3% and 2% on roadways passing through business or industrial areas compared to 
when interstate was coded as the locality factor, respectively. The higher traffic volume, complex activities, 
and increased presence of commercial drivers can negatively affect drivers’ recognition and decision 
processing capabilities in such areas.  
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Table 3.2. Driver Error Model Results (Multinomial Logit Model): Marginal Effects for Only Significant Variables 

Independent Variables 
Type of Driving Error and Violations 

Recognition Decision Performance Violation Physical 
Condition 

Experience/ 
Exposure 

Coeff. ME Coeff. ME Coeff. ME Coeff. ME Coeff. ME Coeff. ME 
Roadway Locality (Base outcome = Interstate) 
Open Country/Open Residential 
(Rural/Semi-Rural) --- --- 0.5503a 0.0328 --- --- --- --- --- --- --- --- 

Moderate Residential 0.3115b 0.0130 0.3627a 0.0168 2.5362a 0.0094 --- --- --- --- --- --- 
School 0.8722a 0.0478 0.6745a 0.0345 --- --- -0.3544b -0.0324 --- --- --- --- 
Business/Industrial 0.4884a 0.0251 0.3626a 0.0177 2.0974a 0.0058 -0.5115a -0.0369 --- --- --- --- 
Urban 1.3698a 0.0800 1.1656a 0.0665 3.1258a 0.0133 --- --- 0.9352b 0.0127 2.2329a 0.0065 
Bypass or Divided Highway with 
traffic signals --- --- --- --- 2.8566a 0.0132 --- --- 0.8554a 0.0138 --- --- 

Others (e.g., church, playground, & 
Campground) 0.8005a 0.0417 0.6259a 0.0309 2.8218a 0.0117 --- --- --- --- --- --- 

Intersection Influence (Base outcome = No Intersection Influence) 
Interchange influence  1.3505a 0.0725 1.2575a 0.0893 --- --- --- --- --- --- 2.4834a 0.0152 
Stop sign or traffic signal influence  1.3089a 0.0722 0.3759a 0.0086 0.7947a 0.0030 1.0765a 0.0730 --- --- --- --- 
Uncontrolled intersection influence  1.6459a 0.0917 1.2141a 0.0686 2.0881a 0.0176 1.0002a 0.0504 --- --- 2.2721a 0.0103 
Parking lot or driveways influence  2.0741a 0.1138 1.9886a 0.1523 2.8664a 0.0324 1.3485a 0.0633 --- --- --- --- 
Others intersection influence 2.3620 a 0.1716 1.4822a 0.0805 --- --- 1.3335a 0.0697 --- --- --- --- 
Construction zone indicator 0.8073a 0.0387 --- --- --- --- 0.7905a 0.0419 --- --- 1.7906a 0.0043 
Secondary Task Duration 0.3407a 0.0184 0.0678a 0.0019 0.0853b 0.0002 --- --- -0.2763a -0.0037 0.1448a 0.0003 
Summary Statistics 

Number of observations 9593 
Pseudo-R2 0.1121 
Log Likelihood at 0 -8226.7559 
Log Likelihood at β -7304.5218 
AIC 14789.0400 
BIC 15434.2300 

Notes: ME = marginal effects, which predict the change in the probability of observing a response outcome with a unit change in continuous explanatory variable (or 
a switch from 0 to 1 for indicator variable); Base outcome in the multinomial logit model is “No error”; and β’1, β’2, β’3, β’4, β’5, and β’6 indicates the association of the 
explanatory variables with recognition, decision, performance, violation, physical condition related, and experience/exposure errors. The superscripts i.e. “a” and “b” 
indicate the significance levels of explanatory variables in the model (“a” and “b” shows that 95% and 90% confidence criteria were met respectively. (-) indicates 
not applicable as all these variables were tried in the model but did not meet the significance criteria (hence, for simplicity kept out of model).
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Crash Outcome Model 
The estimation results along with the marginal effects for each explanatory variable obtained from crash 
outcome model are presented in Table 3.3. The estimation results shed light on the associations of human 
error with crash outcomes, i.e., crash propensity. One key advantage of the SHRP2 NDS data is that the 
effect of any specific contributing factor on crash propensity can be interpreted relative to the baseline (no-
event driving). The crash outcome model includes a total of fourteen conceptually relevant factors having 
significant correlations with crash propensity (Table 3.3). The key finding is that all the error types 
(recognition, decision, and performance errors, physical condition, and experience errors) and violations, 
compared to no driving errors (base outcome), are significantly correlated with crash propensity. Other 
significant variables in the crash outcome model relate to roadways and environments (locality), intersection 
influence, construction zone presence, and secondary task duration. The overall goodness-of-fit of the 
crash outcome model, as evaluated via McFadden Pseudo-R2, had a value of 0.384, which indicates a 
relatively good fit (Table 3.3). The performance errors have a strong correlation with crash propensity, 
associated with higher chance of crashes by 55%. Similarly, the chance of crash outcome is 5% higher if a 
driver violates traffic laws. In contrast, driver violations were found to associate with higher chances of a 
near-crash by a greater magnitude than for a crash outcome (see marginal effects in Table 3.3). This may 
be because drivers are aware that they are engaging in traffic violations and adjusting their operating 
behavior in response. Also, the chance of both crash (6%) and near-crash (8%) is higher in an urban 
environment compared to interstate/bypass/divided highway with no traffic signals. This can be due to 
highly complex and densified traffic conditions. This finding is consistent with previous studies based on 
police-reported crashes (Huang, Abdel-Aty et al. 2010). Furthermore, compared to the base, the chance of 
a crash is higher by 2% and 1%, on roadways passing close to school zones and business/industrial areas, 
respectively. These findings are reasonable because of the presence of vulnerable road users and potential 
distraction in such areas compared to driving on interstates. Similar interpretation applies to other important 
correlates such as intersection influence, secondary task duration, and existence of construction zone. 

Path Analysis 
The correlations of various roadway and environmental factors (localities) and driving errors/violations on 
crash outcomes are illustrated in Figure 3.2. The indirect association of various roadways and environments 
with crash occurrence through mediating driving errors and violations are also illustrated in Figure 3.3. In 
short, the variables that possess statistically significant parameter estimates in the driver error model (Table 
3.2) are indirectly associated with crash outcome, a finding that cannot be extracted using the traditional 
modeling approach. Moreover, it was found that all variables which showed significant direct correlation 
with crash outcome were also found to have significant indirect correlation with crash outcome through one 
or more of the six mediating driving errors and violations. For instance, compared to 
interstate/bypass/divided highways with no traffic signals, the urban locality shows that drivers traveling in 
an urban locality have 8% higher chance of making recognition errors (compared to no driving error or 
violation), and as a direct effect, compared to no driving error or violation, drivers involved in recognition 
errors are associated with a 29% higher chance of getting into a crash (Figure 3.2). As such, the indirect 
effect of urban locality on crash outcome is 8% x 29% = 2%. Therefore, the total effect of urban locality on 
crash outcome becomes 8% (6%+2%), which is greater than the direct effect of 6% (Table C1 in Appendix). 
This implies that while urban locality, compared to interstate roadways, may correlate with increases in the 
chance of observing a crash outcome, the actual increase is even more when we simultaneously consider 
the effect of urban locality on chance of recognition errors and the effect of the latter on chance of crash 
outcome. The path analysis results indicate that all key correlates were both directly and indirectly 
associated with crash propensity through one or more mediating driving errors and violations. For instance, 
the path analysis results indicate that the presence of a school zone increases the chance of recognition 
and decision errors (compared to no driving error or violation) by 5% and 3%, respectively (Table C1 in 
Appendix), while recognition and decision errors increase the chance of a crash by 29% and 24%, 
respectively (Figure 3.2). Compared to travel on interstate roadways, the presence of a school zone directly 
associates with increases the chance of a crash by 2% (Figure 3.2). However, path analysis indicates that 
the overall effect of school zones on crash propensity is larger; the increased chance of crash occurrence 
through recognition and decision errors is 3% and 3% respectively (detailed results of path analyses are 
not shown here and can be provided by authors on request) as can be seen that school zones is significantly 
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correlated with the two driving errors which are significantly correlation with crash outcome (Figure 3.2). 
Detailed results of the path analysis are provided in Table C1 in the Appendix of this report. Overall, rigorous 
path analysis framework uncovers important information about driving errors that moves us closer to more 
targeted interventions in complex environments (Liu et al. 2015, Zhang et al. 2018). 

 Table 3.3. Crash Outcome Model Results (Ordered Probit Model) 

Independent variables Coeff. t-stat p-
value 

Marginal Effects 
Baseline Near-Crash Crash 

Drivers Errors (Base Outcome = No Driving Errors) 
Recognition Errors 2.1886 39.63 <0.001 -0.6482 0.3554 0.2928 
Decision Errors 1.9964 36.97 <0.001 -0.5866 0.3510 0.2356 
Performance Errors 2.9181 17.83 <0.001 -0.8185 0.2697 0.5488 
Violations 0.9973 17.70 <0.001 -0.2337 0.1844 0.0493 
Physical Conditions 0.9153 7.30 <0.001 -0.2076 0.1660 0.0416 
Experience or Exposure 2.2860 10.10 <0.001 -0.6771 0.3529 0.3241 

Roadway Locality (Base Outcome = Interstate) 
Open Country or Open 
Residential (Rural/Semi-Rural) 0.0505* 0.64 0.524 --- --- --- 

Moderate Residential -0.0045* -0.07 0.942 --- --- --- 
School 0.2534 3.06 0.002 -0.0414 0.0240 0.0174 
Business/Industrial 0.1914 3.39 0.001 -0.0305 0.0177 0.0129 
Urban 0.6913 7.48 <0.001 -0.1323 0.0769 0.0553 
Bypass or Divided Highway with 
traffic signals 0.1832 1.70 0.089 -0.0291 0.0169 0.0123 
Others (e.g., church, playground, 
and Campground) 0.2357 1.92 0.055 -0.0382 0.0221 0.0161 
Intersection Influence (Base Outcome = No intersection influence) 
Interchange influence  0.8957 10.71 <0.001 -0.1826 0.1123 0.0703 
Stop sign or traffic signal 
influence  0.6471 14.40 <0.001 -0.1203 0.0747 0.0456 
Uncontrolled intersection 
influence  1.0042 13.72 <0.001 -0.2126 0.1299 0.0827 
Parking lot or driveways influence  1.0828 16.54 <0.001 -0.2353 0.1430 0.0923 
Others intersection influence 0.8342 7.01 <0.001 -0.1663 0.1026 0.0638 
Construction zone indicator 0.1409 1.74 0.082 -0.0225 0.0128 0.0096 
Secondary task duration 0.0269 4.66 <0.001 -0.0043 0.0024 0.0018 
Thresholds 

cut1 1.8904 38.83 <0.001  
cut2 3.1489 53.39 <0.001  

Summary Statistics 
Number of observations 9593 
Pseudo-R2 0.3840 
Log Likelihood at 0 -6195.4121 
Log Likelihood at β -3816.5870 
AIC 7677.1740 
BIC 7834.8870 

Note: ME indicates the marginal effects which predict the probability of observing a response outcome with unit change in continuous 
explanatory variable (or a switch from 0 to 1 for indicator variable). The lowest level for event severity is “Baseline”; and Base level for 
drivers’ errors is “No error”. The superscript (*) in Table 3.3 indicates these variables were not found to be significant as per 90% or 
95% confidence criteria. In final path analysis, only significant variables were considered (other than *). 
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Figure 3.2. Direct and Indirect Effects of Roadway and Built Environment on Crash Occurrence 
Mediated by Driver Errors 
Note: Detailed results about direct and indirect effects of various roadway environments on crash outcomes 
can be found in Table C1 in the Appendix. 

 
LIMITATIONS 
This study analyzed the NDS data containing extensive information on driver performance and behavior, 
roadway and environment factors, and pre-crash maneuvers, still there could be other factors (e.g., drivers’ 
characteristics, and local demographics) which might be significantly correlated with crash propensity. 
Hence, it would be interesting to account for all such unobserved factors in the modeling framework, which 
could have significant influence on crash propensity. This study is based on two independently estimated 
models (equations), which represent the standard path analytic framework (as shown in Figure 3.1). This 
method is appropriate because driving errors mediate the relationship between variables of interest such 
as land use and safety critical outcomes. Similar models can be estimated where the error terms (residuals) 
correlate with each other, e.g., seemingly unrelated regressions. The analysis reported does not perform 
regressions where the error terms in the two models are tested for correlations. In the future, a full-
information joint approach can be used to account for potential correlation between the error (residual) 
terms. This can be done by using the conditional (recursive) mixed process procedure in STATA (Roodman, 
2011).  
 
This analysis utilized SHRP2 NDS data which included specific drivers and geographical regions that do 
not explicitly cover all of the socio-geographical regions across the U.S. Furthermore, TDEV—the human 
error taxonomy uses driver behaviors while classifying driving errors and violations which may vary with 
time. Also, as mentioned before, information on important variables such as driver demographics was not 
available to the authors, which is a topic for future research.  
 
We have explored the contribution of speed and speed variations to crash outcomes in a related study 
(Ahmad et al. 2021). However, this study has not explored the role of speed or speed variations in the 
analysis presented.  
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To categorize roadway and land use factors, a more holistic approach would be to apply appropriate 
roadway-locality related classifications, e.g., roadway functional classes (interstate, expressways, arterials 
(major/minor), collectors (major/minor), and local roads), activity centers (specifically separately 
categorizing business from industrial), and locality (urban, suburban, and rural). The information available 
from a single variable called “locality” in the NDS data only partially fulfills the research needs. In the future, 
it will be appropriate to either collect separate and complete information on roadway functional classes 
(interstate, expressways, arterials (major/minor), collectors (major/minor), and local roads), activity centers 
(specifically separately categorizing business from industrial), and locality (urban, suburban, and rural), or 
provide geo-codes so that such information can be obtained. Such efforts can help with even deeper 
understanding of the variations in driving errors and violations and crash risks across contexts.  
 
CONCLUSIONS 
This research contributes to the literature by conceptualizing the direct relationships between key roadways 
and environmental (roadway locality) factors and crash propensity, as well as the indirect relationships 
between roadways and environmental factors and crash propensity through mediating errors and violations. 
In order to achieve these objectives, the study capitalizes on emerging sensor-based technologies, 
telematics, video and radar surveillance to obtain an objective and nuanced understanding of key crash 
contributing factors. Along these lines, the study harnesses data from the Naturalistic Driving Study where 
driving behaviors in thousands of baseline, crash, and near-crash events in diverse spatio-temporal 
contexts are analyzed and compared. In addition to considering crash events, no-event driving is analyzed 
vis-à-vis near-crash outcomes, as such “close calls” may foretell actual future crashes. 
 
A taxonomy based on the perception-reaction to hazardous situations classified driving errors and violations 
and analyzed them. Next, this study uses information from the “locality” factor in the NDS data to quantify 
the direct as well as indirect effects of different roadway and environmental variables on crash outcome 
through different types of driving errors and violations.  
The results of the driver error model indicate that several roadway and environmental factors are statistically 
significantly associated with driver errors. The most prevalent types of errors are recognition errors and 
decision errors, which are correlated with moderate residential, school zones, urban areas, business or 
industrial areas, at interchanges stop signs and signalized intersections. Modeling results indicate that the 
duration of secondary tasks is correlated with recognition errors, decision errors, performance errors, and 
violations.   
 
To model roadway safety outcomes, a discrete outcome model was estimated. The model examines crash 
propensity as a function of mediating error types/violations and roadway-environmental contexts. 
Importantly, while urban locality associate with higher chances of observing a crash by 6%, path analysis 
showed that they can induce recognition errors and the effect of the latter on the chance of crash outcome, 
i.e., the “total effect” of urban locality amounts to 8% on the chances of having a crash. Additionally, school 
zones and business (commercial) or industrial land uses were found to have a substantial correlation with 
crash propensity both directly and indirectly through mediating recognition errors and decision errors. By 
examining detailed behavior of drivers, this study is perhaps among the first ones to uncover 
business/commercial areas as hazardous and risky in a substantive way. 
 
Indeed, the analysis indicates that complex path structures should be explored in line with the systems 
approach. This avoids the possibility of concluding that key factors have only direct association with crash 
outcomes, while in reality almost all factors (e.g., roadways and environments, intersection influence, 
presence of construction zone, and secondary task duration) can and were found to have significant indirect 
correlations with crash outcome through driving errors and violations.  
 
The study does not advocate for specific government policies but provides information that can be used for 
future formulation of safety policies and research. The data and methods discussed in the paper should 
allow for replication of the study. As a part of future work, it will be interesting to investigate how driver 
errors and violations may change with some control of the driving task being given to connected and 
automated vehicles. Similarly, it would be interesting to explore the effects of the roadway-environment on 
injury outcomes (given a crash). To this end, a practice and research-relevant theme could be to develop 
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a knowledge base of emerging intelligent transportation system technologies that could help prevent the 
prevalent safety-critical errors and violations observed in naturalistic driving setups.
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APPENDIX 
 
Table A1. Geographic size of study center areas (Source: Blatt et al. 2015) 
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Table A2. Distribution of Recruits Contacted and Participants based on Geographical Locations (Source: 
Blatt et al. 2015) 

 
 
Table A3. Design of Sample with Target & Actual Cell Values: Driver Age (Source: Blatt et al. 2015) 
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Table A4. Participants by Age Group and Gender for All Test Sites (Source: Blatt et al. 2015) 
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TABLE B1.  Deriving Key Driving Errors and Violations from Driver Behavior Variable in NDS (SHRP2) Data 

Driver Behavior (in NDS Data) Definition (NDS Data Dictionary) Taxonomy for Driving Errors and Violations 
Recognition 
Error 

Decision Error Performance 
Error 

Violations Physical 
Condition 

Experience or 
Exposure Error 

None (or No Additional Driver 
Behaviors) 

Subject vehicle driver engages in no apparent 
behavior(s) related to causing or contributing to 
the crash or near-crash. 

No No No No No No 

Distracted Subject vehicle driver is not maintaining 
acceptable attention to the driving task due to 
engagement in one or more secondary tasks. 
Includes times when any Secondary Task has an 
Outcome that is not No. This is a subjective 
judgment call by the video analyst indicating 
whether any secondary tasks the driver might be 
involved in (Variables 32, 36, 40) contributed to 
the crash or near crash (Variables 35, 39, 43). 
NOTE: This category is excluded from Baseline 
analysis. 

Yes No No No No No 

Drowsy, sleepy, asleep, fatigued Subject vehicle driver exhibits obvious signs of 
being asleep or tired, or is actually asleep while 
driving, degrading performance of the driving 
task. This should also be coded as Drowsy, 
sleepy, asleep, fatigued under Driver 
Impairment. 

No No No No Yes No 

Exceeded speed limit Subject vehicle traveling at a speed greater than 
the posted speed limit (not in a work zone). In 
Variable Speed Zones, this is relative to the 
speed limit in effect at the time of the event. 

No No No Yes No No 

Exceeded safe speed but not 
speed limit 

Subject vehicle traveling at a speed close to or 
under the posted speed limit, but still too fast to 
maintain a safe driving environment given 
current environmental conditions (e.g., weather, 
traffic, lighting). (Not in a work zone.) 

No Yes No No No No 

Driving slowly: below speed 
limit 

Subject vehicle traveling at a speed much lower 
than the posted speed limit when higher speeds 
are appropriate. 

No Yes No No No No 

Driving slowly in relation to 
other traffic: not below speed 
limit 

Subject vehicle traveling much slower than other 
vehicles in traffic stream (but not substantially 
below the posted speed limit). 

No Yes No No No No 
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TABLE B1. Deriving Key Driving Errors and Violations from Driver Behavior Variable in NDS (SHRP2) Data (Continued) 
Passing on right Subject vehicle deliberately passes another 

vehicle in the lane immediately to the right of 
the other vehicle. 

 No No No Yes No No 

Illegal passing Subject vehicle passes another vehicle in an 
unsafe or illegal manner (other than on the 
right). 

No No No Yes No No 

Other improper or unsafe 
passing 

Subject vehicle passes another vehicle in an 
improper manner not included in previous 
categories. 

No Yes No No No No 

Cutting in, too close in front of 
other vehicle 

Subject vehicle enters lane of another vehicle 
too closely to the front of that vehicle. No Yes No No No No 

Cutting in, too close behind 
other vehicle 

Subject vehicle enters lane of another vehicle 
too closely to the back of that vehicle. No Yes No No No No 

Making turn from wrong lane Subject vehicle turns left or right from a lane not 
intended for making that turn. No Yes No No No No 

Did not see other vehicle during 
lane change or merge 

Subject vehicle enters a lane or merges into a 
lane without being aware of another vehicle 
close by that is already traveling in that lane. 

Yes No No No No No 

Driving in other vehicle's blind 
zone 

Subject vehicle is traveling close to another 
vehicle in such a way that the driver of the other 
vehicle is not expected to be able to see it. 
Subject vehicle must maintain this relative 
position for at least 5 seconds. 

No Yes No No No No 

Aggressive driving, specific, 
directed menacing actions 

Subject vehicle driver is driving in a 
purposefully aggressive manner, with actions 
intended for a specific recipient. 

No Yes No No No No 

Aggressive driving, other Driver is driving in an aggressive manner not 
described in previous categories. Includes 
reckless and "sporty" driving. 

No Yes No No No No 

Wrong side of road, not 
overtaking 

Subject vehicle is traveling on the wrong side of 
the road with no intent of passing or overtaking 
another vehicle. 

No Yes No No No No 

Following too closely Subject vehicle is traveling at an unsafe distance 
(too close) behind the lead vehicle. No Yes No No No No 

Failed to signal Subject vehicle failed to properly signal its 
intent by not signaling at all. Applies to planned 
maneuvers, not sudden evasive maneuvers. 

No No No Yes No No 
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TABLE B1. Deriving Key Driving Errors and Violations from Driver Behavior Variable in NDS (SHRP2) Data (Continued) 
Improper signal Subject vehicle failed to properly signal its intent by 

signaling incorrectly. Use with planned maneuvers, 
not sudden evasive maneuvers. 

Yes No No No No No 

Improper turn, wide right turn Subject vehicle turned right from the initial travel 
path, unnecessarily encroaching into the left adjacent 
lane or median. 

No No Yes No No No 

Improper turn, cut corner on 
right turn 

Subject vehicle turned right from the initial travel 
path, unnecessarily encroaching into the right adjacent 
lane or shoulder/curb. 

No Yes No No No No 

Improper turn, wide left turn Subject vehicle turned left from the initial travel path, 
unnecessarily encroaching into the right adjacent lane 
or shoulder/curb. 

No No Yes No No No 

Improper turn, cut corner on left Subject vehicle turned left from the initial travel path, 
unnecessarily encroaching into the left adjacent lane 
or median. 

No Yes No No No No 

Improper turn, other Subject vehicle turned left or right from the initial 
travel path in an unsafe manner not described in 
previous categories. 

No Yes No No No No 

Improper backing, did not see Subject vehicle traveled in reverse without obtaining a 
proper view of the surroundings behind the vehicle. Yes No No No No No 

Improper backing, other Subject vehicle traveled in reverse in an unsafe 
manner not described in previous categories. Yes           

Improper start from parked 
position 

Subject vehicle moved from a parked position in an 
unsafe manner. No Yes No No No No 

Disregarded officer or watchman Subject vehicle driver did not notice or obey an 
officer of the law or traffic guard serving to provide 
guidance in traffic flow and the driving task. 

 No No No Yes No No 

Signal violation, apparently did 
not see signal 

Subject vehicle driver did not notice and thus 
disobeyed (or nearly disobeyed) a traffic signal. No No No Yes No No 

Signal violation, intentionally 
disregarded signal 

Subject vehicle driver saw a traffic signal but 
purposefully disregarded its instruction. (If driver was 
trying to beat a yellow light before it phased into red, 
code "Signal violation, tried to beat signal change".) 

No No No Yes No No 

Signal violation, tried to beat 
signal change 

Subject vehicle driver accelerated or continued at a 
speed intended to pass through an intersection before 
the traffic signal turned red. 

No No No Yes No No 
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TABLE B1. Deriving Key Driving Errors and Violations from Driver Behavior Variable in NDS (SHRP2) Data (Continued) 
Stop sign violation, apparently 
did not see stop sign 

Subject vehicle driver did not notice and thus 
disobeyed or nearly disobeyed a stop sign. No No No Yes No No 

Stop sign violation, intentionally 
ran stop sign at speed 

Subject vehicle driver saw a stop sign but 
purposefully drove through the intersection at a 
speed greater than 15 mph. 

No No No Yes No No 

Stop sign violation, "rolling stop" Subject vehicle driver did not come to a complete 
stop at a stop sign (minimum speed was below 15 
mph, but above 0 mph). 

No No No Yes No No 

Other sign (e.g., Yield) violation, 
apparently did not see sign 

Subject vehicle driver did not notice and thus 
disobeyed a traffic sign (other than a stop sign). No No No Yes No No 

Other sign (e.g., Yield) violation, 
intentionally disregarded 

Subject vehicle Driver saw a traffic sign (other than 
a stop sign) but purposefully disobeyed that sign. No No No Yes No No 

Other sign violation Subject vehicle driver disobeyed a traffic sign in a 
manner not described in previous categories. No No No Yes No No 

Non-signed crossing violation Subject vehicle driver proceeded through a non-
signed intersection in an unsafe manner.  No No No Yes No No 

Right-of-way error in relation to 
other vehicle or person, apparent 
recognition failure 

Subject vehicle driver made the incorrect decision 
regarding who had the right-of-way (his/her own 
vehicle or another vehicle or pedestrian) due to a 
misunderstanding of the situation. 

Yes No No No No No 

Right-of-way error in relation to 
other vehicle or person, apparent 
decision failure 

Driver made the incorrect decision regarding who 
had the right-of-way (his/her own vehicle or another 
vehicle or pedestrian) due to improper analysis of the 
situation. 

No Yes No No No No 

Right-of-way error in relation to 
other vehicle or person, other or 
unknown cause 

Subject vehicle driver made incorrect decision 
regarding who had the right-of-way (his/her own 
vehicle or another vehicle or pedestrian) for an 
unknown reason or for reasons not described in 
previous categories. 

No Yes No No No No 

Sudden or improper braking Subject vehicle braked suddenly or in an unsafe 
manner in the roadway, but did not come to a 
complete stop (i.e., speed indicator did not drop to 
zero). 

No Yes No No No No 

Sudden or improper stopping on 
roadway 

Subject vehicle stopped (speed indicator dropped to 
zero) without ample warning or in an unsafe manner 
in the roadway. 

No Yes No No No No 
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TABLE B1. Deriving Key Driving Errors and Violations from Driver Behavior Variable in NDS (SHRP2) Data (Continued) 
Parking in improper or dangerous 
location 

Subject vehicle parked (stopped with the intent of 
remaining stopped) in a location not intended for 
parking. No Yes No No No No 

Speeding or other unsafe actions in work 
zone 

Subject vehicle traveling at a speed greater than the 
posted speed limit, specifically while driving in a 
work zone. No No No Yes No No 

Failure to dim headlights Subject vehicle traveling with high beams activated 
on headlights, without dimming the lights when 
appropriate. No Yes No No No No 

Driving without lights or with insufficient 
lights 

Subject vehicle traveling with no headlights on (or 
insufficient headlights) when the situation requires 
such lighting for safety. No Yes No No No No 

Avoiding pedestrian Subject vehicle driver behaved in a manner intended 
to avoid conflict with a pedestrian. No Yes No No No No 

Avoiding other vehicle Subject vehicle driver behaved in a manner intended 
to avoid conflict with another vehicle. No Yes No No No No 

Avoiding animal Subject vehicle driver behaved in a manner intended 
to avoid conflict with an animal. No Yes No No No No 

Apparent unfamiliarity with roadway Subject vehicle driver behaved in an unsafe manner, 
apparently due to an unfamiliarity with the 
surrounding traffic situation or locality. No No No No No Yes 

Apparent unfamiliarity with vehicle Subject vehicle driver behaved in an unsafe manner, 
apparently due to an unfamiliarity with the vehicle. No No No No No Yes 

Apparent general inexperience driving Subject vehicle driver behaved in an unsafe manner, 
apparently due to lack of experience with the driving 
task. No No No No No Yes 

Use of cruise control contributed to late 
braking 

Subject vehicle driver delayed applying brake pedal 
because the cruise control was activated, resulting in 
an unsafe situation. No Yes No No No No 

Unknown Cannot determine the behavior(s) engaged in by the 
subject vehicle driver due to limitations in video 
views, lighting, visual obstructions, or limited 
perspective.  --- --- --- --- --- --- 

 
Note: The first two columns include driver behaviors and their definitions as per the NDS (SHRP2) dictionary and are copied from NDS (SHRP2) data dictionary. 
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TABLE B2: Deriving Key Driving Errors and Violations from Secondary Task and Secondary Task Outcome in NDS (SHRP2) Data 

Secondary Task Secondary Task Outcome* Taxonomy for Driving Errors and Violations 
Recognition 

Error 
Decision 

Error 
Performance 

Error 
Violations Physical 

Condition 
Experience or 

Exposure Error 
Cell phone, Talking/listening, hands-free Yes Yes No No No No No 
Cognitive, other Yes Yes No No No No No 
Other non-specific internal eye glance Yes Yes No No No No No 
Other personal hygiene Yes Yes No No No No No 

Note: The Secondary Task Outcome (*) is a factor/variable in the NDS data which shows whether a particular secondary task contributed to the occurrence or 
severity of safety critical events (i.e., crash or near-crash). After classifying the driver behaviors (i.e., presented in Table A1) into key six driving errors and 
violations, we checked the secondary task and secondary task outcome to see if there could be some safety critical events (for which no driver behavior was reported 
in the NDS data) but could have occurred due to involvement of subject drivers in secondary tasks (given that it contributed to safety critical events: determined 
from secondary task outcome).The secondary tasks reported in A2 do not represent all of the secondary tasks (i.e., there are many more in the NDS data), but only 
those which were reported in safety critical events where no driver behavior was reported and these particular secondary tasks contributed to safety critical events. 
 
 
TABLE B3: Deriving Key Driving Errors and Violations from Other Driver Behaviors Extracted from Narratives in NDS (SHRP2) Data 

Definition Taxonomy for Driving Errors and Violations 
Recognition Error Decision Error Performance Error Violations Physical Condition Experience or Exposure Error 

Does not realize concrete barrier Yes No No No No No 
Misjudgment of space or situations Yes No No No No No 
Drifting No Yes No No No No 
Steered too far No No Yes No No No 
Inappropriate acceleration/deceleration No No Yes No No No 
Illegal U-turn No No No Yes No No 

Note: There were some safety critical events for which there was no Driver Behavior, Secondary Task (that has contributed to crash or near-crash), roadway 
environment factors (e.g., surface conditions, visual obstructions, infrastructure factors), and vehicle factors were reported. Hence, we evaluated the narrative 
(detailed description of the situation) in the NDS (SHRP2) data and found other Driver Behaviors factors (as presented in Table A3). 
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Table C1. Direct, Indirect, and Total Effects of Explanatory Variables (Path Analysis) 

Independent Variables 

Direct 
Effect 

on 
Crash 

(β’) (%) 

Effects on Driving Errors (%) Indirect Effects on Crash (%) Total Effect through Each Error Type on 
Crash (%) 

β1 β2 β3 β4 β5 β6 β1* 
β”1 

β2* 
β”2 

β3* 
β”3 

β4* 
β”4 

β5* 
β”5 

β6* 
β”6 A B C D E F 

Driver Errors (Base outcome = No driving errors) 
Recognition Errors (β”1) 29.28 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 
Decision Errors (β”2) 23.56 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 
Performance Errors (β”3) 54.88 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 
Violations (β”4) 4.93 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 
Physical Condition Errors (β”5) 4.16 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 
Experience/Exposure Errors (β”6) 32.41 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 
Roadway Locality and Environment (Base outcome = Interstate) 
Open Country or Open Residential --- --- 3.28 --- --- --- --- --- 0.77 --- --- --- --- --- 0.77 --- --- --- --- 
Moderate Residential --- 1.30 1.68 0.94 --- --- --- 0.38 0.40 0.51 --- --- --- 0.38 0.40 0.51 --- --- --- 
School 1.74 4.78 3.45  -3.24 --- --- 1.40 0.81  -0.16 --- --- 3.14 2.55 1.74 1.58 1.74 1.74 
Business/Industrial 1.29 2.51 1.77 0.58 -3.69 --- --- 0.74 0.42 0.32 -0.18 --- --- 2.02 1.70 1.61 1.10 1.29 1.29 
Urban 5.53 8.00 6.65 1.33 --- 1.27 0.65 2.34 1.57 0.73 --- 0.05 0.21 7.87 7.10 6.26 5.53 5.58 5.74 
Bypass/Divided Highway with traffic 
signals 1.23 --- --- 1.32 --- 1.38 --- --- --- 0.72 --- 0.06 --- 1.23 1.23 1.95 1.23 1.29 1.23 

Others (church, playground, & 
Campground) 1.61 4.17 3.09 1.17 --- --- --- 1.22 0.73 0.64 --- --- --- 2.83 2.34 2.25 1.61 1.61 1.61 

Intersection Influence (Base outcome = No Intersection Influence) 
Interchange influence  7.03 7.25 8.93 --- --- --- 1.52 2.12 2.10 --- --- --- 0.49 9.15 9.14 7.03 7.03 7.03 7.52 
Stop sign or traffic signal influence  4.56 7.22 0.86 0.30 7.30 --- --- 2.11 0.20 0.16 0.36 --- --- 6.67 4.76 4.72 4.92 4.56 4.56 
Uncontrolled intersection influence  8.27 9.17 6.86 1.76 5.04 --- 1.03 2.68 1.62 0.97 0.25 --- 0.33 10.95 9.88 9.23 8.52 8.27 8.60 
Parking lot or driveways influence  9.23 11.38 15.23 3.24 6.33 --- --- 3.33 3.59 1.78 0.31 --- --- 12.56 12.82 11.01 9.54 9.23 9.23 
Others intersection influence 6.38 17.16 8.05 --- 6.97 --- --- 5.03 1.90  0.34 --- --- 11.40 8.27 6.38 6.72 6.38 6.38 
Construction zone indicator 0.96 3.87 --- --- 4.19  0.43 1.13 --- --- 0.21 --- 0.14 2.09 0.96 0.96 1.17 0.96 1.10 
Secondary Task Duration 0.18 1.84 0.19 0.02 --- -0.37 0.03 0.54 0.05 0.01 --- -0.02 0.01 0.72 0.23 0.20 0.18 0.17 0.19 

 
Notes: β’ is the direct effect of explanatory variables on crash outcome (obtained from Ordered probit model); β1  through β6 indicates the effects (obtained from Multinomial logit model) of 
explanatory factors on recognition, decision, performance, violations, physical condition related, and experience/exposure errors respectively; whereas A through F indicates the total effects 
corresponding to each of the explanatory factors, i.e., 𝐴𝐴 = 𝛃𝛃’ + 𝛃𝛃𝟏𝟏 ∗  𝛃𝛃”𝟏𝟏; 𝐵𝐵 = 𝛃𝛃’ + 𝛃𝛃𝟐𝟐 ∗  𝛃𝛃”𝟐𝟐; 𝐶𝐶 = 𝛃𝛃’ + 𝛃𝛃𝟑𝟑 ∗  𝛃𝛃”𝟑𝟑; 𝐷𝐷 = 𝛃𝛃’ + 𝛃𝛃𝟒𝟒 ∗  𝛃𝛃”𝟒𝟒; 𝐸𝐸 = 𝛃𝛃’ + 𝛃𝛃𝟓𝟓 ∗  𝛃𝛃”𝟓𝟓; 𝐹𝐹 = 𝛃𝛃’ + 𝛃𝛃𝟔𝟔 ∗  𝛃𝛃”𝟔𝟔; (---) indicates not 
applicable. 
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