Safe vehicles: How effective are pedestrian crash prevention systems in improving pedestrian safety?

Asad J. Khattak
Beaman Distinguished Professor
Coauthors: Iman Mahdinia & Antora M. Haque

Accident Analysis and Prevention 177 (2022) 196669

Contents lists available at ScienceDirect
Accident Analysis and Prevention
journal homepage: www.elsevier.com/locate/accana

How effective are pedestrian crash prevention systems in improving pedestrian safety? Harnessing large-scale experimental data

Iman Mahdinia, Asad J. Khattak *, Antora Mohsen Haque
Department of Civil & Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, United States
Introduction

- Increasing **fatalities/severe injuries** of **vulnerable road users**
- 44% increase in pedestrian fatalities-2010 and 2019 (6,516 in 2020): USDOT Ped Safety Action Plan
- **Safe mobility of pedestrians** is critical in our transportation system
- Technology can help reduce vehicle-pedestrian crashes, fatalities, and injuries.

How emerging technologies can improve the safety of vulnerable road users?
Pedestrian Crash Prevention Systems

Also known as:
• “Pedestrian Automatic Emergency Braking System”
• “Pedestrian Collision Avoidance System”
• “Frontal Pedestrian Impact Mitigation Braking”

An emerging safety technology in vehicles with a low level of automation
Automatic braking when facing pedestrians & driver has taken insufficient action to avoid an imminent crash

• Insurance Institute for highway safety (IIHS) dataset from 2018 to 2021
• PCP systems for several on-road vehicles evaluated in terms of safety
• 3,095 tests of 91 vehicles

Source: Internet https://gfycat.com/gifs/tag/highway+safety
Scenarios

Figure Source: Insurance Institute for Highway Safety:
Pedestrian autonomous emergency

Prepender child:
Scenario 1: (CPNC_50)
Child runs into road;
Parked vehicles obstruct view;
Tests run at 20 km/h (12 mph)

Prepender adult:
Scenario 3: (CPNA_25)
Adult walks across road
Tests run at 20 km/h (12 mph)

Parallel adult: (CPLA_25)
Scenario 5:
Adult in right lane near edge of road, facing away from traffic;
Tests run at 40 km/h (25 mph)

Scenario 2:
Child runs into road;
Parked vehicles obstruct view;
Tests at 40 km/h (25 mph)

Scenario 4:
Adult walks across road
Tests run at 40 km/h (25 mph)

Scenario 6:
Adult in right lane near edge of road, facing away from traffic;
Tests run at 60 km/h (37 mph)

Source: Internet https://gfycat.com/gifs/tag/highway+safety
https://imgur.com/gallery/JcIBBeo
Study Framework

Assess PCP System Performance

IIHS data
3,025 tests of 91 vehicles from 2018 to 2021

Random-effect Heckman Sample Selection Model with Panel Data

Data preprocessing
- Collecting vehicle attributes from other sources
- Data Integration
- Data Cleaning
- Data Manipulation

Descriptive statistics analysis

Outcomes
- PCP system performance in improving pedestrian safety
 - Correlates of PCP system performance
 - Hazardous pedestrian crossing scenarios
Crash Avoidance Results:

- Collisions with pedestrians occurred in 30% (=933/3095) cases, but in 70%, PCP systems avoided pedestrian crashes.
- Test speed is a major factor.
- Successful collision avoidance rate increased over time.

Percent of Successful Collision Avoidance

Vehicle model year / Test year Percent of Successful Collision Avoidance

- 2018 ➔ 50%
- 2019 ➔ 61%
- 2020 ➔ 77%
- 2021 ➔ 81%
Given a crash, PCP systems, on average, **mitigated impact speeds** by more than **50%**
Speed vs. fatality risk

If drivers do not brake* → PCP systems can **substantially mitigate risk of fatality for pedestrians**

- 70% crash avoidance—for 30% in crashes...
- Impact speed of 60 km/h → 54% risk of fatality
- PCP reduces speed to 28.1 → 12.8% risk of fatality

*72% drivers did not recognize hazard in SV crashes-AAP Paper 160 (2021) 106304
Vehicle performance & speeds

- At higher speeds (60 km/h), Tesla Model 3 performs relatively well – collision avoidance 60%
- However, at lower speeds (20 and 40 km/h), Tesla performs relatively worse
- Ratings for midsize cars by IIHS

<table>
<thead>
<tr>
<th>Vehicle Brand</th>
<th>Test Speed (km/h)</th>
<th>Success Rate of PCP system</th>
<th>Average speed at impact (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla Model3 (2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>67%</td>
<td></td>
<td>15.340</td>
</tr>
<tr>
<td>40</td>
<td>60%</td>
<td></td>
<td>24.910</td>
</tr>
<tr>
<td>60</td>
<td>60%</td>
<td></td>
<td>31.910</td>
</tr>
<tr>
<td>All tests</td>
<td>63%</td>
<td></td>
<td>21.975</td>
</tr>
<tr>
<td>Ford Fusion (2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0%</td>
<td></td>
<td>18.690</td>
</tr>
<tr>
<td>40</td>
<td>33%</td>
<td></td>
<td>36.846</td>
</tr>
<tr>
<td>60</td>
<td>0%</td>
<td></td>
<td>43.440</td>
</tr>
<tr>
<td>All tests</td>
<td>17%</td>
<td></td>
<td>29.100</td>
</tr>
<tr>
<td>Audi A4 (2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All tests</td>
<td>83%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volvo S60 (2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>87%</td>
<td></td>
<td>24.221</td>
</tr>
<tr>
<td>60</td>
<td>40%</td>
<td></td>
<td>27.201</td>
</tr>
<tr>
<td>All tests</td>
<td>83%</td>
<td></td>
<td>26.009</td>
</tr>
<tr>
<td>Lexus ES350 (2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>90%</td>
<td></td>
<td>9.831</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td></td>
<td>33.515</td>
</tr>
<tr>
<td>60</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All tests</td>
<td>83%</td>
<td></td>
<td>29.568</td>
</tr>
<tr>
<td>Honda Civic (2019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>80%</td>
<td></td>
<td>19.577</td>
</tr>
<tr>
<td>60</td>
<td>20%</td>
<td></td>
<td>11.344</td>
</tr>
<tr>
<td>All tests</td>
<td>77%</td>
<td></td>
<td>14.872</td>
</tr>
<tr>
<td>Toyota Prius (2021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0%</td>
<td></td>
<td>19.601</td>
</tr>
<tr>
<td>All tests</td>
<td>83%</td>
<td></td>
<td>19.601</td>
</tr>
<tr>
<td>Acura TLX (2021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>93%</td>
<td></td>
<td>18.516</td>
</tr>
<tr>
<td>40</td>
<td>100%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>20%</td>
<td></td>
<td>11.433</td>
</tr>
<tr>
<td>All tests</td>
<td>83%</td>
<td></td>
<td>12.850</td>
</tr>
</tbody>
</table>

• At higher speeds (60 km/h), Tesla Model 3 performs relatively well – collision avoidance 60%
• However, at lower speeds (20 and 40 km/h), Tesla performs relatively worse
• Ratings for midsize cars by IIHS
Modeling Results

- Increase in the **maximum deceleration rate** of PCP system (9 to 11 m/s²)
- Lower weight of vehicles

Decrease in the speeds at impact with pedestrians
Night-time vs. daytime (or well-lit roads)

- Ped crashes 27% lower for equipped veh vs. unequipped
- Injury crash rates 30% lower
- Night/unlit roads-no difference
- 75% fatal ped crashes at night
- Single/dual camera, camera + radar, radar only (infrared?)
- Low-beam/high beam

Conclusion

• **PCP Technology** reduces vehicle-pedestrian crashes, fatalities, and injuries

• **Performance improving** substantially in recent years

• **Did not detect/stop** in 30% of the tests—**70%** of tests avoided pedestrian crashes

• For crashes, PCP systems **mitigated impact speeds by about 50%**

• PCP can/do mitigate the risk of fatality for pedestrians

• **Higher market penetration** → **reduction** in ped crashes, injuries/fatalities

• Future research—**Other modes; darkness**
Thank You!

Questions?
Asad J. Khattak

Email:
akhattak@utk.edu
Introducing micromodes.org: The first surveillance system for micromobility fatalities

PRESENTER: Kristin Podsiad
UNC HIGHWAY SAFETY RESEARCH CENTER

August 31, 2022
2:30-3:00 p.m. ET

LEARN MORE/REGISTER HERE: WWW.ROADSAFETY.UNC.EDU/PROFDEV/WEBINARS/