

Details on all projects can be found at: www.roadsafety.unc.edu/research/projects

What Can We Learn from Fatal Automated Vehicle Crashes? A Closer Look at Crash Narratives in Media

Meredith King

March 22, 2023 | University of Tennessee Knoxville

Team – University of Tennessee Knoxville

- Meredith King
 Graduate Research Assistant
- Asad Khattak, Ph.D.
 Beaman Distinguished Professor
- Antora Mohsena Haque, Ph.D. Graduate Research Assistant
- Numan Ahmad, Ph.D.
 Graduate Research Assistant
- Yangsong Gu Graduate Research Assistant

Background

- Vehicles with increasing levels of automation are entering our roadways
- Many manufacturers such as ٠ Tesla, GM, Ford, Honda, and Toyota have introduced cars with at least level 2 automation
- Production of level 3 ٠ vehicles predicted within next 5 years

Example

Features

blind spot

lane departure

warning

warning

SAE **J3016**[™] LEVELS OF DRIVING AUTOMATION[™]

Learn more here: sae.org/standards/content/i3016 202104

	Copyright © 2021 SAE Intern SAE LEVEL O™	ational. The summary table ma SAE LEVEL 1 TM	ay be freely copied and distrib	uted AS-IS provided that SAE SAE LEVEL 3 [™]	International is acknowledged SAE LEVEL 4 [™]	as the source of the content.	
What does the	You <u>are</u> driving whenever these driver support features are engaged – even if your feet are off the pedals and you are not steering			You <u>are not</u> driving when these automated driving features are engaged – even if you are seated in "the driver's seat"			
driver's seat have to do?	You must constantly supervise these support features; you must steer, brake or accelerate as needed to maintain safety			When the feature requests, you must drive	These automated driving features will not require you to take over driving		
	Copyright © 2021 SAE International. These are driver support features These are automated driving features						
What do these features do?	These features are limited to providing warnings and momentary assistance	These features provide steering OR brake/ acceleration support to the driver	These features provide steering AND brake/ acceleration support to the driver	These features can drive the vehicle under limited conditions and will not operate unless all required conditions are met		This feature can drive the vehicle under all conditions	
	automatic emergency braking	 lane centering OR 	 lane centering AND 	• traffic jam chauffeur	local driverless taxi	• same as level 4, but feature	

adaptive cruise

control at the

same time

adaptive cruise

control

pedals,

wheel may or

may not be

installed

can drive

in all

everywhere

conditions

Conceptual Framework

Why Study Media?

Market Penetration

- Reporting of high-profile AV crashes can negatively impact the reputation of AVs
- Language used by journalists impacts public sentiment

Hype Cycle for Connected Vehicles and Smart Mobility, 2020

Source: Gartner ID: 450205

Long-Range Planning and Operations

- Road networks will need to be prepared for the expected emergence of AVs
- Intelligent Transportation System (ITS) Technologies may be deployed
 - 5G towers, road-side units, real-time adaptive traffic signals, V2X communications

Crash Culpability

- It is not always clear who should bear the legal responsibility in the event of an AV crash
- Death of Elaine Herzberg First recorded case of pedestrian fatality involving self-driving vehicle (Uber)
 - Vehicle was operating autonomously
 - Vehicle driver was charged with negligent homicide; Uber not held criminally responsible
 - Camera footage from vehicle reveals that the pedestrian detection system failed when the pedestrian was clearly visible
- Media narratives can shape whether manufacturers or drivers are blamed in AV crashes

<u>In Memoriam</u> Elaine Herzberg (August 2, 1968 – March 18, 2018)

Literature Review - Automated Vehicle Crash Studies

- AV fatal crash data is still limited in early stages of deployment
- California DMV AV Testing Program

 Primary source of AV narrative data in literature
 (N = 9)

Veer	Author	Ctudu annroach		Study Quality
rear	Author	Method	Location and	Study Quality
		Wicthou	Sample size	
2021	Ashraf, et al.	Decision tree, Association rule data mining (CART model)	CA; N=198	High
2021	Liu et al.	Pre-crash scenario typology	CA; (AV, N=122) (Conventional : N=2084)	High
2021	Sinha et al.	Crash severity models (Bagging/DT)	CA; N=259	
2020	Boggs, Wali, Khattak	Text Mining (WordStat), Bayesian Model	CA; N=113	High
2020	Boggs, Arvin, Khattak	Fixed and Random Parameter Binary logistic regression	CA; N=159,840	High
2020	Alambeigi et al.	Probabilistic topic modeling	CA; N=114	High
2019	Wang et al.	Ordinal logistic regression modeling, Classification and regression tree (CART) modeling	CA; N=113 (CA DMV, N=107; News Reports, N=6)	High
2019	Xu et al.	Bootstrap- based binary logistic regression	CA; N=72	High
2017	Favaro, et al.	Descriptive statistics, Linear regression	CA; N=26	High

Study Area

- News articles from local stations related to fatal Tesla crashes
- This study: 202 fatal crashes
 - USA (155)
 - China (9)
 - France (2)
 - Germany (9)
 - Canada (5)
 - UK (3)
 - Norway (4)
 - Portugal (1)
 - Finland (1)
 - Belgium (1)
 - Taiwan (2)
 - Slovenia (1)
 - Austria (1)
 - Spain (1)
 - Holland (1)
 - Denmark (1)
 - Japan (2)
 - Switzerland (3)

CASE DISTRIBUTION ACROSS USA

Data Extraction

Results - Frequencies

Collaborative Sciences Center for ROAD SAFETY

Keywords in Articles Discussing Fatal Tesla Crashes Along with 2020 Population Data

Note: No cases were documented in Alaska or any other U.S. territories not shown on this map.

Results – Topic Extraction

ТОРІС	KEYWORDS	COHERENCE (NPMI)	FREQ	CASES	% CASES
VEHICLE BEHAVIOR	LANE; TRAVEL; NORTH; DRIVE; LOSE; CONTROL; SIDE; STRIKE; REAR; TURN; COLLIDE; LEAVE; SOUTHBOUND; FRONT; LOSE CONTROL; SOUTHBOUND LANE; TRAVEL LANE; TRAVEL NORTH; GUIDE RAIL; FINAL REST;	0.254	439	150	71.43%
CRASH INVESTIGATION AND CONTRIBUTING FACTORS	PATROL; HIGHWAY; EARLY; MORNING; SATURDAY; CRASH; KILL; CALIFORNIA; CROSS; SUNDAY; COUNTY; HIGHWAY PATROL; CALIFORNIA HIGHWAY PATROL; FLORIDA HIGHWAY PATROL; SUNDAY MORNING; EARLY SATURDAY; EARLY SUNDAY MORNING; ATTEMPT TO CROSS UNIVERSITY BOULEVARD; CAR EARLY THAT MORNING; FIERY CRASH; MAN DIE SATURDAY; ORANGE COUNTY; STATE PATROL; MAN DIE; KILL EARLY;	0.241	534	175	83.33%
CASUALTIES AND INJURIES	PRONOUNCE; DEAD; HOSPITAL; INJURY; SCENE; PASSENGER; SUFFER; DIE; PRONOUNCE DEAD; PRONOUNCE DEAD AT THE SCENE; CRASH REPORT; INJURE IN THE CRASH; REMAIN ON SCENE; DECLARE DEAD AT THE SCENE; SCENE OF THE ACCIDENT;	0.226	370	163	77.62%

Results – Single vs Multi-Vehicle Classification

$$x^2 = \sum \frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$$

 $x^2 = chi squared$ $O_i = observed value$ $E_i = expected value$

ACCIDENT INVESTIGATE MONDAY MODEL WOMAN INVESTIGATE MONDAY MUESTIGATION COUNTY WORK ACCIDENT HIT FIRE DRIVER DRIVER MORE DIE MUESTIGATION COUNTY WORK ACCIDENT HIT FIRE DRIVER DRIVER MORE DIE MAN VEHICLE MAN VEHICLE MUESTIGATION OFFICE MORNING HOSPITAL COLLISION AUTOPICT INVESTIGATION HOSPITAL HIGHWAY COLLISION SCENE ACCIDENT INJURY ACCIDENT LANE MAKE SUBJECT SAFETY DRIVE ROAD SUBJECT SAFETY DRIVE ROAD SUBJECT INJURE COLLOE DRIVE ROAD SUBJECT INJURE RO

	Name	Global Chi ²	Р	Max Chi ²	Р	Biserial	Predict
	COLLIDE	26.30	0.00	26.30	0.00	7.2214	multiple
	TREE	24.17	0.00	24.17	0.00	8.7388	single
	DRIVER	13.49	0.00	13.49	0.00	4.6031	multiple
	LANE	13.39	0.00	13.39	0.00	4.8759	multiple
	HONDA	12.43	0.00	12.43	0.00	6.4916	multiple
	REAR	10.50	0.00	10.50	0.00	5.0434	multiple
	FREEWAY	10.05	0.00	10.05	0.00	5.1910	multiple
	INJURY	9.84	0.00	9.84	0.00	4.0823	multiple
	MOTORCYCLE	9.80	0.00	9.80	0.00	5.7637	multiple
	ONCOMING	9.80	0.00	9.80	0.00	5.7637	multiple
	TRUCK	8.77	0.00	8.77	0.00	5.1054	multiple
	HEAD	8.58	0.00	8.58	0.00	4.1045	multiple
	CAR	8.13	0.00	8.13	0.00	3.6950	single
	САТСН	7.93	0.00	7.93	0.00	5.0072	single
	FLA	7.53	0.01	7.53	0.01	5.3847	single
	TRAFFIC	7.13	0.01	7.13	0.01	3.6058	multiple
	SHERIFF	7.08	0.01	7.08	0.01	4.9946	single
	TURN	6.83	0.01	6.83	0.01	4.2792	multiple
	EARLY	6.59	0.01	6.59	0.01	3.9285	single
	FIRE	6.25	0.01	6.25	0.01	3.7379	single
ECT	FIREFIGHTER	6.12	0.01	6.12	0.01	4.8551	single
	REST	6.10	0.01	6.10	0.01	4.7370	multiple
) LE	MOTORCYCLIST	6.10	0.01	6.10	0.01	4.7370	multiple
SE	MONDAY	6.00	0.01	6.00	0.01	3.9681	single
EL	ELECTRIC	5.79	0.02	5.79	0.02	4.4314	single
	COLLISION	5.66	0.02	5.66	0.02	3.2231	multiple
	SET	5.37	0.02	5.37	0.02	4.5470	multiple
	DAILY	5.20	0.02	5.20	0.02	4.7179	single
	RESULT	5.13	0.02	5.13	0.02	3.5265	multiple
	RFD	5 10	0.02	5 10	0.02	4 2406	multiple

Single

Findings – Media study

- Of pre-selected keywords, "fire" appears in 30% of cases
 Motivated us to examine further
- Three topics: vehicle behavior, crash investigation and contributing factors, and casualties and injuries
- "Pedestrian" and "night" exhibit frequent co-occurrence
- Single vs multiple vehicle classification reveals certain keywords are more associated with single vehicle crashes, such as "tree," whereas other keywords are associated with multiple-vehicle crashes, such as "driver"
- Limitations
 - Small sample size
 - Automated translations may not be truly representative of original language used
 - Asymmetric geospatial distribution predominantly U.S. cases

Further Study

- Tesla fatal death database assembled (n = 71)
- Fire reported in this dataset (26%) in a higher percentage of crashes than in conventional vehicle crashes (3.3%) (FARS dataset)
- 13% of vehicles in single vehicle crashes caught fire
- Sommer's D Probability Test
 - Autopilot engagement not shown to correlate with driver survivability

$$pA = Pr \left(Y = 1 | X = 1 \right)$$

$$pB = Pr \left(Y = 1 | X = 0 \right)$$

- Two pairs (Xi, Yi) and (Xj, Yj) are said to be concordant if ranks of both the elements agree
- Two pairs (Xi, Yi) and (Xj, Yj) are said to be discordant if the ranks of both elements do not agree

It Starts in the Battery...

- A Tesla battery pack is composed of 2,976 lithium-ion cells
 - Anode, cathode, liquid electrolyte
 - Cased in titanium or other strong material
- When one or more lithium-ion cells short-circuit, the battery heats up, and anodes and cathodes can become exposed to the highly flammable liquid electrolyte
- Stored energy in battery →
 5,000-degree Fahrenheit fires

Firefighting EVs

Crane lifting EV into water (discouraged by manufacturers)

Recommendations

- Evaluate and improve fire safety mechanisms in Tesla (and other electric) vehicles
 - Solid-state batteries
- Improve firefighter/EMS response to electric battery fires
 - Training
 - Update standards

Battery Extinguishing System Technology – Piercing nozzle penetrates battery from a safe distance

Collaborative Sciences Center for ROAD SAFETY

Closing

- What we have learned from the narratives:
 - "Fire" is used in 30% of articles
 - "Pedestrian" and "Night" exhibit frequent cooccurrence
- Heavy reporting of these crash details can negatively impact public perception of Tesla vehicle safety
- Next steps: Perform sentiment analysis by using text-mining tools
 and developing a domain-specific dictionary

References

• [1] Penmetsa, P., P. Sheinidashtegol, A. Musaev, E. K. Adanu, and M. Hudnall. Effects of the autonomous vehicle crashes on public perception of the technology. *IATSS Research*, Vol. 45, No. 4, 2021, pp. 485-492.

• [2] Boggs, A. M., B. Wali, and A. J. Khattak. Exploratory analysis of automated vehicle crashes in California: A text analytics & hierarchical Bayesian heterogeneity-based approach. *Accident Analysis & Prevention*, Vol. 135, 2020, p. 105354.

• [3] Alambeigi, H. a. M., Anthony D. and Tankasala, Srinivas R. Crash Themes in Automated Vehicles: A Topic Modeling Analysis of the California Department of Motor Vehicles Automated Vehicle Crash Database. *arXiv*, 2020.

• [4] Ashraf, M. T., K. Dey, S. Mishra, and M. T. Rahman. Extracting Rules from Autonomous-Vehicle-Involved Crashes by Applying Decision Tree and Association Rule Methods. *Transportation Research Record*, Vol. 2675, No. 11, 2021, pp. 522-533.

• [5] Boggs, A. M., R. Arvin, and A. J. Khattak. Exploring the who, what, when, where, and why of automated vehicle disengagements. *Accident Analysis & Prevention*, Vol. 136, 2020, p. 105406.

• [6] Favarò, F. M., N. Nader, S. O. Eurich, M. Tripp, and N. Varadaraju. Examining accident reports involving autonomous vehicles in California. *PLOS ONE*, Vol. 12, No. 9, 2017, p. e0184952.

• [7] Liu, Q., X. Wang, X. Wu, Y. Glaser, and L. He. Crash comparison of autonomous and conventional vehicles using pre-crash scenario typology. *Accident Analysis & Prevention*, Vol. 159, 2021, p. 106281.

• [8] Sinha, A., V. Vu, S. Chand, K. Wijayaratna, and V. Dixit. A Crash Injury Model Involving Autonomous Vehicle: Investigating of Crash and Disengagement Reports. In *Sustainability, No. 13*, 2021.

• [9] Wang, S., and Z. Li. Exploring the mechanism of crashes with automated vehicles using statistical modeling approaches. *PLOS ONE*, Vol. 14, No. 3, 2019, p. e0214550.

• [10] Xu, C., Z. Ding, C. Wang, and Z. Li. Statistical analysis of the patterns and characteristics of connected and autonomous vehicle involved crashes. *Journal of Safety Research*, Vol. 71, 2019, pp. 41-47.

• [11] Anania, E. C., S. Řice, N. W. Walters, M. Pierce, S. R. Winter, and M. N. Milner. The effects of positive and negative information on consumers' willingness to ride in a driverless vehicle. *Transport Policy*, Vol. 72, 2018, pp. 218-224.

• [12] Goddard, T., K. Ralph, C. G. Thigpen, and E. Iacobucci. Does news coverage of traffic crashes affect perceived blame and preferred solutions? Evidence from an experiment. *Transportation Research Interdisciplinary Perspectives*, Vol. 3, 2019, p. 100073.

• [13] LaJeunesse, S., L. Austin, S. Heiny, W. Kumfer, N. Pullen-Seufert, L. Morin, S. Nicolla, and T. Tackett. Factors and Frames That Shape Public Discourse Around Road User Safety. 2021.

• [14] Paul Chilton, T. C., Tm Kaser, Greg Maio. Communication bigger-than-self problems to extrinsically-oriented audiences. In, 2012.

• [15] Stanton, N. A., P. M. Salmon, G. H. Walker, and M. Stanton. Models and methods for collision analysis: A comparison study based on the Uber collision with a pedestrian. *Safety Science*, Vol. 120, 2019, pp. 117-128.

• [16] Clamann, M., and A. J. Khattak. Advancing Crash Investigation With Connected and Automated Vehicle Data. Collaborative Sciences Center for Road Safety. 2022.

• [17] Heilweil, R. Why Teslas keep catching on fire. 2023. Vox. <u>https://www.vox.com/the-highlight/2023/1/17/23470878/tesla-fires-evs-florida-hurricane-batteries-lithium-ion</u>

Details on all projects can be found at: www.roadsafety.unc.edu/research/projects

Thank you! Any questions?

RESEARCH TO PRACTICE BYTES Developing an online Vision Zero resource library

PRESENTERS: Jordan April Lacie Emmerich Alessandro Figueroa Deborah Shoola

UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL

April 26, 2023 2:30-3:00 p.m. ET

Collaborative Sciences Center for ROAD SAFETY

LEARN MORE/REGISTER HERE: WWW.ROADSAFETY.UNC.EDU/PROFDEV/WEBINARS/