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Introduction 
Safety on U.S. roadways is a continuing concern, as more than 6 million crashes occur with nearly 
40,000 fatalities every year. The cost of safety is estimated to be about $1 Trillion in the U.S. 
Therefore, understanding the contributing factors to traffic crashes is important, but also very 
challenging. Police officers investigating crashes rely on specialized tools and training to make a 
proper assessment of the role that driver, vehicle, and roadways/environmental factors play. 
These methods have evolved through decades of experience and research. Given that Connected 
and Automated Vehicles (CAVs) are rapidly diffusing through the transportation system, it can be 
concluded that many of these legacy methods will need to be updated to reflect the new 
technologies. This study seeks to leverage newly available CAV data to improve crash 
investigation procedures and obtain input from stakeholders, especially law enforcement. 

In modern vehicles, event data recorders (EDRs) can automatically store important data to a file 
in the event of a crash. They appeared much before advanced driver assistance systems such as 
forward collision warning and braking systems. Data recording by vehicles is now standardized 
by the U.S. Code of Federal Regulations (CFR) Title 49 Part 563, which was amended in 2008 and 
made effective for vehicles manufactured on or after September 1, 2010. While this rule does not 
mandate installing EDRs in new light vehicles, it does require installed EDRs to maintain a 
minimum dataset that includes 15 specific fields. Adoption of EDRs is now widespread, and 99% 
of new vehicles have an EDR and methods for accessing the data. However, Part 563 was drafted 
in 2006 based on data elements that began appearing in cars in 1994, years before the public 
testing of automated vehicles, and data storage and retrieval capabilities have improved 
dramatically in the meantime. These advances provide new opportunities for improving the scope 
of automated crash data. 

The radar, cameras, and LiDAR sensors utilized by Automated Driving Systems or ADSs (e.g., 
automatic emergency braking, adaptive cruise control, lane keeping assist), Basic Safety 
Messages used in V2X communications (e.g., vehicle position, speed, heading, acceleration) and 
driver monitoring could provide new detailed data to improve the fidelity of future crash 
investigations, such as driver/operator state, vehicle automation capabilities, location, objects 
and people in the immediate area, performance and diagnostic data, and environmental factors, 
just to name a few. Moreover, recent high-profile crashes involving automated vehicles (e.g., 
Tesla, Uber) show there is a need for law enforcement and crash investigators to rapidly review 
sensor data to reconstruct pre-crash events during an investigation (NTSB, 2017; NTSB, 2018a; 
NTSB, 2018b; NTSB, 2018c). Currently, this needs to be done in cooperation with the 
manufacturer, which introduces additional delays in an already complex investigation process. 
With these issues in mind, the goal of this project was to determine how the existing event data 
recorder elements could be enhanced by adding new data available to automated vehicles 
through sensors, assisting with more comprehensive crash investigations in the future. A key 
element of the project is the use of safe systems approach by involving key stakeholders, namely, 
law enforcement. 

Background 
The approaching deployment of CAVs is anticipated to bring about numerous safety 
improvements. These improvements will be a result, in part, of the vast amount of real-time data 
collected by CAVs to support navigation and sustained sensing of the surrounding environment. 
These vehicles represent an opportunity to fully utilize the data generated to be extracted, used, 
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and stored to advance transportation safety, especially in the Big Data era (Shay, Khattak & Boggs, 
2019). Unfortunately, due to the dynamic nature of the human-vehicle-roadway environment, 
crashes will continue to occur, particularly as conventional vehicles struggle to systematize with 
CAVs. Evidence shows that with the deployment of the California Autonomous Vehicle Tester 
Program in 2014, the frequency and causes of certain types of CAV-involved crashes are different, 
with human-driven vehicles more likely to rear-end CAVs, and CAVs being overrepresented in rear-
end crashes (Teoh & Kidd, 2017). Moreover, many types of collisions are expected to continue, 
even with ADS deployments, including those that occur due to technology limitations (Biever, 
Angell & Seaman, 2020). This points to the need to investigate in detail the causes of CAV-involved 
crashes, harnessing the more detailed data available from CAVs (Boggs, Khattak & Wali, 2019). In 
these cases, when real-time data fails to prevent a crash, it could still be used to provide insight 
into the causes, which, in turn, could inform future safety improvements. The research question 
is how we can use the newly available ADS data to better reconstruct a crash and understand the 
causal factors? Additionally, which of these newly available data points should be included to 
complement mandated EDR reports? 

Crash Investigation 
Law enforcement officers have numerous responsibilities at the scene of a collision. First and 
foremost, they need to protect the public and others responding to the scene. In addition, they 
need to preserve evidence, identify and interview the drivers and passengers involved along with 
witnesses, inspect the vehicles, and determine if additional assistance is needed (North Carolina 
Justice Academy, 2019). If the collision is determined to be a reportable crash, then additional 
investigation is required. According to North Carolina General Statutes (20-4.01(33b)) a reportable 
crash is a collision involving a motor vehicle and one of the following conditions: 

• Death or injury of a human being 
• Total property damage of one thousand dollars ($1,000) or more 
• Property damage of any amount to a vehicle seized 

If the crash is reportable, the officer is then responsible for documenting a wide range of crash 
data including the following categories: 

• Local conditions (e.g., locality, development, road surface, weather) 
• Series and sequence of harmful events (crash level & vehicle level) 
• Contributing Circumstances (roadway, driver, vehicle) 
• Driver and occupant information 
• Non-motorist information 
• Vehicle information and condition 
• Vehicle speed 
• Date and time 
• Location 
• Insurance information 
• Commercial vehicle information (if applicable) 
• EMS information 
• Fixed objects 

The North Carolina crash report form (i.e., DMV-349) includes 80 discrete fields that could be 
completed by the officer within 24 hours of the crash. The total number of fields that are filled out 
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depend on the type of crash. For example, there are special fields for commercial vehicles that do 
not need to be completed unless a commercial vehicle is involved. There are also special fields 
that apply to work zones, etc. Due to the volume of data that must be collected, officers are not 
always able to collect and record all the relevant data at the scene. In addition to ensuring the 
safety of everyone at the scene, the officer also has to re-open the roadway to traffic and allow 
the witnesses and individuals involved to leave the scene. Therefore, the officer often collects 
important information from people present, composes an explanatory narrative, and creates a 
comprehensive diagram of the scene that can be used to enter when the officer is safely offsite. 
It is also important to note that the information collected from witnesses, drivers, and passengers 
is not always reliable. Human perception, attention, and memory are limited and fallible (Green & 
Senders, 2009). If some of the objective data could be recorded automatically, the officer could 
focus on public safety, ensuring the people involved receive the services they need, and the 
logistics of reopening the roadway are complete. 

EDR background 
Most modern motor vehicles include an Event Data Recorder (EDR), which is a device (or 
collection of devices) that automatically records operational and occupant information for a few 
seconds before, during, and after a crash. While EDRs are loosely comparable to black boxes 
installed in airplanes, ships, and trains, there are several important differences. Black boxes 
continuously record data throughout operation, and they often record sound and voice 
communications. EDRs only collect a few seconds of data before and after a triggering event 
indicative of a crash, and they do not record sound or visual data. 

 
Figure 1. An Event Data Recorder (Image: Crash Data Group, www.https://www.crashdatagroup.com/) 

Safety researchers have been interested in collecting objective data about vehicle crashes since 
flight data recorders became popular in the aviation industry; however, compared to other 
transportation modes, EDRs are a more recent addition to motor vehicles. Manufacturers and 
researchers made some progress in developing predecessors to modern EDRs between the 1970s 
and the 1990s (NHTSA, 2005); however, some key events that occurred in the late 1990s were 
instrumental in the widespread adoption that we have today. In 1997 the National Transportation 
Safety Board (NTSB) and the National Aeronautics and Space Administration (NASA)’s Jet 
Propulsion Laboratory recommended that NHTSA should investigate the use of EDRs for 
collecting crash information. Soon afterward, the NHTSA Office of Research and Development 
created a working group including government, industry, and academic stakeholders to study how 

http://www.https/www.crashdatagroup.com/
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EDRs data could be collected and utilized. The result was a report that included 29 key findings 
related to EDRs (NHTSA, 2001). NHTSA expanded on these results by sponsoring a second EDR 
working group in 2000. A few years later, NHTSA issued regulations that standardized EDR data 
on vehicles manufactured on September 1, 2010, or later. Specifically, this included defining a 
minimum data set for manufacturers voluntarily installing EDRs. Many manufacturers developed 
and installed EDRs in their vehicles during and following the establishment of the NHTSA EDR 
working groups. Figure 1 provides a timeline of EDR deployments by the manufacturers since 
1994. 

 
Figure 2. Timeline of EDR coverage by manufacturer (Image: National Biomechanics Institute) 

The EDR is generally located in a well-protected location so it will survive a crash event (e.g., under 
the driver’s seat). This location will vary according to the manufacturer. Additional supporting 
sensors are located throughout the vehicle, depending on the functions performed. Data will be 
sent from the sensors to the EDR when an event or impact1 exceeding a specific threshold is 
detected. Currently, crash data is recorded using EDRs installed in most light vehicles. The EDR is 
defined by CFR Title 49 Part 563 as: 

“a device or function in a vehicle that captures the vehicle’s dynamic, time-series data 
during the time period just prior to a crash event (e.g., vehicle speed vs. time) or during a 

 
1 Note: The airbag control module (considered the EDR for most vehicles) senses accelerative 
(lateral and/or longitudinal) events over time. Based on the manufacturer threshold, the event is 
classified as a deployment (seatbelt pretensioner, airbags, fire) or a non-deployment (no safety 
systems deployed). Given that near-crash events can cause significant accelerations (e.g., a near-
rollover), event or impact can be used as descriptors. Additionally, some collision events are not 
reliably recorded by EDRs, e.g., collisions between automobiles and pedestrians or bicycles. 
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crash event (e.g., delta-V vs. time), such that the data can be retrieved after the crash 
event... The event data does not include audio and video data.” 

Table 1 lists the required EDR elements: 

Table 1. Data Elements Required for All Vehicles Equipped with an EDR (adapted from CFR Title 49 Part 563.7) 

Element 
Recording 

Interval 
Sampling 
Rate (Hz) 

Delta-V, longitudinal  0 to 250 ms 100 
Maximum delta-V, longitudinal  0 to 300 ms N/A 
Time, maximum delta-V  0-300 ms N/A 
Speed, vehicle indicated  5 seconds 2 
Engine throttle, % full  5 seconds 2 
Service brake, on/off  5 seconds 2 
Ignition cycle, at time of crash 1 second 2 
Ignition cycle, at time of download At download N/A 
Safety belt status, driver 1 second N/A 
Frontal air bag warning lamp, on/off 1 second N/A 
Frontal air bag deployment, time to deploy – Driver Event N/A 
Frontal air bag deployment, time to deploy – Passenger Event  
Multi-event, number of events Event N/A 
Time from “event 1” to “event 2” As needed N/A 
Complete file recorded (yes/no) At end of file N/A 

 

EDR data are generally obtained by investigators or technicians using the Bosch Crash Data 
Retrieval (CDR) tool. This process is referred to as imaging the data. The CDR tool reads the data 
stored in the EDR and uses it to provide crash information to the investigator in a report format. 
The CDR tool includes software and hardware. The hardware includes cables and adapters that 
make connections to the EDR through different access points, depending on the state of the 
vehicle following the crash. The CDR tool (Bosch, 2020) can be used to access and download EDR 
data from 88% of vehicles (Ruth, 2017). Not all manufacturers use the Bosch CDR. Hyundai and 
Kia use a tool manufactured by Global Information Technologies, and Jaguar, Land Rover and 
Mitsubishi sell their own retrieval tools. This means that crash investigators need to have multiple 
hardware and software tools to be able to download or image the data for all vehicle types. 

Ownership of EDR data varies according to state law. The owner can give permission to image 
EDR data, or the data can be subpoenaed through court orders. Other states collect data under 
laws governing crash investigations. 

EDR data is rarely imaged at the scene of a crash. While there is no certification required for EDR 
use, qualification depends on knowledge, training and, experience with the equipment. Not all 
officers are trained as technicians, and qualified technicians with the required equipment are not 
always available. Consequently, the records are often imaged offsite after some delay. Typically, 
this occurs after the vehicles are removed from the scene and a search warrant is obtained. Law 
enforcement officers who perform the imaging include technicians and analysts. To access, 
technicians image EDR data, and analysts use the data in crash reconstruction. Some officers are 
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qualified to perform both roles.2 In North Carolina, EDR data are only imaged following severe 
crashes, including those resulting in a fatality and those involving a law enforcement vehicle. 
However, when the frequency of fatal crashes exceeds the local law enforcement resources to 
image the EDR data for all of them, priority may be assigned to collisions involving a possible 
felony. Generally, EDR data is not used on its own; rather the EDRs are used to confirm the officer’s 
investigation using the physical evidence. 

EDR Limitations for Automated Vehicles 
While EDRs are helpful in augmenting evidence collected during the physical investigation, the 
data can have some flaws. For example, EDR speed is derived by measuring speed at the drive 
wheels. In cases when the wheels leave the road surface in the seconds before a crash (e.g., 
vehicle is airborne) the speed can be over-reported. For these reasons, EDR data is treated as a 
supplement that corroborates crash reconstruction. Another limitation of EDR is that tires that 
vary from stock sizes or have significant wear can influence the accuracy of EDR-reported speed. 
Wheels that lock during a recorded event can also misrepresent speed. While there is a minimum 
standard for the fields collected by the EDR, the data and the format of the reports vary according 
to vehicle make, model, and year Singleton, Daily & Manes, 2008). 

The list of EDR elements (Table 1) was agreed on after years of discussion within NHTSA working 
groups and made public just as early versions of lane keep assist technology first became 
available in Infiniti and Lexus luxury sedans. Another modern technology that could influence the 
list of EDR elements is Toyota Techstream and Vehicle Control History (VCH), which takes 
photographs during pre-collision braking and collects a wealth of control data. Consequently, EDR 
elements do not account for modern advanced driver assistance systems (ADAS), let alone 
advanced automation that would allow drivers to dynamically swap lateral and longitudinal control 
responsibilities with a computer for prolonged periods. 

As partially automated vehicles are penetrating the market, the National Transportation Safety 
Board (NTSB) has investigated three fatal crashes involving automated vehicles in Florida, 
California, and Arizona. The crash depicted in Figure 3 below demonstrates the extreme nature of 
the observed AV crashes, and the need for expanding on EDR elements within vehicles with ADAS 
capabilities. 

 
2 As of 2021, a full application that allows imaging can cost about $30,000 and requires about 
$3,000 per year in maintenance. Given the high direct and indirect costs of training officers on the 
EDR system and its use, many times the officer doing the imaging also does the reconstruction. 
Due to their high costs, many agencies only image vehicles involved in fatal crashes. 



 
www.roadsafety.unc.edu 11 

 

 
Figure 3. Tesla Model S Crash in Williston, Florida (9) 

Depicted in the preliminary and final reports of the crashes, investigators were able to obtain pre-
crash data that became available due to the emerging technology. For example, from the NTSB’s 
final report on the fatal Tesla Model S crash in Williston, Florida, investigators were able to access, 
with the aid of Tesla, 53 distinct variables of stored data on a secure digital (SD) card covering 42 
hours before the fatal crash (NTSB, 2017). The Tesla Model S did not have an EDR; rather, the 
crash data was acquired from the engine control unit (ECU) by Tesla engineers, because at the 
time of the crash there was no commercially available tool for accessing and reviewing the data 
(NTSB, 2017). Additionally, image data were collected but did not provide informing material on 
the crash. However, as depicted in Figure 4, investigators were able to determine the locations 
and duration of “Autopilot” use, the instances of visual and auditory warnings, and when the 
vehicle operator interacted with the steering wheel before the crash. 

 
Figure 4. Tesla Model S Autopilot State & Warning of Tesla Duration prior to Fatal Crash (3) 

As vehicle sensor and control technology has been added to newer vehicles, there has been some 
interest in augmenting EDRs. In testimony during a Senate hearing on the Automated & Self Driving 
Vehicle Revolution, former National Safety Council President and CEO Deborah Hersman pointed 
out that, “there is no easy way for manufacturers, law enforcement, investigators or vehicle 
owners to understand whether deployed systems were active during a crash, whether they 
malfunctioned, or whether they helped mitigate damage or injury or returned the car to a safe state 
in event of a malfunction,” describing this information as a “minimum requirement” for EDRs 
(Hersman, 2016). In their report on the Williston, Florida Tesla crash (Figure 3), NTSB investigators 
concluded that the EDR data was “inadequate to comprehend even the simplest questions of 
who/what controlled an automated vehicle at the time of a crash” (NTSB, 2017, p. 36). Similar 
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opinions have been offered by the Property Casualty Insurers Association of America, the 
American Association of Motor Vehicle Administrators, and NHTSA (AAMVA, 2018). 

The fifth version of the Model Minimum Uniform Crash Criteria (MMUCC), which provides 
guidance to states by identifying a minimum set of motor vehicle crash data elements to include 
in state crash reports, introduced Motor Vehicle Automated Driving Systems as a new element to 
be included in crash reports (NHTSA 2017). The new recommended automated driving systems 
element allows law enforcement to indicate on a crash form which automation level was engaged 
at the time of a crash. This new element is supported by the NTSB, which provided a related 
recommendation following its investigation of the fatal Tesla crash in Florida: 

“Define the data parameters needed to understand the automated vehicle control systems 
involved in a crash. The parameters must reflect the vehicle’s control status and the 
frequency and duration of control actions to adequately characterize driver and vehicle 
performance before and during a crash” (recommendation H-17-37). 

SAE Level 2 remains a critical issue here, as the vehicle is assuming a driver is present and will 
correct their mistakes. A key issue before Level 4 diffusion through the transportation system is 
the status of the driver. Driver monitoring systems and the data from those systems are going to 
be critical in these determinations. However, these data raise important privacy concerns. 

Determining which automated systems are available on a vehicle can be difficult. Neither the 
model number nor the VIN reliably identifies the available systems for all vehicles. A trained officer 
might be able to physically locate radar and camera sensors by inspecting the windshield, bumper, 
and dashboard controls; however, these physical inspections can also be challenging as the 
sensors can be hidden for aesthetic reasons and vary in design among vehicle models. Even when 
the sensors are identified correctly, the data are not always made available to law enforcement 
when requested from manufacturers. 

MMUCC guidelines recommend that states adopt these new elements; however, the information 
cannot always be obtained through observation, and many drivers may not know which 
information is available on their vehicles. While it will be important for states to determine how 
different levels of automation influence safety, changes to the crash reporting process and that 
of downloading EDR data should not result in any additional time or training burden on law 
enforcement, and, if possible, strive to reduce those burdens. 

New forms of automation added to vehicles offer new opportunities for recording pre-crash data 
beyond these minimal fields. Computer vision sensors, including radar, cameras and LiDAR 
provide a detailed view of objects surrounding the vehicle at any given time (including vulnerable 
road users); GPS data mark a vehicle’s position; the human-machine interface (HMI) knows 
whether the human driver or driving automation activated a control; and automated controls 
informed by planning algorithms know precisely when brake, accelerator, or steering inputs were 
applied. Connected vehicles will be able to communicate basic safety messages that could also 
be recorded, and driver monitoring systems will have some measure of driver attentiveness. 
Figure 5 illustrates the existing EDR data for conventional vehicles and potential CAV data sources 
for crash reconstruction. 
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Figure 5. Current data and potential data sources for CAV-involved crash reconstruction 

The idea of expanding on the data captured by EDRs is not new. There was disagreement over the 
number of fields to maintain during the comment period before CFR Title 49 Part 563 went into 
effect. Some organizations observed that the number and type of data elements were insufficient, 
while others felt them excessive, with many groups speculating on the future effects of the rule 
(NHTSA, 2004). The current list of EDR elements, therefore, is the result of considerable 
deliberation. However, the rule has now been in effect since 2012, and numerous law enforcement 
personnel now have extensive first-hand experience utilizing EDR data. In this respect, law 
enforcement personnel are important customers for EDR systems and are uniquely qualified to 
assess the value of the current EDR system and comment on future needs. 

CAV data have the potential to provide important information for crash investigation, related crash 
reports, and for determining causation. The data will be needed by CAV manufacturers to help 
reduce future crashes. However, there will be a challenge to ensure the data can be provided in a 
non-proprietary format that is consistent among manufacturers, and that CAV manufacturers and 
government agencies can agree on a system to make their data promptly accessible to law 
enforcement (GHSA, 2019). 

While law enforcement is clearly an important stakeholder for CAV deployment, their participation 
in discussions surrounding CAVs has been limited to date. Jim Hedlund of Governors Highway 
Safety Association (GHSA) observed that while law enforcement is at the forefront of AV traffic 
safety issues, law enforcement has not been involved in the discussions around AVs (Hedlund, 
2017). There is evidence for lack of law enforcement involvement in the design of the current EDR 
retrieval process as well. In fact, CFR Title 49 Part 563 refers to the topic of training for law 
enforcement as “out of scope” for the EDR discussion, even though accessing and reporting EDR 
data currently requires additional training and equipment. The complexity of the process 
increases investigation time, leading many crash investigators to ignore the EDR entirely to focus 
on other aspects of an investigation. In North Carolina, for example, obtaining EDR data is just one 
of 35 tasks performed by state troopers during an investigation, according to the “Collision 
Investigation Checklist” (NCSHP form HP-49). The report downloaded from the EDR, which varies 
in length and can be up to 30 pages, is often appended to a longer Collision Investigation Form. 
These paper copies of case dockets are stored for a minimum of five years, but there is no central 
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EDR data archive maintained for NC State Highway Patrol. According to the Collision Investigation 
Training Coordinator at NC State Highway Patrol, there is no estimate of the number of NC State 
Highway Patrol cases with EDR reports, because this information has never been tabulated. 

A recent RAND report (Goodison et al., 2020) identifying high priority problems and associated 
needs for law enforcement related to AVs summarizes many of the key issues motivating this 
study. Law enforcement officers are already performing traffic stops and investigations that 
involve different types of automated vehicles. These incidents can only be expected to increase 
over time. In their summary, the RAND authors identified 17 “top-tier” needs related to law 
enforcement and AVs. A key issue, related to the present work states: 

“At present, law enforcement does not have a thorough understanding of the kinds of 
information that is being collected by AVs and how long it is maintained so that they can 
request the most appropriate information (for the purposes of crash reconstruction)” 
(Goodison, et al., 2020; p.8). 

In response, RAND recommended that a survey of law enforcement and crash reconstruction 
experts be conducted to identify the “type and quality of information that would be most useful” 
(p.8). This conclusion is consistent with the motivation and goals of the present study. 

For this research effort, we investigated how the potentially rich dataset available through CAVs 
can be leveraged to improve crash investigations in the future and overall transportation safety 
(Figure 4), with a focus on the needs of the law enforcement personnel who access the data. As 
CAVs are still in a testing phase, there is an opportunity to standardize the data before deployment, 
after which it will become more difficult to make changes. 

 

 
Figure 6. Data framework of accident reconstruction for CAV-involved crashes 

Law enforcement is a key stakeholder with respect to AV safety issues, but they have had little 
involvement in AV discussions. Thus, a goal of this study is to begin to include law enforcement 
by collecting their opinions on the effectiveness of EDR data for crash investigations. Including 
law enforcement in discussions around crash investigation allows us to leverage current crash 
investigation procedures including EDR technology as we progress to accommodate CAV 
technology. 
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Methods 
This research included three main components. First, we assessed the capabilities of CAV 
sensors with a review of relevant literature to understand which are best suited for informing crash 
reconstruction. Next, we performed text mining with the results of the literature review to assess 
which topics were of key interest to researchers to determine whether the topics of interest for 
researchers would align with law enforcement interests. Finally, we interviewed and surveyed law 
enforcement officers to collect their opinions on how EDR data should be augmented with CAV 
data during investigations. 

Literature Review and Synthesis 
A systematic literature review and synthesis was completed to determine the function, data 
collection ability, and limitations of various CAV technologies including onboard units (OBU), GPS, 
ultrasound/ultrasonic, infrared, LiDAR, radar, and cameras. Most of the papers used in this 
literature review were found through Google Scholar by searching the name of each sensor 
technology that was analyzed (as mentioned above). These sensor terms also included additions 
such as “AV”, “CAV”, “automated vehicles”, and “limitations”. Additional sources were found using 
the references listed in the initially selected papers. The NTSB evaluations on crashes involving 
automated vehicles were included in this study to aid in the determination of the faults in the 
sensors used. 

An assessment was performed to determine the technical capabilities of various CAV sensors. 
The technical capabilities of various CAV sensors (GPS, OBU, Infrared, Ultrasound, LiDAR, radar, 
and cameras) were then measured and compared based on the results of a systematic text 
analysis and literature synthesis. 

Literature Review and Synthesis Results 
CAV sensors are presented and evaluated including GPS, OBU, and five external sensors (camera, 
radar, LiDAR, infrared, and ultrasound). The following discussion includes the limitations and 
ADAS applications associated with each AV sensor studied. GPS sensors can be installed in 
vehicles to detect position and speed information including linear acceleration, angular velocity, 
and real time position information (Du & Barth, 2008; Hernandez & Kuo, 2003; Milanes, et al., 2008). 
However, GPS typically has a slow update rate and may not support acceleration calculations in 
real time; they cannot work properly in the presence of obstacles that block atmospheric signals 
including trees, tall buildings, and tunnels (Milanes, et al., 2008). In addition, GPS is susceptible to 
several errors including atmospheric errors, refraction, multipath errors, and satellite clock errors 
(Redmill, Kitajima & Ozguner, 2001). 

OBUs are used as a communication tool for CAVs that work in combination with roadside units 
(RSUs) and designated short-range communications (DSRC). These units collect data from 
individual sensors within the CAV and generate information-rich Basic Safety Messages (BSMs) 
that are used in V2V and V2I communications (Alam, Saini & Saddik, 2014; Luo & Liu, 2018; Hoque 
et al., 2018; Hoque et al., 2020). BSMs are so rich in information that they can be used to 
understand behavior of other drivers (Ahmed, Hoque & Khattak, 2016; Arvin, Kamrani & Khattak, 
2019; Kamrani et al., 2020; Khattak & Wali, 2017). OBUs are utilized for collision warnings (Liu & 
Khattak, 2016; Zhao et al., 2019), pathfinding (Hoseinzadeh et al., 2020), merge assistance 
(Ahmed et al., 2017), and speed suggestions (Cheng-Hsuan et al., 2014). One mutual weakness 
of both OBUs and GPS systems is that they are vulnerable to cybersecurity attacks (Luo & Liu, 
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2018; Sharma et al., 2017; Petit & Shladover, 2014). Notably, cybersecurity concerns have resulted 
in automobile manufacturers moving to place additional security features on the vehicles. This 
has changed how the EDRs are accessed in some cases. Therefore, cybersecurity is not only a 
concern for future CAVs, but a current concern as well. 

Millimeter Wave Radars (MMWR) have been used for detection of obstacles, roadways (Kodagoda 
et al., 2002), and pedestrians (Combs et al., 2019; Bartsch et al., 2012; Manston, 2011; Turnbull et 
al., 2017). Radar is robust in most types of extreme weather (Steijbaeck et al., 2017). A known 
limitation of radar technology is the low capability of the sensor to the detect lateral movement 
due to Doppler effect technology (NTSB, 2017; Kellner, et al., 2013). Another known limitation of 
radar technology is the poor resolution, which makes the detection of stationary objects unreliable 
(Combs et al., 2019; Bartsch et al., 2012; Manston, 2011; Turnbull et al., 2017), and the detection 
of children and pedestrians difficult (Combs et al., 2019). 

Ultrasound sensors are environmental sensors that are used in object and pedestrian detection 
(Arai & Nakano, 1983). The limitations of ultrasound sensors include their lack of robustness in 
detecting various types and colors of clothing due to varying degrees of reflection (Kremser, 
1997). Other issues associated with ultrasound technology include distinguishing the echoes of 
obstacles and interfering signals caused by other vehicles or objects along the roadway (Kremser, 
1997). 

The central application of infrared sensors in automated vehicles is pedestrian and vehicle 
detection (Bertozzi et al., 2005; Broggi et al., 2004; Der et al., 2004). Infrared sensors are robust 
when detecting pedestrians with different kinds and color of clothing (Der et al., 2004). Infrared 
sensors are limited in function because noise generated by surrounding buildings, moving and 
parked cars, road signs, traffic signals, and different illumination conditions (Der et al., 2004). In 
addition, these sensors operate optimally at night and in low temperature conditions as warm 
weather conditions can interfere with the detection capabilities of the sensor (Bertozzi et al., 
2005). 

LiDAR is a range finding environmental sensor that can be used for adaptive cruise control, 
collision avoidance (Catapang & Ramos, 2016; Liu et al., 2014), and object recognition (Kodagoda 
et al., 2002; Lehtomaki et al., 2010; Gudigar et al., 2016; McElhinney et al., 2010).3 In addition, 
LiDAR has been found to have an improved spatial resolution and range accuracy compared to 
MMWR (Kidono et al., 2011). LiDAR systems function best with good lighting (Petit et al., 2015), 
but they can operate well at night (Combs et al., 2019). A limitation of LiDAR technology is its 
inability to work in foggy weather (Kidono et al., 2011) and in most extreme weather conditions 
due to wet, reflective surfaces (Combs et al., 2019). 

Cameras have been used in moving vehicles for lane detection, landscape detection, object 
detection, object tracking, and video-based navigation (Petit et al., 2015). Some challenges faced 
by cameras include vision-based object detection include a non-constant landscape, differing 
lighting conditions, and the possibility of remote cyber-attacks (Petit et al., 2015; Betke et al., 
2000). Additional limitations of cameras include limited visibility (at night or in extreme weather 

 
3 Note that radar or machine vision is more typical for adaptive cruise control and automation 
functions. In 2021, LiDAR remains relatively expensive and hence it has not been used widely. 
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conditions), the need for constant calibration, and the easily obstructed line of sight (by buildings, 
large trucks, or dirt and grime build-up on the lenses (Wan et al., 2014)). 

As each sensor has its own limitations, sensor fusion is a very common practice that allows a 
system to leverage several sources of data for greater reliability. Within the range of 
environmental sensors included in this study, Schiffmann et all (2017) suggested the combining 
camera and radar technologies with the key advantage of this combination being an object 
tracking system. Similarly, Broggi et al. (2004) merged infrared technology and cameras to 
generate an enhanced pedestrian detection system. Steinbeck et al. (2017) suggests the 
combination of radar and LiDAR data, which would create a comprehensive representation of the 
environment outside of the vehicle. Additionally, WaveSense has combined radar, LiDAR, and GPS 
data to map the terrain below the road, and then match this information with GPS tags to allow 
for vehicle location estimation (Wavesense, 2019).  

Literature Review and Synthesis Summary 
The results of the text analysis informed the measures (i.e., maximum detection distance and 
object detection) used to compare the studied sensors (OBU, GPS, ultrasound, infrared, LiDAR, 
and radar) in the literature synthesis. The literature synthesis aided in the determination of the 
most comprehensive and user-friendly combination of the studied environmental sensors. This 
comprehensive environmental sensor was informed by the outcome of the surveys. 

An effort was made to have numerous sources for each sensor type, but there could exist 
selection bias in the limited selection of sensors. This study was completed by evaluating each 
sensor separately, but these sensors are not likely to be standalone in application, instead the 
expectation is that several sensors are merged in CAVs. This study examines a limited number of 
specific sensors that are used within CAVs. They are increasingly being used as low-level 
automation technologies, i.e., advanced driver assistance systems that are SAE Levels 1 and 2. 

Text Mining 
Text mining was performed on the references identified for the review using a combination of 
QDA Miner 5 and WordStat 8 to evaluate the literature to find the key words and their frequency. 
The references used in this text analysis were chosen through the completion of a systematic 
review of the CAV technologies: GPS, OBU, LiDAR, radar, infrared, ultrasound, and cameras. Within 
the text analysis software, an inclusion dictionary was developed to perform content analysis of 
the references used in this study. After the initial analysis, data processing was completed to 
exclude words from the analysis with little discriminative value. These excluded words were 
added to an exclusion list. The selected outputs of the software include a the most frequently 
used topics and keywords. The most frequent keywords from the text analysis were then used to 
inform the literature synthesis.  

The created corpus of literature from this review contained 55 bodies of relevant work. In the end, 
text analysis was completed on 47 references (see Appendix B for full list). Some texts chosen 
for the analysis (Appendix B, references 58-65) were unable to be extracted into the text analysis 
software and were therefore not included in the text analysis. The results of text analysis then 
informed the measures utilized in our study to determine the usefulness of each sensor. Such 
measures include the function and various limitations of the chosen technologies. 
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Keyword Frequency 
A key output of the text analysis is the measure of keyword frequency i.e., the number of 
occurrences of the keyword in the corpus of collected literature. The keyword “control” has the 
highest measured frequency of the keywords in the inclusion dictionary, appearing 923 times in 
75.44% of case documents. Other frequently appearing words are “radar”, “object”, “range”, and 
“detection”, with frequencies of 782, 723, 715, and 522, respectively. 

Topic Frequency  
Table 3 lists the results of the completed topic extraction of the text mining software QDA Miner. 
The software was used to identify seven topics that most frequently appeared in the created 
corpus. Each of the studied sensors is represented in some capacity in this table. LiDAR 
technologies is one of the main detected topics (topic 5). Radar is represented directly in topic 7 
and is indirectly represented by “doppler” in topic 2. Topic 7 includes camera technology along 
with the associated keywords of bounding boxes which are used for pedestrian detection with 
cameras. 

For the topics “LiDAR”, “object detection”, and “steering control and movements”, the order of the 
most frequently occurring topics coincides with the percentage of cases in which the topic 
appears. “LiDAR” is the most frequently occurring topic (1485 occurrences) and is present in 
94.12% of the cases in the corpus. The topic of “object detection” has the next highest frequency, 
(with 1166 occurrences) and the next highest percentage of cases (88.24%). The topic “steering 
control and movements” has a frequency of 786 and is present in 84.31% of cases in the corpus. 
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Table 2. Topics Table from CAV technology literature 

No. Topic Keyword Examples Coherence 
(Eigenvalue) 

Frequency 
(Keyword 

Occurrences) 

% Cases 

1 Security 
challenges 

ATTACKS; THREATS; SECURITY; MALWARE; 
MALICIOUS; MALWARE ATTACK; SECURITY 
THREATS; …  

0.505 655 84.31% 

2 Sensor 
coverage 

ANTENNA; DOPPLER; AMPLITUDE; FREQUENCY; 
RANGE; PULSES; PHASE; RECEIVE ANTENNA; 
RANGE FREQUENCY; OVERLAPPING RANGE; 
STAGE DOPPLER; SUGGESTED SPEED RANGE; 
RANGE SPECTRUM; PROCESSING TIME; … 

0.465 571 80.39% 

3 Monitoring 
Driver 

SLEEP; DISTRACTED; VIGILANCE; REACTION; 
FATIGUED; WARNINGS; CONFLICT; REACTION 
TIME; SLEEP DEPRIVED; REACTION TIMES; 
DIMINISHED VIGILANCE; SLEEP DEPRIVATION; … 

0.439 437 19.61% 

4 Steering 
control and 
movements 

LATERAL; STEERING; CURVATURE; GPS; WHEEL; 
STEERING WHEEL; LATERAL DISPLACEMENT; 
LATERAL ACCELERATION; … 

0.429 786 84.31% 

5 LiDAR LiDAR; LASER; SCANNING; ENVIRONMENT; 
BEAMS; RESOLUTION; RANGE; SENSING; 
DETECTION; DETECTION AND RANGING;  

0.406 1485 94.12% 

6 Adverse 
Weather 

ADVERSE; ADVERSE WEATHER; SURFACE 
CONDITION; DAYLIGHT TIME; WEATHER 
CONDITION; …  

0.391 497 68.63% 

7 Object 
Detection 

PEDESTRIANS; VISION; PEDESTRIAN; FRAMES; 
DETECTION; CAMERA; TRACKING; OBJECTS; 
SCENE; HUMAN; FRAME; RECOGNITION; PIXELS; 
MOTION; RADAR; HEAD; VIDEO; BOUNDING 
BOXES; PEDESTRIAN DETECTION; …  

0.360 1166 88.24% 

 

Text Analysis Summary 
The most frequently appearing keyword “control” has the highest measured frequency of the 
keywords in the inclusion dictionary. Other frequently appearing words are “radar”, “object”, 
“range”, and “detection”. With 715 occurrences, radar is the only sensor directly included in the 
five most frequent keywords. However, the remaining top keywords refer to CAV applications of 
the studied sensors. For example, the keyword “detection” can refer to pedestrian detection, or it 
can reference its combination with the other frequent keyword “object”, as in object detection 
tracking. “Range” refers to the maximum distance that a sensor can detect. These frequent 
keywords were then used to influence measures of sensors which were evaluated in the literature 
synthesis. Thus, range, object detection, and pedestrian detection are included in the compared 
capabilities of the studied CAV sensors. 

Although the most frequent topics are “LiDAR”, “object detection”, and “steering control and 
movements”, the important topics in Table 3 are object detection, sensor coverage, and steering 
control. Object detection and pedestrian detection are detected topics that are repetitions of the 
findings in the keyword frequency analysis. This repetition of the topics object and pedestrian 
detection confirm the relevance of these topics and in turn support the use of these measures 
being used to compare the selected CAV sensors. 
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Table 2 is a compilation of the limitations of the studied sensor technologies including range, 
pedestrian/object detection, vulnerability to cyber-attack, ability to work at night, and robustness 
against weather. Comparing the external sensors in Table 2, one can determine the sensor with 
the least reductive limitations. Generally, sensor technology, sensor fusion, and algorithm 
performance are all determining factors in real-world performance. In terms of their performance, 
a weakness of ultrasound sensors is their struggle to detect pedestrians in different colors and 
types of clothing (Arai & Nakano, 1983). A limitation of the infrared technology is the inability to 
successfully operate in warmer temperatures, such as during the summertime. Cameras are 
limited by line-of-sight detection distance and their loss of function at night and in extreme 
weather conditions. This leaves LiDAR and radar as the front runners of the studied environmental 
sensors. Radar is capable of functioning in adverse weather, but LiDAR is limited by fog. On the 
other hand, LiDAR has detection capabilities that are nearly twice that of radar vision. Based on 
function in adverse weather and vision/detection capabilities, LiDAR can be considered the sensor 
with the most comprehensive rendering of the environment outside of the vehicle. This conclusion 
can be combined with the familiarity of cameras and their outputs translates to the combination 
of cameras and LiDAR technologies providing comprehensive and user-friendly environmental 
data from an autonomous vehicle.4 

Table 3. Sensor Limitations found in the literature 

Sensor Pedestrian & 
Object 

Detection 

Pedestrian & 
Object Speed / 

Tracking 

Robust 
against 
clothing 

color/type? 

Robust 
against 

weather? 

Work at 
night? 

Vulnerable 
to Cyber-
Attack? 

Max. 
Detection 
Distance 

(m) 

GPS - - - Yes Yes Yes - 

OBU - - - Yes Yes Yes - 

US Yes  
(Poor) No No Yes Yes No Line of 

Sight 

IR Yes No Yes No  
(high temps) Yes No 20 

LiDAR Yes (Very 
Good) Yes Yes Yes 

(except fog) 
Yes 

(Very Good) Yes 300 

Radar Yes Yes  
(If v>0) Yes Yes Yes 

(Very Good) No 160 

Camera Yes Yes Yes No Yes 
(Limited) Yes Line of 

Sight 
 

A limitation of this portion of the review was that the text analysis was completed using a software 
that was not able to extract the content from a few of the relevant sources. While there were only 
a few studies which were not able to be used in the text analysis with QDA Miner, the information 

 
4 Notably, the data are not always user-friendly. For instance, some of the raw data can be messy 
and difficult to interpret. The user of these data must correctly interpret the information. Using 
basic EDR data requires ensuring that it is both valid and related to the collision in question. Along 
these lines, using data from CAVs will require much more careful validation and interpretation by 
law enforcement users and accident reconstruction experts. 
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from these sources may have had the potential to reveal additional topic relationships and 
keyword frequency. 

Law Enforcement Survey 
The assessment of law enforcement opinions on augmenting EDR data included three parts. Each 
part was designed to inform the subsequent part completed by the research team. Part 1 included 
small group semi-structured interviews with expert crash investigators who provided an overview 
of the crash investigation process with an emphasis on EDR data analysis. Part 2 was a workshop 
conducted with law enforcement in-person to collect law enforcement opinions. Part 3 expanded 
on Part 1 and Part 2 by distributing a survey to law enforcement participants nationwide. 

The semi-structured interview (also referred to as ethnographic interview) is a common qualitative 
research technique that includes a combination of open- and closed-ended as well as follow-up 
questions. The technique allows a researcher to collect open-ended data and explore participant 
thoughts, feelings, and beliefs about a topic. This interview format is ideal for collecting 
information to inform the design of large-scale surveys, configuring a focus group, and 
constructing a research strategy. 

The semi-structured interviews included two state troopers with the North Carolina State Highway 
Patrol and two professional accident reconstructionists. The officers are experienced crash 
analysts and reconstructionists. One professional reconstructionist is a forensic Human Factors 
scientist accredited in traffic accident reconstruction, and the other is a reconstructionist and 
adjunct professor with the University of Tennessee-Knoxville who teaches graduate courses in 
Traffic Accident Reconstruction. The purpose of the semi-structured interview was to develop the 
language for the subsequent workshop and survey design and to begin collecting law 
enforcement perspectives on how AV sensor data could benefit crash reconstruction. The in-
person session lasted two hours and follow-up questions were addressed via email. 

The content of the semi-structured interviews was used to inform the framework for a law 
enforcement workshop conducted at the 2019 North Carolina Traffic Safety Conference & Expo, 
a statewide event devoted to traffic safety education, programming, and enforcement. The 
purpose of the workshop was to collect additional opinions on which AV data to use during crash 
investigations along with opinions on current EDR data collection procedures. 45 law enforcement 
officers participated, along with other transportation professionals. The workshop was also used 
to pilot the online survey developed following the previous interviews. 

A brief Qualtrics survey was distributed to state law enforcement offices in California, Arizona, 
Florida, Michigan, North Carolina, Washington, Texas, Pennsylvania, New York, and Virginia. These 
states were selected due to activity in AV development, testing, and/or regulation. The survey 
included the following three questions (see Appendix A for the complete survey): 

1. Thinking of the future of collision investigation, what are the top three pieces of information 
(that are not available today) you would most like to get from a vehicle automatically after 
a collision? 

2. What do you like most about the current process of using Event Data Recorders (EDRs) for 
collision investigation? 

3. What could be improved about the current process of using Event Data Recorders (EDRs) 
for collision investigation? 
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The responses were entered via free-form text. Responses were anonymous and participants 
were asked to confirm that they worked in law enforcement along with their role in investigation 
(technician and/or analyst). The survey remained open for six weeks between May 1 and June 12, 
2020. A total of 16 responses that met the screening criteria were recorded. All respondents 
worked in law enforcement, and all had experience extracting data from EDRs. 

Survey Results  
When asked what information they would like recorded automatically during a crash event, 
video/image data was identified most often (17%) by law enforcement officers. This was followed 
by vehicle reaction time/performance (i.e., information about automation performance that may 
contribute to a crash; 12%), speed (10%), driver/passenger video (10%), ADS/driver in control 
(7%),5 driver input (5%), and timestamp (5%) data. These results are summarized in Table 4. CAV 
information most requested by law enforcement. 

Table 4. CAV information most requested by law enforcement 

Desired information % Responses 
Crash video/image 17% 
Automation performance 12% 
Speed 10% 
In-vehicle video 10% 
ADS/driver in control 7% 
Driver input 5% 
Timestamp 5% 

 

The responses to the other two survey questions were less varied. When asked to provide positive 
feedback about EDRs, respondents unanimously acknowledged the abundant information and 
helpful data that EDRs can provide to collision investigation. When asked about possible 
improvements, responses were less consistent. The most frequent response of the law 
enforcement officers was the desire for universal cables/single system, identified by 40% of the 
respondents. This is not surprising, given the high-cost burden of even a basic EDR system. The 
remaining responses were unique to each respondent. 

Additional findings 
In addition to the survey results, the officers participating in the interviews and workshop provided 
several insights about EDRs and CAV data. 

• Camera data. Officers mentioned GPS and camera data frequently in both settings. This 
was consistent with the results of the survey. Camera or other visual data would be 
desirable because physical evidence can disappear rapidly from a crash scene. This is 
particularly relevant when the investigation changes due to the addition of new information 
(e.g., a toxicology report). A snapshot that preserves the scene that can be accessed later 

 
5 Note that this category seems relatively low, given that law enforcement investigations are 
focused on whether a criminal or civil violation has occurred. As higher levels of automation 
emerge (i.e., SAE Levels 3+), the question of who is driving becomes critical for law enforcement. 
This result may indicate low awareness by law enforcement about the changing role of drivers in 
vehicle automation. 
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would be helpful. Automated vehicle camera and GPS data could potentially be used in 
criminal investigations. 

• Data duration. Most EDR data includes five seconds of data before and following a crash 
event. A longer data window could show if a driver were driving erratically prior to a crash. 
The current practice of keeping a 5-second data record may not be sufficient to reveal lane 
deviations or other aggravating factors that occur prior to a crash. A similarly long record 
of control inputs would also be helpful. 

• Training. Participants expressed a need for guidance on how fault should be determined 
for collisions with AVs when the driver or the vehicle may be responsible for performing 
the dynamic driving task. 

• Training materials. Participants indicated that current crash training materials and 
methods have not kept up with modern technologies. For example, motor vehicle 
collisions do not generate as much physical evidence as they did in the past. Antilock 
brakes do not leave the same tire impressions on pavement that are provided in many 
training examples. Notably, speedometers are driven by stepper motors on some vehicles, 
meaning that the speedometer will display the speed at the time power was lost. However, 
this may not be fully covered in training for crash investigators. Training materials also 
need to account for the fact that many investigations now take place offsite.6 

• Driver monitoring. Biometric markers that are predictive of driver distraction, impairment 
or fatigue would be helpful during investigations. This entails both access to the data and 
being able to integrate and interpret biometric data. 

• Delta-V effectiveness. There is sometimes a need for historic data that is not linked to a 
collision (i.e., no significant change in delta-V), such as “non-occupant” collisions with 
pedestrians. EDRs record multiple events, which can make it more challenging to identify 
the most important crash event in the sequence. Deployment thresholds vary by 
manufacturer and sometimes by model; this information is not shared with law 
enforcement. 

• Reports. Report formats vary among manufacturers, and some are more helpful than 
others in the courtrooms where they are widely used. For example, Dodge includes helpful 
user-friendly visualizations and Toyota includes graphs and tables of numbers. 
Visualizations like those implemented by Dodge are helpful during trials, along with the 
raw data used for reconstruction.  

Investigators also commented on the usefulness of third-party tools for investigation. Specifically, 
investigation tools currently made by Berla (www.berla.co) can be used to access a vehicle’s 
infotainment system to gather GPS, vehicle event, mobile phone and media data. These data 
elements can be used during criminal investigations to determine whether a person (via a 
connected mobile device) was at a specific location at the time of an event, as indicated by a GPS. 
However, Berla systems and the training to use them can be expensive and few agencies have 
them. Furthermore, Berla is not authorized by manufacturers and can require destructive 
examinations of vehicles (e.g., removing parts of the dash or removing head units). GM’s Onstar 
technology can perform similar functions to Berla, according to the officers interviewed. 

 
6 Compounding this issue is that agency budgets are limited, resulting in few well-trained officers.   

http://www.berla.co/
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Survey Discussion 
Law enforcement responses to the first survey question contained multiple references to 
information that is typically captured by the environmental sensors of CAVs. Specifically, the 
responses of video/image data and driver/passenger video can be provided from the information 
that is collected and captured by environmental sensors. The recommended comprehensive 
environmental sensor from the literature synthesis (comprised of the combination of camera and 
LiDAR technologies) would provide a complete and user-friendly depiction of the environment 
both around and within the vehicle. Additionally, the results of the survey indicate that law 
enforcement officers acknowledge the power of the information that can be gathered from an 
EDR, and the desire for a universal cable for all EDRs was confirmed. Overall, more consistency 
was observed within the in-person survey results compared to the online survey results. This is 
likely due, in part, to the overview of ADS technology that was provided as part of the workshop. 
The presentation may have influenced the results as the in-person participants had a similar 
baseline understanding of the technology, while the background of the online respondents was 
unknown. 

A possible limitation of this study is the number of survey responses. The survey was distributed 
to law enforcement agencies in 10 different states and kept open for five weeks. Recruitment 
emails were sent by other law enforcement officers in the hopes that there would be a higher 
response rate if recruitment was performed by a peer. At the end, the survey response was limited, 
which may have skewed the conclusions of the survey data. However, when comparing the survey 
data to the expert interviews and related efforts performed by other groups (see Related Work), 
there is some overlap. 

The law enforcement responses were also influenced by their EDR experience and exposure to 
ADAS technology. Most recommendations addressed shortcomings with existing EDR data 
(speed errors, hardware issues), lack of available information about ADAS features (ADAS 
features in vehicles), and exposure to related technology (e.g., cameras and the Berla system). It 
is possible that, with additional training and exposure to ADS systems, the law enforcement would 
have more recommendations for system improvements. This highlights the need for additional 
training in ADAS and ADS topics for law enforcement. 

General Discussion 
Crash reconstruction is changing rapidly with more pre-crash information becoming available 
through various sensors. There is an opportunity to leverage the large-scale data being collected 
and stored in connected and automated vehicles. The review of literature on sensors being used 
in CAVs shows that range, pedestrian detection, and steering control are important issues with 
regards sensor capabilities. The results from the survey of law enforcement confirm the desire 
and need for data from visual sensors, along with information about the state of the automation. 
There is also broad support for uniform, streamlined methods for accessing objective data 
following a crash. 

The results of this research are based on the insights provided by a comprehensive literature 
review and interviews with law enforcement who conduct crash investigations. The data gathered 
from the interviews are valid as substantial efforts went into carefully documenting the interview 
data. Additionally, the findings are based on input from key stakeholders, i.e., law enforcement, 
who are critical for the generation of future safety data. 
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This research also contributes by answering a fundamental question about crash investigations 
i.e., what new data to use for CAV involved collisions. Clearly, LiDAR and radar data combined with 
camera data provides keys to pre-crash contributing factors. Strategies for mitigating these 
factors are important for future research. This research will likely impact stakeholders, especially 
law enforcement and crash investigators by motivating the application of a data-driven approach 
to crash investigations. This research can be used to support the collection of ADS data, 
developing appropriate protocols to analyze the new data from LiDARs and cameras and mandate 
to include ADS data along with EDR reports. 

Related Work  
This research project is consistent with previous recommendations advocating for law 
enforcement officer input in the design of automated data collection tools to assist in crash 
reconstruction. To the best of our knowledge, this current effort remains the only attempt at this 
research. However, there have been some similar projects taking place in the U.S. and abroad that 
are relevant and could influence future work. Those efforts are summarized in this section. 

SAE Automated Driving System Data Logger (J3197) 
The SAE Automated Driving System (ADS) Data Logger recommends data elements for SAE 
Levels 3-5 (i.e., automated driving systems) that can describe the events of a crash or near-crash 
(SAE, 2020). The recommended practice provides definitions for the data elements, recommends 
a minimum set of data elements, and specifies a record format for motor vehicles. The data 
elements in the ADS data logger come from vehicle sensors, such as cameras and LiDAR, that 
track driving information when there is no driver actively performing the driving task. In this sense, 
the ADS sensors would provide the eye-witness account in the absence of a human driver. The 
ADS Data Logger would not be intended as a replacement to an EDR; rather, the two would operate 
in conjunction with traditional reconstruction methods (e.g., analysis of physical evidence) for a 
more comprehensive crash reconstruction.7 

Like the EDR, the ADS Data Logger would record information leading up to a collision. This would 
include ADS operational data and information about the crash environment. Operational data 
includes details about the triggering even and ADS-requested control, such as acceleration and 
braking. Environmental information includes navigation information, such as location and 
heading, and details about the roadway, such as roadway geometry and vehicle lane position. A 
strength of the ADS data logger would be the inclusion of an “annotated image” obtained from 
one or more cameras, which would include a snapshot of the crash scene with labels and 
bounding boxes describing identified object in the area. 

While the ADS Data Logger would be designed to record a data snapshot in parallel with the EDR 
(based on the delta-V), it would also be available for other triggering events so it could also be 
used in the event of crashes where another vehicle was not involved, such as a collision with a 

 
7 Note that integrating different datasets (with no common timestamp) for analysis is going to be 
challenging for crash investigations. Addressing this will be a major issue in CAV supplemented 
crash investigations.  
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pedestrian. The authors acknowledge that ADS technology is still a work in progress, and the ADS 
Data Logger is subject to change as the technology evolves. 

Data Storage System for Automated Driving (DSSAD) 
The Data Storage System for Automated Driving (DSSAD) is part of the World Forum for 
Harmonization of Vehicle Regulations (WP.29) framework document on automated/autonomous 
vehicles. The WP.29 framework identifies principles for the safety and security of ADAS and ADS 
vehicles. The DSSAD is one of serval principles within the framework developed by the 
international working group. 

The DSSAD reports two key fields, summarizing the status of the vehicle’s automated system and 
who was in control at a specific point in time. A limitation of the EDR.is that one would still need 
to associate the record with the actual crash event, requiring datasets to be combined with the 
EDR data. Unlike the EDR, the DSSAD would provide continuous storage due to the limited size of 
the data involved. The data would then be able to be provided by request, rather than following a 
triggering event. This would not only allow an investigator to determine who was in control during 
a severe collision, but also following a collision with a smaller vehicle or pedestrian, a traffic 
offense, or an unsafe maneuver. 

The DSSAD would include a timestamp along with interactions between the driver and the system 
(i.t., who/what was requested to be in control and who/what was in control), including the fields 
needed to record the automated vehicle data in MMUCC-compliant crash reports. The specific 
recommended fields include the date and time, on/off status of the automation, the transition 
request, and the time of the takeover/transition. 

Vehicle Control History (VCH) 
The vehicle control history (VCH) is a specialized EDR that has been available in many Toyota 
vehicles since 2013. The VCH continuously monitors vehicle systems and driver inputs for system 
events including lane departures, strong/emergency braking, antilock brake activation, sudden 
steering, sudden acceleration. Along with each event, the VCH stores the vehicle speed, engine 
RPM, throttle, acceleration, and steering angle. These values are stored 5 seconds before and 5 
seconds after the event, along with the odometer reading and a timestamp. This is somewhat 
different from the EDR as the date are recorded for more types of events, and the data include 
driver and automation control responses. 

 Collects data by monitoring for certain triggers related to vehicle systems and driver inputs. A 
crash event is not required to trigger a VCH event. The VCH triggers based on system-related 
events (lane departure, pre-collision braking, or ABS activation) and driver-related events (sudden 
braking, sudden steering, sudden acceleration). The VCH stores data such as vehicle speed, 
engine RPM, throttle opening, acceleration, and steering for 5 seconds prior to an event and 5 
seconds after an event. For each event, the associated ignition cycle, date and timestamp 
according to the GPS system, event triggered, and odometer are recorded.” VCH has a total of 26 
triggers, such as electronic stability control (ESC) activation or sudden accelerator presses. The 
system also has a large amount of storage (by contemporary standards), which can be used to 
establish driving patterns well before the event in question. 

Advanced Automatic Collision Notification (AACN) system 
The Advanced Automatic Collision Notification (AACN) is a system being explored by Toyota and 
Bosch to help the vehicle driver and passengers following a severe crash (Iyoda et al., 2016). The 
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AACN transmits the delta-V and seatbelt data to a data center following a crash. These data 
elements are then used to estimate the severity of the crash, which is then forwarded to local 
hospitals and first-responders to inform the dispatch of an ambulance or helicopter to the crash 
scene for a faster response. 

In addition to its support of the vehicle occupants, the AACN is also noteworthy because it 
includes an automated data upload to a cloud storage system following a crash without the use 
of additional hardware and software on site. This is a significant advantage over current EDR 
technologies, which require additional hardware, numerous cables, and a technician with 
specialized training. 

EDR Data Archiving 
An issue during the workshop with law enforcement was that EDR data files are not generally 
stored in a central data repository. However, a representative sample of EDR images are included 
in the Crash Investigation Sampling System (CISS). CISS is part of NHTSA’s crash data collection 
program and represents a randomly selected sample of U.S. crash reports in which at least one 
passenger vehicle was towed from the crash scene. 2512 CISS records included EDR files 
(approximately 94% of CISS crash reports) in 2018. An online tool to view cases, data files and 
other CISS resources are available online: https://www.nhtsa.gov/crash-data-systems/crash-
investigation-sampling-system. 

EDR files imaged using the Bosch CDR kit during an investigation can be automatically attached 
to a CISS crash file through CISSWeb, the data entry software used to populate CISS (Mynatt et 
al., 2017). When files are not available electronically, a technician will manually transcribe the 
information into the database from a pdf. EDR data elements are maintained in six relational 
tables in CISS (Figure 5 [Radja, Noh & Zhang, 2020]). 

 
Figure 7. EDR Data Files included in the NHTSA Crash Investigation Sampling System (CISS) 

The EDRCOLLECT table includes information about the method used by an investigator to 
download the EDR data and whether the download was successful. EDRSUMM includes 
information about the data file, such as the CDR version and the size of the EDR file. The remaining 

https://www.nhtsa.gov/crash-data-systems/crash-investigation-sampling-system
https://www.nhtsa.gov/crash-data-systems/crash-investigation-sampling-system
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tables, EDREVENT, EDRPRECRASH, EDRREST and EDRPOSTCRASH include the EDR data, 
including fields outlined in CFR Title 49 Part 563. 

CISS provides an example of how crash data recorded and stored by a vehicle can be maintained 
in a database. A relational structure is required to maintain the hierarchy of data tables needed to 
organize the large amount of data. This includes the metadata describing the data download, 
equipment used and file size, airbag and seat belt status, and summary information about the 
crash (e.g., maximum Delta-V), as well as the time-series data recorded immediately prior to and 
following the crash (i.e., the pre- and post-crash data elements). EDR tables in CISS can become 
quite large, including over 500,000 pre- post-crash data records describing the 2,512 EDR records 
in 2019. Replacing or adding annotated image or video data to those crash records would require 
substantial file storage space. 

CISS includes only a fraction of EDR files downloaded by crash investigators annually; however, 
as the CISS Analytical User’s Guide indicates, not every EDR file can be automatically uploaded to 
CISS and some need to be manually entered from pdf files. This demonstrates there are still some 
obstacles to reliably uploading EDR files, even when experienced investigators are involved in the 
process. 

Future Research and Next Steps 
The results of related work and the surveys of law enforcement show there is a need for data 
collection and analysis protocols that investigation teams could follow to obtain, download, and 
analyze CAV data. At a minimum this would include performance of the driving task by an 
automated system as well as storing visual representations of a crash scene. While analysis of 
CAV involved crashes can yield important new insights, CAV crashes will require police to deal 
with complexities of new automation and communication technologies and disengagements 
(whether human-initiated or ADS-initiated) of the ADS during collisions. Therefore, a new 
dimension of disengagements emerges as salient in CAV crashes. The literature has shown that 
in current AV testing, humans are disengaging more than ADS. And where ADS disengage, 
software and hardware & planning discrepancies are the important reasons. These require 
continued research, along with involving more stakeholders that are involved in the crash 
reconstruction process and new technology testing programs at the state level. 

One finding of the current work was that the inclusion of stakeholders in the EDR and CAV 
discussion should extend from law enforcement officers to professional crash investigators. Law 
enforcement officers may not work with EDRs on a regular or extensive basis, and collision 
investigation is a relatively small portion of law enforcement. However, professional crash 
investigators may have more extensive expertise and experience with EDRs and the outputs of 
EDRs. Extending the survey to professional crash investigators would allow for more refined and 
specific results. In addition, the contributions from the law enforcement officers participating in 
the workshop and those responding to the online survey suggest there is a need to incorporate 
CAV technology concepts in law enforcement training. This was supported by anecdotal 
comments from the officers following the workshop, but not formally recorded as part of data 
collection. Future efforts should address this topic directly and determine which CAV topics would 
benefit officers now and in the future. 

On the other hand, simulation platforms provide capability to generate synthetic data for early 
evaluation of CAV sensors and their potential capabilities in accident reconstruction. Synthetic 
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Sensor Data Generation is the task of producing synthetic data under simulation that has the 
characteristics of real data that might be collected on an actual vehicle driving on public roads. 
One of the platforms that is being promoted by the USDOT is CARLA, which can simulate different 
CAV sensors such as LiDAR, radar, and cameras. Future research can utilize these rich data 
sources to develop appropriate protocols to harness this information in crash investigations. 

This project can be expanded to incorporate commercial motor vehicle (CMV) fleets. Heavy CMVs 
are equipped with data-recording engine control modules called HV-EDRs. While these are not 
intended for use as EDRs, HV-EDRs can reveal information about vehicle conditions and driver 
inputs leading up to a crash. Furthermore, CMV fleets have found significant benefits to using 
active safety technology such as collision mitigation braking (CMB) and forward collision warning 
(FCW). These systems often can record rich datasets related to a collision event, but few agencies 
have the training and equipment to access the data. Finally, CMV fleets are highly interested in 
vehicle automation to reduce driver-associated costs, therefore CMV fleets will be one of the 
earliest large-scale deployments of automation. Future research should be conducted to 
investigate 1) the feasibility of investigators obtaining HV-EDR data, 2) the feasibility of 
investigators obtaining CMB/FCW data, and 3) large-scale automation in CMV fleets. 

Conclusion 
While current EDRs provide effective supplemental information that supports physical evidence, 
CAV sensor data can serve as an automated witness that can accurately preserve the scene of a 
crash event. The ability to record, report, and store accurate crash data would benefit future 
investigators, safety researchers, and manufacturers by improving the reliability of crash reports. 
This study assessed law enforcement stakeholder perspectives on how this increasingly available 
CAV data can be leveraged to improve crash investigation procedures. As part of this effort, we 
performed a supplementary literature review to identify which sensors are commonly included in 
CAV research to compare with the data collected from law enforcement. 

Key findings of this research include: 

• The literature on CAV sensors shows that functional range, pedestrian detection, and 
steering control are the most important capabilities 

• The recommended environmental sensor combination includes camera and LiDAR 
technologies, which can provide a complete and visually descriptive depiction of the 
environment both outside and inside the vehicle 

• Compared to other individual sensors, LiDAR is the most robust environmental sensor 
based on the identified limitations 

• Law enforcement officers unanimously agreed that the abundant information and helpful 
data are the best advantage of modern EDRs 

• The most common improvement recommendation to EDRs was the use to universal 
cables or other common system for accessing the data 

• The two most recommended pieces of information by law enforcement included camera 
data and information about automation performance 

• The results of the law enforcement surveys are consistent with similar efforts to develop 
guidelines for reporting crash data for CAVs 

These findings suggest that EDR data can be expanded to include CAV data as modern vehicles 
are integrating increasingly automated systems, such as ADAS and Toyota Techstream (which 
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stores pre-crash images and vehicle control data). Furthermore, the survey findings regarding the 
number of cables needed, the need for training, and easier to interpret CDR reports reveal that 
access to EDR data can be further standardized. Because understanding how to use EDR access 
systems requires training in physics and vehicle technologies, developing a well-trained crash 
investigator currently requires large direct (training and hardware) and indirect (time away from 
duty) investments from an agency. 

The main objective of this work was to explore how law enforcement could contribute to the 
design of future crash reconstruction. A key element of the project is the use of safe systems 
approach incorporating key stakeholders, data collection processes, technological capabilities, 
and deriving information from data. It is expected that the results of this work can help improve 
crash reconstruction procedures when combined with the opinions of other crash reconstruction 
experts. It will be important to understand the perspectives of other key stakeholders, such as 
crash reconstruction experts, to design a useful dataset that will not only help in future 
reconstruction efforts, but also help researchers improve the safety of the vehicles involved. An 
additional lesson from this research is the need to educate traffic safety professionals, including 
law enforcement, of the functions and limitations of CAV technology so they can be better 
prepared to address the variety of new challenges that will continue to emerge as automated 
vehicles appear on the roadways in larger numbers. 

ADAS technology continues to enter the market, and broad development and testing continues to 
move CAV with higher automation levels closer to deployment. CAV technology is evolving, and 
developers still have an opportunity to communicate their intentions to stakeholders in the 
transportation community and accommodate their needs in future designs through participatory 
development or updated policies. Postponing law enforcement involvement would likely leave 
new onerous challenges to law enforcement instead of providing innovative tools that could 
ultimately improve road safety. 
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Appendix A: Law Enforcement Survey 
 

The University of North Carolina Highway Safety Research Center (HSRC) is conducting research to better 
understand how vehicle event data recorders (EDRs) could be improved with new automated vehicle data. 

New vehicle technologies like adaptive cruise control and lane departure warnings are designed to assist the driver, 
but they also collect detailed data about the vehicle and objects in the immediate area that could be useful for 
collision reconstruction. As technology gets more advanced, it may also be possible to automatically collect new 
information about the vehicle, its location, the environment and even the driver. 

Thinking of the future of collision investigation, what are the top three pieces of information (that are not available 
today) you would most like to get from a vehicle automatically after a collision? 

1) ______________________ 
2) ______________________ 
3) ______________________ 

 

What do you like most about the current process of using EDRs for collision investigation? 

______________________ 

 

What could be improved about the current process of using EDRs for collision investigation? 

______________________ 

 

Do you work in law enforcement? 

a) Yes 
b) No 

 

What is your role in collision investigation? 

a) Technician 
b) Analyst 
c) Both 
d) None 
e) Other (please specify) ____________ 

  



 
www.roadsafety.unc.edu 37 

 

Appendix B: Literature Review 
References 
 

[3] NTSB. Collision Between a Car Operating with Automated Vehicle Control Systems and a 
Tractor-Semitrailer Truck Near Williston, Florida, May 7, 2016.In, National Transportation Safety 
Board Washington, D.C, 2017. 

[4] ---. Preliminary Report: HWY18FH011.In, Washington, D.C, 2018. 

[5] ---. Preliminary Report: HWY18MH010.In, Washington, D.C, 2018. 

[6]  Preliminary Report: HWY19FH008.In, National Transportation Safety Board Washington, D.C., 
2018. 

[15] Bunn, F. E. Automated vehicle tracking and service provision system. In, Google Patents, 2001. 

[16] Du, J., and M. J. Barth. Next-generation automated vehicle location systems: Positioning at 
the lane level. IEEE Transactions on Intelligent Transportation Systems, Vol. 9, No. 1, 2008, pp. 48-
57. 

[17] Hernandez, J. I., and C.-Y. Kuo. Steering control of automated vehicles using absolute 
positioning GPS and magnetic markers. IEEE Transactions on Vehicular Technology, Vol. 52, No. 
1, 2003, pp. 150-161. 

[18] Milanés, V., J. E. Naranjo, C. González, J. Alonso, and T. de Pedro. Autonomous vehicle based 
in cooperative GPS and inertial systems. Robotica, Vol. 26, No. 5, 2008, pp. 627-633. 

[19] Yang, J., E. Hou, and M. Zhou. Front sensor and GPS-based lateral control of automated 
vehicles. IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 1, 2012, pp. 146-
154. 

[20] Bertozzi, M., A. Broggi, A. Lasagni, and M. Rose. Infrared stereo vision-based pedestrian 
detection. In IEEE Proceedings. Intelligent Vehicles Symposium, 2005., IEEE, 2005. pp. 24-29. 

[21] Broggi, A., A. Fascioli, M. Carletti, T. Graf, and M. Meinecke. A multi-resolution approach for 
infrared vision-based pedestrian detection. In IEEE Intelligent Vehicles Symposium, 2004, IEEE, 
2004. pp. 7-12. 

[22] Crandall, W., B. L. Bentzen, L. Myers, and J. Brabyn. New orientation and accessibility option 
for persons with visual impairment: transportation applications for remote infrared audible 
signage. Clinical and experimental OPTOMETRY, Vol. 84, No. 3, 2001, pp. 120-131. 

[23] Der, S., A. Chan, N. Nasrabadi, and H. Kwon. Automated vehicle detection in forward-looking 
infrared imagery. Applied optics, Vol. 43, No. 2, 2004, pp. 333-348. 

[24] Everett Jr, H. R. Programmable near-infrared ranging system. In, Google Patents, 1989. 

[25] Harper, J. G., L. G. Bailey, R. B. McJohnson, G. Rajagopal, and D. R. Walker. Vehicle to fixed 
station infrared communications link. In, Google Patents, 1987. 



 
www.roadsafety.unc.edu 38 

 

[26] Bentzen, B. L., W. F. Crandall, and L. Myers. Wayfinding system for transportation services: 
Remote infrared audible signage for transit stations, surface transit, and intersections. 
Transportation Research Record, Vol. 1671, No. 1, 1999, pp. 19-26. 

[27] Chen, T., B. Dai, D. Liu, and Z. Liu. Lidar-based long range road intersection detection. In 2011 
Sixth International Conference on Image and Graphics, IEEE, 2011. pp. 754-759. 

[28] Droz, P.-Y., G. Pennecot, A. Levandowski, D. E. Ulrich, Z. Morriss, L. Wachter, D. I. Iordache, W. 
McCann, D. Gruver, and B. Fidric. Long range steerable LIDAR system. In, Google Patents, 2018. 

[29] Hecht, J. Lidar for self-driving cars. Optics and Photonics News, Vol. 29, No. 1, 2018, pp. 26-
33. 

[30] Ilas, C. Electronic sensing technologies for autonomous ground vehicles: A review. In 2013 
8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), IEEE, 2013. pp. 
1-6. 

[31] Kodagoda, K. R. S., W. S. Wijesoma, and A. P. Balasuriya. Road curb and intersection detection 
using a 2D LMS. In, IEEE. 

[32] Alam, K. M., M. Saini, and A. El Saddik. Tnote: A social network of vehicles under internet of 
things. In International Conference on Internet of Vehicles, Springer, 2014. pp. 227-236. 

[33] Luo, Q., and J. Liu. Wireless telematics systems in emerging intelligent and connected 
vehicles: Threats and solutions. IEEE Wireless Communications, Vol. 25, No. 6, 2018, pp. 113-119. 

[34] Sharma, P., H. Liu, H. Wang, and S. Zhang. Securing wireless communications of connected 
vehicles with artificial intelligence. In 2017 IEEE international symposium on technologies for 
homeland security (HST), IEEE, 2017. pp. 1-7. 

[35] Su, K.-C., H.-M. Wu, W.-L. Chang, and Y.-H. Chou. Vehicle-to-vehicle communication system 
through wi-fi network using android smartphone. In 2012 International conference on connected 
vehicles and expo (ICCVE), IEEE, 2012. pp. 191-196. 

[36] Arage, A. H. Radar signal processing for automated vehicles. In, Google Patents, 2016. 

[37] Combs, T. S., L. S. Sandt, M. P. Clamann, and N. C. McDonald. Automated vehicles and 
pedestrian safety: exploring the promise and limits of pedestrian detection. American journal of 
preventive medicine, Vol. 56, No. 1, 2019, pp. 1-7. 

[38] Fleming, B. Recent Advancement in Automotive Radar Systems [Automotive Electronics]. 
IEEE Vehicular Technology Magazine, Vol. 7, No. 1, 2012, pp. 4-9. 

[39] Kellner, D., M. Barjenbruch, K. Dietmayer, J. Klappstein, and J. Dickmann. Instantaneous 
lateral velocity estimation of a vehicle using doppler radar. In Proceedings of the 16th 
International Conference on Information Fusion, IEEE, 2013. pp. 877-884. 

[40] Bartsch, A., F. Fitzek, and R. Rasshofer. Pedestrian recognition using automotive radar 
sensors. Advances in Radio Science, Vol. 10, No. B. 2, 2012, pp. 45-55. 

[41] Manston, K. The challenges of using radar for pedestrian detection. In Proc. 16th JCT Traffic 
Signal Symp., 2011. pp. 1-8. 



 
www.roadsafety.unc.edu 39 

 

[42] Schiffmann, J. K. Object Tracking System with Radar/Vision Fusion for Automated Vehicles. 
In, Google Patents, 2017. 

[43] Steinbaeck, J., C. Steger, G. Holweg, and N. Druml. Next generation radar sensors in 
automotive sensor fusion systems. In 2017 Sensor Data Fusion: Trends, Solutions, Applications 
(SDF), IEEE, 2017. pp. 1-6. 

[44] Arai, T., and E. Nakano. Development of measuring equipment for location and direction 
(MELODI) using ultrasonic waves. 1983. 

[45] Kremser, J. Ultrasound obstacle detecting process. In, Google Patents, 1997. 

[46] Thamma, R. Navigational aids to predict the position of automated guided vehicles with 
ultrasound and radio frequency sensing. In Proceedings of the IAJC-IJME International 
Conference, Citeseer, 2008. pp. 154-165. 

[47] Trainer, W. Ultrasonic tracking control for an automotive vehicle. In, Google Patents, 1998. 

[48] Farhadi, A., M. K. Tabrizi, I. Endres, and D. Forsyth. A latent model of discriminative aspect. In 
2009 IEEE 12th International Conference on Computer Vision, IEEE, 2009. pp. 948-955. 

[49] Wan, Y., Y. Huang, and B. Buckles. Camera calibration and vehicle tracking: Highway traffic 
video analytics. Transportation research part C: emerging technologies, Vol. 44, 2014, pp. 202-
213. 

[50] Holmquist, F. Optical navigation system for an automatic guided vehicle, and method. In, 
Google Patents, 1989. 

[51] Mahlisch, M., R. Hering, W. Ritter, and K. Dietmayer. Heterogeneous fusion of Video, LIDAR 
and ESP data for automotive ACC vehicle tracking. In 2006 IEEE International Conference on 
Multisensor Fusion and Integration for Intelligent Systems, IEEE, 2006. pp. 139-144. 

[52] Nashif, P. J., R. H. Benedict, and S. J. Tracy. Hybrid ultrasonic and radar-based backup aid. In, 
Google Patents, 1998. 

[53] Tsugawa, S., S. Kato, K. Tokuda, T. Matsui, and H. Fujii. A cooperative driving system with 
automated vehicles and inter-vehicle communications in Demo 2000.In ITSC 2001. 2001 IEEE 
Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585), IEEE, 2001. pp. 918-923. 

[54] Zhang, S., J. Chen, F. Lyu, N. Cheng, W. Shi, and X. Shen. Vehicular communication networks 
in the automated driving era. IEEE Communications Magazine, Vol. 56, No. 9, 2018, pp. 26-32. 

[55] Petit, J., and S. E. Shladover. Potential cyberattacks on automated vehicles. IEEE Transactions 
on Intelligent Transportation Systems, Vol. 16, No. 2, 2014, pp. 546-556. 

[56] Incorporated, W. WaveSense Home Page. https://wavesense.io/. Accessed 12/11/19, 2019  

[57] Board, N. T. S. Safety Recommendation Report: Addressing Systemic Problems Related to the 
Timely Repair of Traffic Safety Hardware in California. In, Washington, D.C., 2019. 

[58] Fathi, A., and J. Krumm. Detecting road intersections from GPS traces. In International 
conference on geographic information science, Springer, 2010. pp. 56-69. 



 
www.roadsafety.unc.edu 40 

 

[59] Hilnbrand, B. R., and P. Robert. Automated vehicle map localization based on observed 
geometries of roadways. In, Google Patents, 2019. 

[60] Knoop, V. L., P. J. Buist, C. C. Tiberius, and B. van Arem. Automated lane identification using 
precise point positioning an affordable and accurate GPS technique. In 2012 15th International 
IEEE Conference on Intelligent Transportation Systems, IEEE, 2012. pp. 939-944. 

[61] Redmill, K. A., T. Kitajima, and U. Ozguner. DGPS/INS integrated positioning for control of 
automated vehicle. In ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. 
No. 01TH8585), IEEE, 2001. pp. 172-178. 

[62] Kidono, K., T. Miyasaka, A. Watanabe, T. Naito, and J. Miura. Pedestrian recognition using 
high-definition LIDAR. In 2011 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2011. pp. 405-410. 

[63] Ogawa, T., H. Sakai, Y. Suzuki, K. Takagi, and K. Morikawa. Pedestrian detection and tracking 
using in-vehicle lidar for automotive application. In 2011 IEEE Intelligent Vehicles Symposium (IV), 
IEEE, 2011. pp. 734-739. 

[64] Cheng-Hsuan, C., T.-H. Chang, T.-C. Liu, and B.-C. Hsieh. Driving assistance method, on-board 
unit (OBU) applying the method and computer readable storage medium storing the method. In, 
Google Patents, 2014. 

[65] Turnbull, K. F., L. Cherrington, Z. Elgart, J. Zmud, T. Baker, J. Hudson, and J. Wagner. 
Automated and Connected Vehicle (AV/CV) Test Bed to Improve Transit, Bicycle, and Pedestrian 
Safety. In, Texas. Dept. of Transportation. Research and Technology Implementation Office, 2017. 

  



 
www.roadsafety.unc.edu 41 

 

 
 

 

 

730 Martin Luther King Jr. Blvd. 

Suite 300 

Chapel Hill, NC 27599-3430 
info@roadsafety.unc.edu 

 

www.roadsafety.unc.edu 

 

 

 

 


	Introduction
	Background
	Crash Investigation
	EDR background
	EDR Limitations for Automated Vehicles


	Methods
	Literature Review and Synthesis
	Literature Review and Synthesis Results
	Literature Review and Synthesis Summary

	Text Mining
	Keyword Frequency
	Topic Frequency
	Text Analysis Summary

	Law Enforcement Survey
	Survey Results
	Additional findings
	Survey Discussion


	General Discussion
	Related Work
	SAE Automated Driving System Data Logger (J3197)
	Data Storage System for Automated Driving (DSSAD)
	Vehicle Control History (VCH)
	Advanced Automatic Collision Notification (AACN) system

	EDR Data Archiving
	Future Research and Next Steps
	Conclusion
	References
	Appendix A: Law Enforcement Survey
	Appendix B: Literature Review References

