

Safe vehicles: How effective are pedestrian crash prevention systems in improving pedestrian safety?

Asad J. Khattak

Beaman Distinguished Professor

Coauthors: Iman Mahdinia & Antora M. Haque

Accident Analysis and Prevention 171 (2022) 106669

How effective are pedestrian crash prevention systems in improving pedestrian safety? Harnessing large-scale experimental data

Iman Mahdinia, Asad J. Khattak^{*}, Antora Mohsena Haque

Department of Civil & Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, United States

Introduction

While overall

HIGHWAY FATALITIES

between 2010 & 2019

INCREASED

PEDESTRIAN FATALITIES

- Increasing fatalities/ severe injuries of vulnerable road users
- 44% increase in pedestrian fatalities-2010 and 2019 (6,516 in 2020): USDOT Ped Safety Action Plan
- Safe mobility of pedestrians is critical in our transportation system
- **Technology can help** reduce vehicle-pedestrian crashes, fatalities, and injuries.

How emerging technologies can improve the safety of vulnerable road users?

Pedestrian Crash Prevention Systems

Also known as:

- "Pedestrian Automatic Emergency Braking System"
- "Pedestrian Collision Avoidance System"
- "Frontal Pedestrian Impact Mitigation Braking"

An emerging safety technology in vehicles with a **low level of automation** Automatic braking when facing pedestrians & driver has taken insufficient action to avoid an imminent crash

- Insurance Institute for highway safety (IIHS) dataset from 2018 to 2021
- PCP systems for several on-road vehicles evaluated in terms of safety
- 3,095 tests of 91 vehicles

Source: Internet https://gfycat.com/gifs/tag/highway+safety

Scenarios

Prependicular child: Scenario 1: (CPNC_50) Child runs into road; Parked vehicles obstruct view; Tests run at 20 km/h (12 mph) Scenario 2:

Child runs into road; Parked vehicles obstruct view; Tests run at 40 km/h (25 mph)

Prependicular adult: (CPNA_25) Scenario 3: Adult walks across road Tests run at 20 km/h (12 mph) Scenario 4: Adult walks across road

Tests run at 40 km/h (25 mph)

Parallel adult: (CPLA_25) Scenario 5:

Adult in right lane near edge of road, facing away from traffic; Tests run at 40 km/h (25 mph) **Scenario 6:**

Adult in right lane near edge of road, facing away from traffic; Tests run at 60 km/h (37 mph)

Figure Source: Insurance Institute for Highway Safety: Pedestrian autonomous emergency braking test protocol (version 1). Virginia, 2018.

Source: Internet <u>https://gfycat.com/gifs/tag/highway+safety</u> <u>https://imgur.com/gallery/JcIBBeo</u> 4

Outcomes

- PCP system performance in improving pedestrian safety
 - Correlates of PCP system performance
 - Hazardous pedestrian crossing scenarios

Crash Avoidance Results:

Collisions with pedestrians occurred in • 30% (=933/3095) cases, but in 70%, PCP systems avoided pedestrian crashes

Percent of Successful Collision Avoidance

- Test speed is a major factor
- Successful collision avoidance rate • increased over time

Percent of Successful Collision Avoidance

Vehicle model year | Test year

Speed Reduction Results:

Given a crash, PCP systems, on average, **mitigated impact speeds** by more than **50%**

Variable ($N = 91$ Vehicles and 3095 Tests)		Min	Max	Mean	SD
Speed at Impact with Pedestrians (km/h)	All Years and Test Speeds	0	60.78	7.15	13.34
Conditional Speed at Impact with Pedestrians	All Test Speeds	0.03	60.78	23.70	14.07
(Given that Collisions	20 km/h	0.50	20.71	14.53	5.53
Occurred, N = 933	40 km/h	0.03	40.89	23.41	11.49
Tests)	60 km/h	2.70	60.78	28.06	17.40
Conditional Speed	All Test	0	56.77	20.38	16.39
Reduction by PCP	Speeds				
System	20 km/h	0	19.54	5.33	5.37
(Given that Collisions	40 km/h	0	39.88	16.34	11.47
Occurred, N = 933	60 km/h	0	56.77	31.94	17.37

Speed at Impact (km/h)

Speed vs. fatality risk

If drivers do not brake* -> PCP systems can substantially mitigate risk of fatality for pedestrians

Vehicle performance & speeds

At higher speeds (60 km/h), Tesla Model 3 performs ٠ relatively **well** – collision avoidance 60%

2019-20 Mercedes-Benz C-Class

- However, at lower speeds (20 and 40 km/h), Tesla • performs relatively worse
- Ratings for midsized cars by IIHS ٠

ance & speeds		Vehicle Brand	Test Speed (km/h)	Success Rate of PCP system	Average speed at impact (km/h)
		Tesla Model3 (2019)	20	67% 60%	15.340
			40 60	60%	24.910
				63%	21 075
, Tesla Model 3 performs		Ford Eusion (2019)	20	0%	18 690
		1010103011(2015)	40	33%	36.846
oldance 60%			60	0%	34 430
20 and 40 km/h), Tesla			All tests	17%	29 100
		Audi A4 (2019)	20	100%	0
			40	100%	0
			60	0%	9.871
/ IIHS			All tests	83%	9.871
		Volvo S60 (2019)	20	100%	0
		· · ·	40	87%	24.221
			60	40%	27.201
			All tests	83%	26.009
edestrian crash prevention ratings for midsize cars		Lexus ES350 (2019)	20	90%	9.831
			40	100%	0
			60	0%	33.515
			All tests	80%	29.568
_		Honda Civic (2019)	20	100%	0
			40	80%	19.577
SUPERIOR	ADVANCED		60	20%	11.344
2019 Audi A4	2019-20 BMW 3 series		All tests	77%	14.872
standard	optional	Toyota Prius (2021)	20	100%	0
2019-20 BMW 3 series	2019-20 Honda Accord		40	100%	0
standard	standard		60	0%	19.601
2020 Subaru Outback	2019-20 Lexus ES 350		All tests	83%	19.601
standard	standard	Acura TLX (2021)	20	93%	18.516
20 Moreados Banz C. Class	2010 Marda G		40	100%	0
optional	standard		60	20%	11.433
019-20 Nissan Maxima al for 2019/standard for 2020	2019-20 Nissan Altima		All tests	83%	12.850
2019 Volvo S60 standard	2019-20 Tesla Model 3 standard		9	Т	BIGORA

Modeling Results

Speed at Impact (km/h) (N Variables	= 3095)	β	Z- statistic	P- value
Constant		21,416	8,730	0.000
Maximum Deceleration (m/s2)		-2.999	-20.570	0.000
Scenario	1-Perpendicular Child 20 km/h (base)			
	2-Perpendicular Child 40 km/h	19.270	10.950	0.000
	3-Perpendicular Adult 20 km/h	-3.760	-1.680	0.093
	4-Perpendicular Adult 40 km/h	9.543	5.050	0.000
	5-Parallel Adult 40 km/h	6.304	2.800	0.005
	6-Parallel Adult 60 km/h	23.345	13.140	0.000
Vehicle Model Year	2018	3.621	1.440	0.151
	2019	4.428	2.710	0.007
	2020	-1.109	-0.650	0.516
	2021 (base)			
Vehicle Manufacturer's	≤3,000 lbs. (base)			
Reported Weight (base	3,001 – 3,500 lbs.	1.310	0.890	0.376
model)	3,501 – 4,000 lbs.	2.050	1.350	0.176
	4,001 – 4,500 lbs.	4.489	2.440	0.015
	> 4,500 lbs.	4.370	2.220	0.026

Random-effects Heckman Sample Selection Regression with Panel Data.

- Increase in the maximum deceleration rate of PCP system (9 to 11 m/s²)
- Lower weight of vehicles

Decrease in the speeds at impact with pedestrians

Night-time vs. daytime (or well-lit roads)

- Ped crashes 27% lower for equipped veh vs. unequipped
- Injury crash rates 30% lower
- Night/unlit roads-no difference
- 75% fatal ped crashes at night
- Single/dual camera, camera + radar, radar only (infrared?)
- Low-beam/high beam

Source: IIHS-https://www.iihs.org/news/detail/pedestrian-crash-avoidance-systems-cut-crashes--but-not-in-the-dark

Conclusion

- **PCP Technology** reduces vehicle-pedestrian crashes, fatalities, and injuries ٠
- **Performance improving** substantially in recent years ۲
- **Did not detect**/stop in **30%** of the tests-in **70%** of tests **avoided pedestrian crashes** ullet
- For crashes, PCP systems mitigated impact speeds by about 50%
- PCP can/do mitigate the risk of fatality for pedestrians ٠
- **Higher market penetration** \rightarrow **reduction in** ped crashes, injuries/fatalities ullet
- Future research-Other modes; darkness •

12

Thank You! Questions? Asad J. Khattak

Email: akhattak@utk.edu

Т

THE UNIVERSITY OF TENNESSEE KNOXVILLE

RESEARCH TO PRACTICE BYTES Introducing micromodes.org: The first surveillance system for micromobility fatalities

PRESENTER: Kristin Podsiad

UNC HIGHWAY SAFETY RESEARCH CENTER

August 31, 2022 2:30-3:00 p.m. ET

LEARN MORE/REGISTER HERE: WWW.ROADSAFETY.UNC.EDU/PROFDEV/WEBINARS/