Strategies for managing the effects of kinetic energy in crashes

Presented by:

Dr. Offer Grembek

Berkeley SafeTREC

Presented at:

CSCRS Research to Practice June 22, 2022

CSCRS Research Project R24

Developing a Framework to Combine the Different Protective Features of a Safe System

Principal Investigator

Offer Grembek

University of California, Berkeley

View Bio

Goal of the transportation system

Provide mobility.

Provide efficient,

cost-effective,

equitable, ..., sustainable, and
safe mobility.

How do we measure if it's Safe?

We commonly approximate safety in terms of crashes, which are a count, and represent lack of safety (i.e., how unsafe the system is as an empirical outcome).

Not safe in <u>absolute</u> or <u>relative</u> terms

Sources: FARS 1975-2016 Final File, 2017 ARF; Vehicle Miles Traveled (VMT): FHWA.

2017 Fatalities

California: 3,602

USA: 37,133

Globally: Over 1,300,000

10 Leading Causes of Injury Deaths by Age Group Highlighting Unintentional Injury Deaths, United States – 2017											
Rank	Age Groups <1 1-4 5-9 10-14 15-24 25-34 35-44 45-54 55-64 65+								Total		
1	Unintentional Suffocation 1,106	Unintentional Drowning 424	Unintentional MV Traffic 327	Unintentional MV Traffic 428	Unintentional MV Traffic 6,697	Unintentional Poisoning 16,478	Unintentional Poisoning 15,032	Unintentional Poisoning 14,707	Unintentional Poisoning 10,581	Unintentional Fall 31,190	Unintentional Poisoning 64,795
2	Homicide Unspecified 139	Unintentional MV Traffic 362	Unintentional Drowning 125	Suicide Suffocation 280	Unintentional Poisoning 5,030	Unintentional MV Traffic 6,871	Unintentional MV Traffic 5,162	Unintentional MV Traffic 5,471	Unintentional MV Traffic 5,584	Unintentional MV Traffic 7,667	Unintentiona MV Traffic 38,659
3	Unintentional MV Traffic 90	Homicide Unspecified 129	Unintentional Fire/Burn 94	Suicide Firearm 185	Homicide Firearm 4,391	Homicide Firearm 4,594	Suicide Firearm 3,098	Suicide Firearm 3,937	Suicide Firearm 4,219	Suicide Firearm 5,996	Unintentiona Fall 36,338
4	Homicide Other Spec., Classifiable 76		Homicide Firearm 78	Homicide Firearm 126		Suicide Firearm 3,458		Suicide Suffocation 2,294			Suicide Firearm 23,854
5	Undetermined Suffocation 56		Unintentional Suffocation 36		Suicide Suffocation 2,321	Suicide Suffocation 3,063	Homicide Firearm 2,561	Suicide Poisoning 1,604			Homicide Firearm 14,542

Data Source: National Center for Health Statistics (NCHS), National Vital Statistics System.

Produced by: National Center for Injury Prevention and Control, CDC using WISQARS™.

First or Second Leading Cause of Death for ages > 1

Safety as a feature of the system

a system in which people cannot die despite human error.

Job, and Sakashita. 2016a

safe system

Policy innovation to move the needle

THE SAFE SYSTEM APPROACH VS. TRADITIONAL ROAD SAFETY PRACTICES

Traditional Safe System

Prevent crashes — Prevent deaths and serious injuries

Improve human behavior — Design for human mistakes/limitations

Control speeding — Reduce system kinetic energy

Individuals are responsible — Share responsibility

React based on crash history — Proactively identify and address risks

Whereas traditional road safety strives to modify human behavior and prevent all crashes, the Safe System approach also refocuses transportation system design and operation on anticipating human mistakes and lessening impact forces to reduce crash severity and save lives.

U.S. Department of Transportation

Federal Highway Administration

The Safe System Approach
Principles and Elements

Federal Highway Administration

Motivational DEATHISERIOUS INJURY IS UNACCEPTABLE REDUNDANCY IS CALCA HUMANS MAKE MISTAKES **Safe Road** Safe **Vehicles** Users Focal THE **SAFE SYSTEM APPROACH** HUMANS ARE VILLE SAFETY IS PROPORTINE **Post-Crash** Safe **Speeds** Care Safe Roads RESPONSIBILITY IS SHARED

The Safe System Approach Principles and Elements

6 Safe System Principles

sportation Collaborative Sciences Center for ROAD SAFETY

Can KE help us improve our safety efforts?

Kinetic energy (KE) is the energy associated with the movement of an object and is determined by a combination of velocity and mass.

$$E_k = \frac{1}{2}mv^2$$

$$E_k = kinetic\ energy\ of\ object$$

$$m = mass\ of\ object$$

$$v = speed\ of\ object$$

KE is the focal variable, but by itself, it does not have the ability to determine safety

How safe are these activities?

Fly on an airplane; High KE

By Danielkang7744 at English Wikipedia

Walk on wet crosswalk; Low KE

By Danielkang7744 at English Wikipedia

Very different levels of KE, but not necessarily indicative of safety

Amount of
Kinetic Energy
carried by users
during a trip

Capability of the system to control or contain Kinetic Energy, so that it is survivable (when things go wrong)

Amount of
Kinetic Energy
carried by users
during a trip

Capability of the system to control or contain Kinetic Energy, so that it is survivable (when things go wrong)

Amount of
Kinetic Energy
carried by users
during a trip

Capability of the system to control or contain Kinetic Energy, so that it is survivable (when things go wrong)

A pandemic natural experiment

Injury crash rate during COVID-19 show a decoupling of death + serious and minor injury

Death + serious
rate went up,
minor injury rate
went down

A pandemic natural experiment

No real change in the system's capability to control or contain KE.

Possibly an increase in the amount of KE carried by users during a trip.

Amount of
Kinetic Energy
carried by users

Capability of the system to control

<u>Takeaway</u>: when we want to use KE we need to benchmark it relative to the system's capability

However, in practice we also want a framework to understand how we can change the system attributes

Pedestrian Safety Considerations

We would want alert and compliant pedestrians, to make trips on safe street design with adequate separation from safe motorized traffic operated by alert and compliant users, all of which are governed by safe speeds, and supported by effective pedestrian protection, and the medical emergency system, when needed.

General	Purpose	
Public space design	Changes to the built environment that would make the public space safer.	
Public space operations	Guidelines that dictate how we move through space safely.	
Individual Behavior	Individual actions to maintain safe environment around each of us	
Early warning	Provide a warning about the level of risk.	
Personal Protection	elements that can protect you or others from a hazard given exposure	
Medical treatment	Reduce symptoms and reduce the probability of death given impact	

General	Purpose	Transportation
Public space design	Changes to the built environment that would make the public space safer.	street design
Public space operations	Guidelines that dictate how we move through space safely.	street operations
Individual Behavior	Individual actions to maintain safe environment around each of us	street-user behavior
Early warning	Provide a warning about the level of risk.	street-user warning
Personal Protection	elements that can protect you or others from a hazard given exposure	street-user protection
Medical treatment	Reduce symptoms and reduce the probability of death given impact	emergency medical services

Transportation	Purpose	Examples
street design	Changes to the built environment that would make the public space safer.	Shoulder lane
street operations	Guidelines that dictate how we move through space safely.	Speed limits
street-user behavior	Individual actions to maintain safe environment around each of us	BAC limits
street-user warning	Provide a warning about the level of risk.	Lane departure warning
street-user protection	elements that can protect you or others from a hazard given exposure	Airbags
emergency medical services	Reduce symptoms and reduce the probability of death given impact	EMS

Combining with the KE safety definition

Considerations

street design

street operations

street-user behavior

street-user warning

street-user protection

emergency medical services

Trip Kinetic Energy

System Capability

Considerations

street design

street operations

street-user behavior

street-user warning

street-user protection

emergency medical services

Trip Kinetic Energy

System Capability

+

+

-

•	. •			
ารเต	leratio	ns		

street design

street operations

street-user behavior

street-user warning

street-user protection

emergency medical services

Trip Kinetic Energy

System Capability

Shoulder lane (+)

Speed limits (-)

Roundabout (-)

Traffic signal (+)

-

+

+

_

+

E

S

Implications

- KE is a focal variable for studying system safety
- It is not practical to aggregate the additive capability of the system's elements to control or contain KE
- It is valuable to evaluate the cumulative KE of the the system
- There are potential benefits in monitoring KE along the system
- Using the proposed framework can support researchers and practitioners in better understanding the safety mechanism and identifying strategies that may have been overlooked.

Research presented is based on various efforts funded by:

Berkeley SafeTREC

RESEARCH TO PRACTICE BYTES

Safe vehicles: How effective are pedestrian crash prevention systems?

PRESENTER: Asad Khattak

UNIVERSITY OF TENNESSEE, KNOXVILLE

July 27, 2022 2:30-3:00 p.m. ET

