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Introduction 
Vehicles with partial automation, including those with Advanced Driver Assist Systems (ADAS) that 
leverage embedded artificial intelligence (AI), are increasingly prevalent, but whether they improve overall 
safety has not been established. The ADAS-equipped vehicles currently deployed require a significant 
amount of driver supervision and input. Despite impressive improvements in the underlying technology, a 
stream of recent accidents indicates that these systems may be brittle and continue to suffer from 
vulnerabilities that are not well understood (NHTSA, 2022b). 

 
Recent research demonstrates that ADAS systems perform inconsistently, and that there can be 
unexpected significant variability in ADAS performance (AAA, 2022; Cummings & Bauchwitz, 2022; Gross, 
2022). These inconsistencies, as well as the overall increase in driving fatalities (NHTSA, 2022a) and 
pedestrian fatalities (Macek, 2022), indicate more research is needed to determine where possible 
sources of risk lie for such systems. In addition, several recent studies confirmed that a concerning 
number of drivers do not understand how their ADAS systems work (J.D. Power, 2022; Mueller, Cicchino, 
& Calvanelli, 2022). 

 
ADAS systems rely on vision-based lane tracking systems to maintain lateral control (Waykole, Shiwakoti, 
& Stasinopoulos, 2021), and may combine computer vision with other sensing modalities to maintain 
space from other vehicles (Kim, Han, & Senouci, 2018; Wei et al., 2020; Ziebinski, Cupek, Grzechca, & 
Chruszczyk, 2017). However, some vehicles rely exclusively on computer vision for these tasks, without 
any other sensor redundancy (Tesla, 2021). Sun glare has the potential to be a major issue for such 
systems, as direct sun can saturate pixel intensities in computer-detected images, making it more 
difficult to distinguish between the objects in a scene (Ziebinski et al., 2017). Previous research has 
indicated that the position of the sun could be a factor in whether an ADAS-equipped car correctly 
implemented driver-alerting logic (Bauchwitz & Cummings, 2022). Therefore, it is especially important to 
understand the effect of direct sun on automated vehicle control and driver alerting. 

 
Such sensor vulnerabilities raise the concern that autonomous and partially automated vehicles may be 
at a higher risk for striking pedestrians. For example, a fatal 2018 collision between an experimental Uber 
self-driving car and a pedestrian was a major setback for the industry (Laris, 2018). While pedestrian 
detection systems have made important strides in the past decade, recent studies have shown that 
environmental conditions like darkness can reduce the effectiveness of such systems (Cicchino, 2022). 
Moreover, pedestrian-centric urban environments have much more road feature diversity than restricted-
access highways, which could impair vehicle perception. A previous study suggested that problems with 
lane markings may negatively influence obstacle detection for an ADAS-equipped vehicle (Cummings & 
Bauchwitz, 2022). Thus, more work is needed to determine the effect of lane marking quality on 
pedestrian detection systems for ADAS-equipped vehicles. 

 
With these issues in mind, this study is a follow-on effort from previous Collaborative Sciences Center for 
Road Safety (CSCRS)-sponsored experiments (Bauchwitz & Cummings, 2022; Cummings & Bauchwitz, 
2022) to determine if and to what degree sun glare influences lane keeping and driver monitoring in 
highway settings for ADAS-equipped vehicles. In addition, this effort examines if and how lane marking 
quality degrades pedestrian detection. 

Background 
Lane tracking is a core feature of ADAS and heavily relies on computer vision-based technology. Typically, 
the most effective lane tracking systems integrate multiple sensor features and include flexible road 
models that can adapt to a diverse set of environments (Matsushita & Miura, 2011). Many lane tracking 
systems rely on detecting line segments (Liu, Li, & Huang, 2014; Yuan, Tang, Pan, & Zhang, 2014), though 
lane tracking systems based on curve detection are becoming more popular because they can handle 
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more varied road shapes (Wang et al., 2019). Vanishing points are often applied as a constraint because 
they help resolve ambiguity in visual perspectives (Kong, Audibert, & Ponce, 2009). Lane tracking systems 
can better perceive contrast at night as compared to humans (Huang & Liu, 2021); however, overall failure 
rates can approach 10% (Choi, Park, Choi, & Oh, 2012; Yuan et al., 2014).  
 
It is not clear whether and to what degree sun glare contributes to these lane tracking failure rates. Sun 
glare has been reported to degrade the quality of visual information and lead to incorrect feature 
extraction (Esfahani & Wang, 2021). Previous research showed a possible relationship between sun 
position and delays in ADAS-initiated driver takeovers following loss of lane markings (Bauchwitz & 
Cummings, 2022). Sun glare has been shown in another study to affect visual perception algorithms used 
in autonomous vehicles, leading to a false positive rate of up to 16% (Yahiaoui, Uricar, Das, & Yogamani, 
2020). In situ, unintended disengagements in Tesla Autopilot have been reported as a result of direct sun 
(Loveday, 2019). Importantly, while these issues are repeatedly raised by users in deployed products, the 
formal study of the relationship between sun glare and ADAS performance remains limited. 
 
In addition to a possible interaction between sun glare and lane tracking, our previous research looked at 
how well an ADAS detected obstacles in a construction zone setting, with inconsistent performance 
results across the same make and model of car (Cummings & Bauchwitz, 2022). Obstacle detection for 
cars that rely only on computer vision rely heavily on the ability of one or more cameras and the 
underlying software to recognize an object in their paths, and then to correctly act. Computer vision 
essentially compares a potential object in the field of view of the cameras to an underlying database of 
known objects to determine whether the image is an actual obstacle. Then the object is labelled to 
determine a possible follow-on action. 
 
In this previous research, the obstacle was an orange cone, and in many trials, the car successfully 
detected and labeled the object but did not take any avoidance actions. In many cases, the cone was not 
recognized as either a cone or an obstacle. While the consequence of hitting a small orange cone in a 
controlled test setting was minimal, this raised the question as to how this scenario might have differed if 
the obstacle resembled a person. Despite recent progress, pedestrian detection systems across different 
vehicles and settings fail to yield consistent performance.  
 
For example, pedestrian detection systems typically perform more poorly at night, when 75% of 
pedestrian fatalities occur (Cicchino, 2022; Rajaram, Ohn-Bar, & Trivedi, 2015). Additionally, research has 
shown that pedestrian detection systems that rely solely on computer vision without other forms of 
sensor fusion may only eliminate 30% of preventable pedestrian fatalities (Combs, Sandt, Clamann, & 
McDonald, 2019). Common failure modes include pedestrian occlusion by other objects or when the 
model is insufficiently trained (Rajaram et al., 2015). Furthermore, recent research suggests that lane 
detection algorithm performance suffers in complex scenes like those that contain pedestrians (Qiao 
Huang & Jinlong Liu, 2021). Clearly more work is needed to determine the interaction between lane 
detection and pedestrian detection, including whether degraded lane lines change pedestrian detection 
performance. 
 
Lastly, the seriousness of possible lane detection and obstacle detection failures in ADAS-equipped 
vehicles is directly dependent on whether the human driver is attentive. While drivers are required to be 
alert and engaged at all times while operating ADAS-equipped vehicles, driver distraction and inattention 
are increasing in the presence of such systems (Dunn, Dingus, & Soccolich, 2019). Despite problems with 
driver distraction, companies are increasingly advertising hands-free driving capabilities, which means 
driver monitoring systems need to be especially effective. Unfortunately, our previous study showed that 
the initiation of driver takeover alerts for ADAS-equipped vehicles was neither consistent within a single 
car nor across all three of the same makes and models (Bauchwitz & Cummings, 2022). However, this 
previous work did not look at alert consistency in the presence of sun glare and pedestrians. 
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The next section outlines the experimental methods for two different experiments designed to address 
these gaps. 

Method 
We identified two models of vehicles available through a car-sharing platform for which three or more 
individual vehicles were consistently available for rental with ADAS capabilities. We chose to focus our 
sample on Car Model A and Car Model B, both model years of 2021, due to the relatively high levels of 
availability in the sample region. Tables 1 and 2 provide the technical details for both models. Three cars 
for both models were selected for testing. The same driver, an experienced test driver, completed all 
tests. In all experiments, a second experimenter sat in the passenger seat to monitor the status of the 
recording devices and ensure that cruise control speed was set at the correct level. In track tests, a third 
experimenter controlled the movement of the pedestrian test target. Make and model information can be 
provided upon request. 
 

Table 1: Technical details of Car Model A 

Feature Description 

Lane Keeping Assist It detects lane markers on the road with a camera mounted on the front 
windshield. When the system detects the vehicle straying from its lane, it 
alerts the driver with a visual and audible warning. The vehicle and lane 
markings are visualized on a screen inside the vehicle. 

Forward Collision 
Warning  
(First warning) 

This warning message appears on a Liquid-Crystal Display (LCD) with a 
warning chime and the steering wheel vibrates, and the vehicle may slow 
down depending on proximity to the obstacle. 

Automatic Emergency 
Braking 
(Second warning) 

The warning message appears on the LCD with a warning chime. Some 
vehicle system intervention occurs by the engine management system to 
help decelerate the vehicle. 

 

 

Table 2: Technical details of Car Model B 

Feature Description 

Lane Keeping Assist It monitors the markers on the driving lane as well as surrounding areas 
for the presence of vehicles or other objects. The immediate roadway and 
car are displayed on an LCD. The vehicle and lane markings are visualized 
on a screen inside the vehicle. 

Forward Collision 
Warning 

It provides visual and audible warnings in situations when the vehicle 
detects that there is a high risk of a frontal collision.  

Automatic Emergency 
Braking 

It automatically applies braking to reduce the effect of a frontal collision. 
When applied, the LCD generates a visual warning, and the system sounds 
a chime. 

Obstacle-Aware 
Acceleration 

Accelerating is adjusted if the vehicle detects an object in its immediate 
driving path. When an obstacle is encountered the vehicle will decelerate, 
and when the obstacle moves or is evaded, the vehicle will accelerate 
back to its previous speed. 
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Highway Test 

The objective of the first test was to determine how sun glare affects driver alerting and unanticipated 
driver handoffs during semiautomated highway driving. A secondary objective was to characterize 
variability within a single individual vehicle as well as across vehicles with the same brand of ADAS 
system. Trials were evaluated for the prevalence of requests for driver steering, unintended driver 
handovers, phantom braking, and audio/visual alarms.  

 
Each trial consisted of driving the vehicle on a 4.5-mile stretch of east-west highway. The route used is 
shown in Figure 1 and encompasses a section of the Northern Wake I-540 Expressway between Exit 7 
(junction with Leesville Road) and Exit 11 (junction with Six Forks Road). Each of the six vehicles 
underwent 10 trials in each direction under a high sun angle condition (sun altitude > 40 degrees) and 10 
trials in each direction under a low sun angle condition (sun altitude ≥ 4 degrees and < 20 degrees).  
 summarizes the design matrix for this experiment. Given the east/west course, half the trials had the sun 

behind the cars, with the other half in front. There were a total of 240 trials, half with a high sun and half 
with low sun. Experiment timing was dictated by the reservation period for each vehicle, with all low sun 
angle trials for a vehicle occurring in two 90-minute blocks and all high sun angle trials occurring in a 
single 180-minute block. The data were collected over a 7-week period in July and August, 2021. 

 

 

Figure 1: Highway test route 

Model Number of vehicles Trials per vehicle Direction Sun altitude 
condition 

A 3 10 East Low 

 3 10 West Low 

 3 10 East High 

 3 10 West High 

B 3 10 East Low 

 3 10 West Low 

 3 10 East High 

 3 10 West High 
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At the beginning of each trial, the vehicle was driven onto the highway and immediately merged into the 
center lane (second from the left), with adaptive cruise control activated and set to 70 MPH, which is the 
speed limit for the road. The center lane provided the least disruption from especially slow- or fast-
moving traffic. Automatic steering was engaged as soon as the entrance ramp ended and continued until 
the beginning of the exit ramp at the opposite end of the route. The driver did not engage with any vehicle 
controls while automatic steering was engaged, except to respond to alerts or if a safety hazard was 
detected. The ADAS system was reset between each trial at the locations marked start/end in Figure 1. 

 
Both vehicle types presented various alerts to the driver, including requesting that the driver briefly 
interact with the steering wheel. When this occurred, the driver gently tilted the steering wheel with 
minimum force and amplitude and let go of the wheel as soon as the hands-on alert terminated. Intended 
steering amplitude was intended to be 3 degrees ±1 degree in either direction. During these interventions, 
the wheel was held using a standard 10:00/2:00 2-handed grip. If the vehicle initiated a full handover of 
control, the driver took control and transferred control back to the vehicle as soon as the ADAS and 
course permitted.  

Table 3: Highway test design matrix 

Pedestrian Avoidance Test 
The objective of this test was to investigate any possible interactions between lane and pedestrian 
detection, as well as to measure any effect on driver alerting. A secondary objective was to characterize 
variability within a single individual vehicle as well as across vehicles with the same brand of ADAS. Trials 
were evaluated for the prevalence and timing of detection and braking as well as the prevalence and 
timing of any audio/visual alarms.  

 
Each trial consisted of driving one of the six vehicles on a 1,500-foot section of track (Figure 2) at the 
North Carolina Center for Automotive Research (NCCAR), a closed test track facility. The roadway is 40 
feet wide, which was then separated into three 13-foot-wide lanes. All cars experienced regular lane line 
trials, which were standard 10-foot by 6-inch lines with 30-foot longitudinal spacing, as specified in the 
Manual on Uniform Traffic Control Devices. They also experienced a degraded lane line condition, where 
longitudinal marks were present but were shorter sideway C-shaped lines and irregularly spaced (Figure 
3) 600 feet from the pedestrian. All trials for this test were conducted in a high sun angle condition (sun 
altitude > 40 degrees).  
 

Model Number of vehicles Trials per vehicle Direction Sun altitude 
condition 

A 3 10 East Low 

 3 10 West Low 

 3 10 East High 

 3 10 West High 

B 3 10 East Low 

 3 10 West Low 

 3 10 East High 

 3 10 West High 
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Figure 2: Pedestrian test environment. Defined lanes are marked in white and the degraded lanes condition 
are marked in yellow. 

For each trial, the vehicle started in a defined lane and accelerated to a speed of 40 mph, with both 
adaptive cruise control and automatic steering activated at this point. Traffic cones were positioned on 
either edge of the roadway 350 feet prior to the pedestrian rig, and the pedestrian began crossing the 
road as soon as the vehicle passed these cones at a speed of 5 fps (Figure 2). This was designed to 
result in a “near miss” scenario, where the vehicle would come within approximately 2 seconds of 
colliding with the pedestrian, but the pedestrian would be just out of the vehicle’s path even if the vehicle 
did not brake. The ADAS was reset between each trial at the locations marked start.  

 

The pedestrian target consisted of a black SeasonsTM rubber composite inflatable pedestrian (Figure 2: 

Pedestrian test environment). The pedestrian was 72 inches tall and dressed in a plain long-sleeve 
shirt and blue jeans. It was continuously reinflated throughout testing to minimize changes in appearance 
due to air loss. The rig moving the pedestrian was supported by two 8-foot wooden posts placed on either 
side of the roadway and secured using 114 pounds of concrete. A 75-foot KeeperTM 3/8-inch bungee cord 
was suspended between the two posts, also secured to the ground on either side. The cord tension 
provided just enough sag so that the pedestrian would touch the ground while suspended from the cord 
without hovering or bending. A nylon rope connected to the top pedestrian’s head was pulled by an 
operator on the side of the track. The operator manually pulled the pedestrian during each trial, using a 
digital clock to pace the movement so that the pedestrian would travel at the intended speed.  
 
Each of the six vehicles completed 20 randomized and counterbalanced trials in the defined lane 
condition and 20 trials in the degraded lane condition.   
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Table 4 summarizes the design matrix for this experiment.  
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Table 4: Pedestrian test design matrix 

 

 

 

Figure 3: Degraded lane marking appearance 

  

Model Number of Vehicles Trials per vehicle Lane marking quality 

A 3 20 Defined 

 3 20 Degraded 

B 3 20 Defined 

 3 20 Degraded 
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Data Collection Instruments 

Several forms of data were conducted during each trial. First, in all experiments continuous video data 
was captured from cameras covering three areas of interest: (1) the driver’s face and hands, (2) the road, 
and (3) the console readout displaying ADAS information. These cameras were GoPro Hero 7 Black 
models. The road-facing camera was mounted in the center of the dashboard set back 3 inches from the 
front of the windshield. The driver-facing camera was mounted at a position specific to each model and 
standardized using dashboard landmarks. The position of the console-facing camera varied depending 
on where information was displayed in each vehicle model.  
 
For vehicles with ADAS information presented on the center console (Model B), this camera was mounted 
on the sun roof just behind the first row of seats using a suction mount. For vehicles with ADAS 
information presented behind the steering wheel (Model A), this camera was mounted on the steering 
column. This required removing the GoPro arm attachment from the standard cage and replacing it with 
flat adhesive strips. It was then placed along the center line of the steering column as far forward as 
possible, with the bottom of the camera’s sensor resting on the bottom lip of the console alcove. This 
placement allowed the camera to capture a full view of the console without blocking the driver’s view of 
the console.  
 

Figure 4: Pedestrian test environment layout 
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Cameras were set to prohibit auto-exposure adjustment so that light capture was as similar as possible 
across trials. The video capture was set to 25 fps with a 1,920 by 1,440 pixel image size. Zoom was set to 
the highest level of lens resolution available. Each camera was electronically connected to a SyncBac Pro 
radio frequency synchronizer device, which augments each collected video frame with a synchronized 
timecode. As a result, frames from each of the cameras could be related to each other by the time at 
which each frame was captured. 
 
In addition to the camera data, a second set of instruments captured data on external ambient light as 
well as motion properties of each vehicle, including rotation and acceleration on each principal axis 
(Figure 5). These instruments consisted of two components electronically linked and synchronized to a 
single data acquisition device. The first component consisted of an Adafruit LIS3MDL magnetic 
orientation sensor and an Adafruit LSM6DSOX 3-axis accelerometer, which was attached to the steering 
wheel shaft. The magnetic orientation sensor measured the degree of steering deflection applied when 
the driver touched the steering wheel, as well as the magnetic compass heading of the vehicle.  
 
The second component consisted of an Adafruit VEML7700 ambient light sensor mounted on the outside 
of the passenger-side window (Figure 5). The ambient light sensor collected data on raw luminosity as 
well as white light saturation. The light sensor measures ambient light and was calibrated to detect 
changes in high light intensity corresponding to direct sunlight. Each sensor communicated over a wired 
connection with an Adafruit Metro microcontroller (a variant of the Arduino Uno) placed within the vehicle 
and synchronized using the I2C communication protocol. The sensor array was synchronized with the 
cameras by using a sound cue that was presented when the sensors turned on and turned off, which was 
audible to each of the cameras.  

 

 

Figure 5: Sensor components. Left: ambient light sensors. Right: acceleration and rotation sensor 
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Results 
For all statistical tests, alpha = .05 unless otherwise noted. Appendix A contains pictures of all in-car 
alerts, as well as audio sounds. Appendix B includes all basic statistics for the highway test and Appendix 
C includes the descriptive statistics for the pedestrian test. 

Highway Test 

The goal of this test was to determine if sun angle (high and low) affected the types and rate of driver 
alerting during semiautomated hands-free driving. Six types of behaviors were observed at various points 
along the route, as listed in Table 5. The vast majority of the total 893 events were standard visual hands-
on-wheel (HOW) alerts for both model cars, to which the driver always responded. Figure 6 illustrates 
these standard HOW events, including which sun angle and whether the car was headed into or away 
from the sun. Only Model B presented a few escalated urgent HOW visual alerts and aural alerts in Table 
5 and only Model A suspended Autosteer during the trial. Also, only Model A experienced no events in a 
few trials. 
 
The disparity in overall alerting counts between Models A and B is explained by different alerting 
intervals. Figure 7 shows the intervals between each adjacent pair of hands-on-wheel alerts, categorized 
by each car model and the sun angle category. There were 613 events including 130 events for Model A 
and 483 events for Model B vehicles. Model A vehicles experienced more variation in HOW intervals, with 
a minimum interval of 16 seconds and a maximum interval of 130 seconds (Appendix B, Table 12).  

 

Table 5: Types of events that occurred during the highway test. Appendix A includes illustrations of alerts. 

Event 
Model A 

high 
Model A 

low 
Model B 

high 
Model B 

low Totals 

Standard hands-on-wheel icon 122 136 292 317 867 

Urgent hands-on-wheel icon 0 0 3 4 7 

Standard alert sound (double chime) 0 0 3 4 7 

Autosteer suspended 2 0 0 0 2 

Autosteer resumed 2 0 0 0 2 

Trials with no events 6 2 0 0 8 

 

Figure 6: Counts of events separated 
by car and sun angle 
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Model B intervals were tightly grouped around 34 seconds (SD = 2 seconds). Unlike Model B, Model A 
vehicles had much more spread in the intervals between alerts, with an average interval of 52 second s 
(SD = 24 seconds). Compared to Model A, Model B intervals were much shorter. This is why Model B 
vehicles produced more alerts than Model A, as seen in Figure 8 and Table 6. Interestingly, Model A 
intervals appeared to be in three distinct interval bands around 35 seconds, 75 seconds, and 110 
seconds. We could not determine any factors that might explain these bands. 
 

 

Figure 7: Hands-on-wheel intervals by individual car and sun angle 
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Figure 8: Percentage of Hands-on-Wheel alerts in the low and high sun angle groups where the sun was and 
was not visible 

One experimental confound was the location of the sun in the sky and whether the camera in the car was 
in the line of sight to the sun. While generally an east/west route, the roads in Figure 1 curved slightly and 
tree tops would occasionally obscure the sun, as would passing cars. Even in the high sun position, 
occasionally the sun was visible. Thus, in order to accurately determine the influence of the sun, we 
reviewed every video and made a subset of those trials where a hand-on-wheel icon was displayed with 
the sun actually visible in the line of sight to the camera.  

Table 6: Counts of Hands-on-Wheel events when sun was visible in the forward field 

Car Low sun High sun Total 

Model A 28 24 52 

Model B 121 44 165 

Total 149 68 217 

 
While roughly half of the 893 events were designed to be directly into the sun, only 24% (N=217) could be 
counted in any sun angle analysis. The overall counts are listed in Table 6. These results suggest that 
Model B exhibited different performance in different lighting conditions when the sun was in the forward 
field. On average, Model B alerted the driver 3 times more often than Model A overall, and almost 5 times 
more when the sun was low.  
 
Figure 8 illustrates the percentages of HOW events when the sun was and was not visible for the two 
different car brands, categorized by the experimental sun angle condition. A chi square test looking at 
whether the number of alerts for Model A under low and high sun angles is independent from the visible 
versus not visible sun variable, the chi-square statistic = 0.007, p = .93 so there were no dependencies. 
For Model B, the chi-square statistic = 40.7, p < .00001, meaning the Model B HOW alerts were influenced 
by both sun angle and whether the sun was visible. Thus, Model A cars were generally consistent in their 
alerting, and Model B was more variable. Given the increased alerting frequency of Model B, to better 
compare the variability in HOW alerting for Model A and B vehicles, Figure 9 shows the z scores for each 
of the vehicle’s HOW occurrences, which normalizes each car by its unique class mean and standard 
deviation. It also distinguishes between events where the sun was and was not visible. 
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Figure 9: Normalized z scores for individual vehicles by their model average 

 
Cars A1 and A2 were consistent across both sun settings. Model A vehicles as a group were slightly less 
variable than Model B cars with the sun visible, while Model B cars were less variable when the sun was 
not visible. It should be noted that overall variability across both model groups was lower in the cases 
where the sun was not visible, suggesting that sun glare could have an important effect on HOW alerting.  
 
To further determine any effect of sun glare, we examined every HOW event with the sun visible in the 
forward field to determine if there were any differences in the horizontal and vertical positions of the sun 
when an alert was generated. Using the lower left of the windshield as the 0,0 position and normalizing 
between cars, we plotted the pixel position of the sun for every HOW event per car with a visible sun. The 
results are shown in Figure 10, while Figure 11 shows the averages.  
 
 

Figure 10: Lateral and longitudinal position of the visible sun when a hands-on-wheel alert sounded 

-1.5 -1 -0.5 0 0.5 1 1.5

A1

A2

A3
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B2

B3

Not Visible Visible
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A multivariate analysis of variance (MANOVA) was conducted with the six different cars as the first 
independent variable, with low versus high sun angle as the second. The pixel horizontal and vertical 
locations of the sun were the dependent variable. Results showed that the vertical and horizontal 
positions of the sun were no different between all six cars (F(5,205) = 2.027, p = .076 and F(5,205) = 
2.151, p = .061, respectively). However, sun angle and the interaction between sun angle and car were 
both significant for the lateral and longitudinal positions (sun angle lateral: F(1,205) = 7.4, p = .007, sun 
angle longitudinal: F(1,205) = 2169.2, p < .001, interaction lateral: F(5,205) = 27.6, p < .001, interaction 
longitudinal: F(5,205) = 10.4, p < .001). 
 
The significance for the overall sun angle from low to high was expected, as this was core to the 
experimental design. Figure 10 illustrates that all cars experienced alerting in the lateral direction in a 
similar pattern; however, Car B1 suffered the widest difference at almost 500 pixels difference to the 
right, also confirmed in Figure 11. This is important because Car B1 had a slightly higher location for 
alerting under high sun angle conditions, but also lower than all other cars in the low sun angle position, 
and is the primary driver behind the significant statistics in the MANOVA. 
 
The MANOVA results indicate that regardless of the model, cars typically alerted the driver for a HOW 
event with the sun in the same general vertical place in the sky. This was also true on average for the 
lateral location of the alerts, indicating that in general, both car models did not significantly differ in where 
alerts were triggered, with the exception of one Model B car, which was very different from all other cars. 
 
 

Figure 11: Sun position by individual car and sun X/Y for HOW events with a visible sun 

When taken together, the results of the highway test indicate that there were no significant differences 
between models in where the sun was in the line of sight to the camera when a HOW alert sounded, save 
for one Model B outlier car. Model A produced HOW alerts consistently across all lighting conditions. 
However, Model B alerted its driver 3 times more often than Model A overall to a HOW event, and almost 
5 times more when the sun was low. Indeed, these results showed that Model B HOW alerts were 
influenced by both sun angle and whether the sun was visible.  
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The intervals for Model A alerts were far more variable than Model B. Model A intervals could range from 
16 seconds to more than 2 minutes, while Model B intervals were tightly clustered around a half minute. 
Another noteworthy result was what did not happen. Given the 613 HOW events for both cars, only Model 
B had an aural alert in addition to an escalated urgent visual alert. However, this only appeared in 7 
instances. Moreover, there were 8 trials where the driver of Model A was allowed to drive for 
approximately 4.5 minutes with no hands on the wheel.  

 

Pedestrian Avoidance Test 
 
The goal of this test was to investigate a possible interaction between lane and pedestrian detection, 
especially in the presence of degraded lane lines, as well as assessing driver alerting in these scenarios. 
For the 120 trials for Model A in both the defined and degraded line conditions, none resulted in 
pedestrian detection, alerting, or any braking maneuvers.  
 
Model B experienced 123 trials due to concerns about possible lost data and during these trials, nine 
behaviors were observed as the vehicle approached the pedestrian (Table 7). The car detected the 
pedestrian in 99% of cases but only braked for 85% of these events. Indeed, in 3 cases (2.4% of all trials), 
the cars automatically accelerated into the pedestrian, which will be discussed in more detail in a later 
section. Some, but not all, of these occurred in concert, i.e., a hands-on-wheel alert and aural alert could 
sound in quick succession, but there was no predictable pattern of the combination of visual and/or aural 
alerting in either lane line condition.  

 

Table 7: Event types for Model B only. Appendix A includes illustrations of alerts. 

Event name Count 

Standard hands-on-wheel icon 25 

Urgent hands-on-wheel icon 3 

Standard alert sound (double chime) 25 

Urgent alert sound (rapid alarm) 20 

Forward collision warning icon 8 

Takeover alert icon 1 

Pedestrian visualization icon 122 

Automatic braking 103 

Automatic acceleration 3 

 
Error! Reference source not found. shows the counts of events in Table 7 for defined and degraded lanes p
er car for all events except pedestrian visualizations, which will be analyzed further in a later section. 
Automatic braking was very consistent for cars B1 and B2, but Car B3 only braked in about 60% of all 
trials. It is especially noteworthy that Model B cars only provided standard HOW visual and aural alerts in 
the degraded lines conditions, with Car B2 providing 3 times the standard visual and aural alerts of Car 
B1. These alerts seemed to be commensurate with the automatic braking events, but only for Car B2. 
 
There were no standard alerts for Car B3, but it had the highest number of urgent aural alerts and the only 
visual HOW urgent alert. And other than a single alert for Car B2, Car B3 was the only car that sounded the 
forward collision warning, and these occurred in both lane conditions. Only Model B cars in the defined 
lines category experienced automated acceleration events in the presence of a pedestrian, and all three 
cars did this 1 time each. 
 
It is important to remember that in the majority of trials, no alerting was provided other than just the 
visual pedestrian icon (63%, Car B1 = 32, Car B2 = 19, Car B3 = 26), and aural alerting was only present in 
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37% of trials. In these cases, if a driver was not paying attention to the display or the road, the risk would 
have been extremely high for possible contact. 
 

Table 8 provides summary statistics for where each car visualized the pedestrian in each lane marking 
condition. Cars B1 and B2 were largely consistent in where they initiated alerting, detecting the pedestrian 
slightly earlier (larger longitudinal values and negative lateral values). Car B3 detected the pedestrian 
much later, first detecting the pedestrian when the vehicle was 100 feet further down the road and the 
pedestrian was 10-20 feet further along its path. Appendix C provides the diagonal distances to the 
pedestrian and angle off each vehicle’s nose. 

Table 8: Mean lateral and longitudinal distances to pedestrian visualizations in feet. Negative numbers mean 
the pedestrian was detected to the left of the vehicle centerline. 

 

Figure 13 shows the position of the inflated pedestrian, relative to the vehicle, when the pedestrian icon 
appeared on each car’s display. Longitudinal distance is the distance in feet from the car’s bumper to the 
pedestrian. Lateral distance is defined relative to the vehicle centerline (which was centered on the 
roadway), with -20’ at the far-left edge of the road and +20’ at the far-right edge of the road. Since the 
pedestrian detection crossed the road from left to right, an early detection of the pedestrian occurs with 
larger longitudinal distances and negative lateral distances (closest to the left edge, where the pedestrian 
began its movement). Small longitudinal distances and positive lateral distances indicate that the 
pedestrian was detected later. 

Cars Lane Quality Long. Mean (Std. Dev.) Lat. Mean (Std. Dev.) N 

B1 Degraded 223.6 (37.7) -10.3 (9.0) 21 
 

Defined 193 (55.3) -2.7 (6.1) 20 

B2 Degraded 204.3 (10.0) -10.5 (4.8) 20 
 

Defined 201.4 (72.2) -1.0 (5.7) 21 

B3 Degraded 133.5 (47.0) 11.2 (2.4) 18 
 

Defined 104.4 (59.9) 6.7 (5.0) 22 

Figure 12: Counts of Model B events by individual car and lane condition 
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Figure 13: Relative position of pedestrian target to vehicle when pedestrian icon appeared in Model B 
console 
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When comparing the estimated marginal means for the data in Table 8 through pairwise testing using a 
Bonferroni adjustment, for both the lateral and longitudinal cases, cars B1 and B2 are statistically no 
different, but Car B3 is (p < .001 for all comparisons with an alpha = .017 for a familywise error 
correction). The longitudinal comparison between defined and degraded lanes was not statistically 
significant at p = .026 but it was for the lateral data (p < .001). All this means that there was not likely a 
measurable difference in where the pedestrians were detected longitudinally by the different cars, but 
there was laterally with Car B3 performing very differently than Cars B1 and B2. It should also be noted 
that cars B1 and B2 both detected the pedestrian earlier in the degraded line conditions, by on average 7 
and 9 feet respectively. However, Car B3 detected the pedestrian in the degraded lane lanes, on average, 
4.5 feet after the defined line conditions. However, the most dangerous, i.e., late, detections happened 
primarily for Car B3 in the defined lanes condition. 

 

Automatic Acceleration Events  
 
As noted previously, there were 3 events where a car automatically accelerated in the presence of a 
pedestrian. All of the events occurred in the defined lane quality experimental condition, and each car 
experience 1 such event. These events are visualized in Figure 14. For Car B3, the pedestrian was 
visualized at 219 feet away, the car executed an automated braking maneuver 171 feet from the 
pedestrian, but then accelerated at 92 feet from the pedestrian. Then the driver was presented with an 
alarm and a forward collision warning. None of the 3 events were similar in the ordering or even the 
nature of the events in the timeline. The only similarity across all 3 events was that they occurred in the 
defined lanes conditions. This finding is unexpected since driving with lane lines represents the ideal 
operational domain that the car is expected to handle. The vehicle did not collide with the pedestrian 
target in any test. 

 

Figure 14: Distances between car and pedestrians when automated acceleration events happened 
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Discussion 
The Highway Test 
 
The goal of the highway test was to determine if low and high sun angles affected the types and rate of 
driver alerting during semiautomated hands-free driving, when the sun was in a direct line of sight to the 
camera. For one of the two models tested, there appeared to be no statistical relationship between if the 
sun was in the forward field at either a low or high sun angle. There was, however, a clear statistical 
relationship that suggested Model B Hands-on-Wheel alerts are influenced by both sun angle and whether 
the sun was visible.  
 
Model B cars alerted the driver to a HOW event more often in the low sun angle condition, between 4 and 
20 degrees elevation, than when the sun exceeded 40 degrees elevation. This suggests some kind of 
dynamic adaptation where the onboard autonomy is aware of the higher risk condition and increases 
alerts accordingly. Such adaptations are critical in helping drivers not become complacent when the 
environmental conditions, like sun glare, can make it harder for drivers to see and react to emerging 
threats. However, these results also demonstrated wide variation between cars and even within a single 
car. Model A vehicles had widely varying alert intervals and Model B cars were more variable in both the 
number of alerts per vehicle but also where the alerts occurred for one car. These results raise the issue 
that possibly one or more cameras were not correctly calibrated, and future work is needed to determine 
whether this could be an underlying safety issue. 
 
Lastly, these results raise important questions about how long is too long for drivers to have their hands 
off the steering wheel. Model B alerted drivers more often overall and consistently would not let drivers 
go more than about half a minute without their hands on the wheel. In contrast, Model A would 
sometimes keep the interval short (16 seconds) but on average would not alert drivers to the need to be 
hands on. Indeed, there were 8 trials where drivers of Model A cars were allowed to drive for 
approximately 4.5 minutes with no hands on the wheel.  
 
Driver distraction is a serious problem that directly contributes to the increasing deaths on U.S. roadways 
and such permissive policies only encourage bad driving behavior. Moreover, both models predominantly 
relied on visual warnings to alert drivers to the need to put their hands on the wheel, which may not be 
seen if a driver is indeed distracted. Such events should also include an aural warning to ensure drivers 
are aware that their attention may be critically absent. 
 
 

The Pedestrian Test 
 
The pedestrian tests revealed wide discrepancies across different kinds of cars with onboard autonomy, 
and also significant variation across individual vehicles of the same type. First, Model A never detected 
the pedestrian out of 120 trials and thus never executed any minimum risk behaviors. The conditions 
were ideal, with a bright sunny sky with a dark pedestrian crossing at an expected pace. The lack of any 
detection or risk mitigation suggests that if the driver was even slightly inattentive, the outcome could 
have been disastrous. 
 
The other group of cars from Model B performed much better, detecting the pedestrian in almost all 
scenarios. However, despite the presentation of 123 nearly identical scenarios, the three different cars in 
the Model B cluster did not exhibit consistent performance. Cars B1 and B2 were more consistent on 
where they first identified the crossing pedestrian as well as executing automatic braking. However, these 
two cars were not consistent with each other or with themselves in when or where they provided the 
driver with aural and visual alerting.  
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Car B3 was a statistical anomaly in terms of where it detected the pedestrian, providing much less 
advanced warning than the other two vehicles. It detected the pedestrian with 100 fewer feet of stopping 
distance, and after the pedestrian had already crossed the path of the vehicle, as opposed to the cars B1 
and B2, which usually detected the pedestrian before it crossed the centerline. Car B3 did provide a few 
additional alerts other than the pedestrian visualization, but given its significant reduction in automatic 
braking (only 50% of its overall trials) and general lack of alerting, it was distinctly more unsafe than the 
other two Model B cars. 
 
One of the stated goals of this research was to determine whether the degraded lane lines had a 
measurable effect on performance, and it did not appear to affect automatic braking for any of the cars. 
However, Cars B1 and B2 both consistently had the earliest pedestrian lateral detections in the degraded 
lanes condition, suggesting that the cars’ attempts to find the lane lines may have helped them detect the 
pedestrian slightly earlier than in the defined lanes condition. Neither Car B1 or Car B2 provided any HOW 
alerts in the defined lane condition, suggesting these cars initiated these warnings strictly due to the loss 
of lane lines. In comparison, Car B3 issued higher level alerts in both defined and degraded lane 
conditions, as well as forward warning collision alerts, so it is not clear if the presence of a pedestrian 
and the lack of lane lines could have influenced the generation of these alerts.  
 
Lastly it should be noted that while a low percentage, each of the cars inappropriately accelerated in the 
presence of a pedestrian. In two cases, the car accelerated after the car clearly detected the pedestrian, 
and in the third case, accelerated after an automatic braking maneuver but before the pedestrian icon 
was displayed. That such behavior was seen in such a limited test environment and in the best possible 
testing conditions (defined lane lines, sunny day, dedicated test track) should be cause for alarm. 
 
These results raise an important issue surrounding the predictability of an autonomous system. While 
Model A never detected the pedestrian and Model B almost always detected the pedestrian, it should not 
automatically be assumed that one system is better than the other. Indeed, Model B accelerated towards 
the pedestrian in three cases, and none of the three Model B cars were consistent with each other or even 
internally. This is especially problematic because drivers in Model A likely never trust their cars to detect 
and avoid pedestrians and thus, are likely on high alert in pedestrian-rich environments. Model B drivers 
may be lulled into a false sense of security in these settings, assuming that cars are actually more 
capable than they are. These drivers are then likely surprised and unprepared to take over in the 2.4% of 
scenarios where an unexpected and dangerous autonomous action occurs, setting up the driver and all 
other nearby stakeholders for potentially deadly outcomes. 

Conclusion 
Two sets of tests were conducted to examine if and how sun glare affected driver alerting on the highway 
and also to determine if there was any interaction between pedestrian detection and the quality of lane 
lines. Results demonstrated that at least one ADAS-equipped model can adapt to low sun conditions to 
mitigate glare and this same model could reliably detect a pedestrian. However, in all tests and for all 
cars, there was large variation in individual car performance, with sometimes very surprising and unsafe 
behavioral outcomes. 
 
This issue of surprising behaviors more broadly speaks to the critical problems with significant variation 
both between cars of different models but also within a single model or even a single vehicle. Both the 
highway and pedestrian tests illustrated that in current ADAS-equipped cars on U.S. roadways, there are a 
number of behaviors that can wildly vary, potentially catching drivers off guard (like surprise 
accelerations) or lull them into a false sense of security (being allowed to stay hands free for more than 2 
minutes on the highway.) There is a long history of operators becoming complacent and performing 
worse with imperfect or unreliable automation than with no or obviously bad automation in the aviation 
domain (Parasuraman & Manzey, 2010; Rovira, McGarry, & Parasuraman, 2007; Wickens, Clegg, Vieane, & 
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Sebok, 2015), so it is critical that the autonomous surface transportation community incorporate these 
lessons as quickly as possible, and improve driver monitoring and alerting. 
 
Lastly, both these tests highlight the urgent need for regulatory standards that set clear performance 
expectations so that ADAS-equipped cars do not present an unreasonable risk to the public. This is the 
area of current focus, as more research is needed to determine “good enough” performance standards 
for cars that embed probabilistic reasoning, with resulting performance that can widely vary for cars of 
the same make and model. 
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Appendix A: Car Event Pictures and 

Sounds 
 

Table 9: Car console pictures of Model A when events happened 

Event ID Event Name Picture 

E1 Grey standard hands-
on-wheel icon 

 
E4 Autosteer suspended 
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E5 Autosteer resumed 

 
 

Table 10: Car console pictures of Model B when events happened 

Event ID Event Name Picture 

E1 Grey standard hands-on-
wheel icon 

 
E2 Red urgent hands-on-

wheel icon 
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E7 Forward collision 
warning icon 

 
E8 Final takeover alert icon 

 
E9 Pedestrian visualization 

icon 
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Table 11: Car event sounds of model B 

Event ID Event Name Sound 

E3 Standard alert sound (double chime) 

 
E6 Urgent alert sound (rapid alarm) 
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Appendix B: Highway Descriptive 

Statistics  
 

Table 12: Descriptive statistics for hands-on-wheel alert intervals by car model in highway test 

Car Count Mean [sec] Min [sec] Max [sec] Median [sec] SD [sec] 

Model A 130 52.16 15.88 129.68 38.88 23.86 

Model B 483 34.42 29.84 63.44 33.88 2.05 

 

Table 13: Descriptive statistics for hands-on-wheel alert intervals by car model and sun angle in highway test 

Condition Count Mean [sec] Min [sec] Max [sec]  Median [sec] SD [sec] 

A high sun 60 53.78 16.12 112.68 39.14 23.79 

A low sun 70 50.77 15.88 129.68 38.40 24.01 

B high sun 232 34.59 32.96 63.44 33.92 2.53 

B low sun 251 34.27 29.84 44.20 33.88 1.48 

 

Table 14: Descriptive statistics for hands-on-wheel alert intervals by car model and sun angle in highway test 

Condition Count Mean [sec] Min [sec] Max [sec] Median [sec] SD [sec] 

A1 high sun 11 63.64 25.80 110.84 39.52 33.56 

A1 low sun 13 66.14 24.28 129.68 50.92 34.18 

A2 high sun 31 48.35 16.12 83.44 38.80 17.13 

A2 low sun 39 43.82 15.88 76.68 37.52 16.22 

A3 high sun 18 57.10 36.32 112.68 42.62 25.60 

A3 low sun 18 54.75 36.24 110.16 40.08 24.86 

B1 high sun 78 34.26 32.96 38.20 33.90 1.05 

B1 low sun 87 34.10 29.84 42.20 33.76 1.40 

B2 high sun 75 35.02 33.40 63.44 34.00 3.74 

B2 low sun 75 34.27 33.08 43.20 33.88 1.59 

B3 high sun 79 34.51 33.20 44.84 33.84 2.07 

B3 low sun 89 34.44 33.36 44.20 34.00 1.45 
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Table 15: Descriptive statistics for hands-on-wheel alert intervals by car and sun direction in low sun angle 
condition 

Condition Count Mean [sec] Min [sec] Max [sec] Median [sec] SD [sec] 

A1 Away 3 41.37 24.28 50.92 48.92 14.84 

A1 Into 10 73.56 35.56 129.68 77.36 35.25 

A2 Away 21 46.42 24.56 76.68 37.48 16.36 

A2 Into 18 40.79 15.88 76.00 37.80 15.98 

A3 Away 14 58.63 36.24 110.16 40.40 27.04 

A3 Into 4 41.17 37.84 47.40 39.72 4.26 

B1 Away 39 34.11 33.20 37.84 33.76 0.99 

B1 Into 48 34.09 29.84 42.20 33.78 1.67 

B2 Away 33 34.20 33.12 43.20 33.76 1.75 

B2 Into 42 34.33 33.08 40.80 33.90 1.48 

B3 Away 40 34.28 33.40 37.20 34.02 0.90 

B3 Into 49 34.57 33.36 44.20 34.00 1.77 

 

Table 16: Descriptive statistics for hands-on-wheel alert intervals by individual car and sun direction in high 

sun angle condition 

Condition Count Mean [sec] Min [sec] Max [sec] Median [sec] SD [sec] 

A1 Away 9 69.24 25.80 110.84 69.56 34.84 

A1 Into 2 38.44 38.12 38.76 38.44 0.45 

A2 Away 18 44.12 16.12 83.44 37.68 16.72 

A2 Into 13 54.20 36.28 76.00 50.12 16.53 

A3 Away 12 62.01 36.32 112.68 54.18 28.83 

A3 Into 6 47.29 36.76 76.44 42.64 15.00 

B1 Away 35 34.18 32.96 36.48 33.92 0.90 

B1 Into 43 34.32 33.08 38.20 33.88 1.17 

B2 Away 38 34.88 33.64 41.92 34.06 1.91 

B2 Into 37 35.17 33.40 63.44 33.88 5.00 

B3 Away 39 34.72 33.20 44.84 33.80 2.44 

B3 Into 40 34.31 33.28 43.64 33.98 1.63 

 

Table 17: Descriptive statistics for Sun X position by individual car when hands-on-wheel alert appeared with 
sun visible 

Condition Count Mean Min Max Median SD 

A1 10 1078.10 854.00 1265.00 1101.00 134.88 

A2 21 1004.81 560.00 1323.00 1132.00 268.59 

A3 21 979.38 634.00 1263.00 1062.00 230.70 

B1 71 1082.93 450.00 1779.00 1128.00 240.11 

B2 66 884.53 427.00 1278.00 955.00 257.46 

B3 28 897.04 561.00 1334.00 942.50 228.15 
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Table 18: Descriptive statistics for Sun Y position by individual car when hands-on-wheel alert appeared with 
sun visible 

Condition Count Mean Min Max Median SD 

A1 10 295.00 0.00 607.00 301.50 286.45 

A2 21 377.24 0.00 750.00 585.00 322.87 

A3 21 332.95 3.00 665.00 466.00 286.76 

B1 71 417.56 27.00 639.00 474.00 177.33 

B2 66 366.65 0.00 682.00 500.00 261.24 

B3 28 419.18 0.00 634.00 537.00 251.73 
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Appendix C: Pedestrian Descriptive 

Statistics  
 

Table 19: Counts of pedestrian avoidance test trials 

 Defined trials Degraded trials Total trials 

B1 20 21 41 

B2 21 20 41 

B3 22 19 41 

 
 

Table 20: Counts of alerts by individual car and lane quality of Model B 

 No 
braking 

Single 
alert 

2 alerts 3 alerts 5 alerts FCW Driver 
takeover 

Final 
takeover 

B1 Defined 1 19 1 0 0 0 0 0 

B1 Degraded 0 15 0 6 0 0 0 0 

B2 Defined 1 18 2 1 0 1 0 0 

B2 Degraded 0 1 0 19 0 0 0 0 

B3 Defined 11 14 4 4 0 4 0 0 

B3 Degraded 8 11 4 3 1 3 3 1 

 
Table 20 shows counts of alerts depending on the individual car and lane quality for Model B. Single alert 
includes the pedestrian icon visualization. Two alerts typically include a pedestrian icon and a rapid alert. 
Three alerts include a pedestrian icon, a double chime, and a visual hands-on-wheel alert. Five alerts 
include a pedestrian icon, a rapid alert, a final takeover alert, a driver takeover alert, and a forward 
collision warning. FCW = forward collision warning. 
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Appendix C.1: Distances to Events 
 

Table 21: Distance to pedestrian when the pedestrian icon appeared 

Condition Count Mean [ft] Min [ft] Max [ft] Median [ft] SD [ft] 

B1 Defined 20 193.0 51.4 282.4 211.0 55.3 

B1 Degraded 21 223.6 166.4 300.2 229.8 35.6 

B2 Defined 21 201.4 54.7 373.2 211.0 72.1 

B2 Degraded 20 204.2 182.4 219.9 211.0 10.0 

B3 Defined 23 104.4 13.0 219.9 116.2 58.9 

B3 Degraded 18 133.5 47.5 219.9 128.9 46.9 

 

Table 22: Distance to pedestrian when automatic braking occurred 

Condition Count Mean [ft] Min [ft] Max [ft] Median [ft] SD [ft] 

B1 Defined 20 181.7 65.4 300.2 202.9 58.2 

B1 Degraded 21 203.2 166.4 266.8 202.9 27.5 

B2 Defined 21 193.6 76.1 282.4 202.9 52.0 

B2 Degraded 20 207.4 176.7 240.7 202.9 18.3 

B3 Defined 12 140.7 85.3 176.7 158.4 37.5 

B3 Degraded 11 142.7 61.6 202.9 157.5 44.8 

 

Table 23: Distance to pedestrian when hands-on-wheel/double chime alert appeared 

Condition Count Mean [ft] Min [ft] Max [ft] Median [ft] SD [ft] 

B1 Defined 0 NA NA NA NA NA 

B1 Degraded 7 138.2 123.9 161.8 133.9 14.7 

B2 Defined 0 NA NA NA NA NA 

B2 Degraded 20 145.0 63.5 195.5 166.4 36.2 

B3 Defined 0 NA NA NA NA NA 

B3 Degraded 0 NA NA NA NA NA 

 

Table 24: Distance to pedestrian when rapid alert appeared 

Condition Count Mean [ft] Min [ft] Max [ft] Median [ft] SD [ft] 

B1 Defined 1 94.0 94.0 94.0 94.0 NA 

B1 Degraded 0 NA NA NA NA NA 

B2 Defined 3 84.4 58.6 106.0 88.5 24.0 

B2 Degraded 0 NA NA NA NA NA 

B3 Defined 8 68.7 16.0 80.6 75.3 21.5 

B3 Degraded 8 85.5 53.2 123.9 81.5 23.4 
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Table 25: Distance to pedestrian when forward collision warning alert appeared 

Condition Count Mean [ft] Min [ft] Max [ft] Median [ft] SD [ft] 

B1 Defined 0 NA NA NA NA NA 

B1 Degraded 0 NA NA NA NA NA 

B2 Defined 1 86.9 86.9 86.9 86.9 NA 

B2 Degraded 0 NA NA NA NA NA 

B3 Defined 4 77.9 72.4 81.8 78.6 4.1 

B3 Degraded 3 92.3 79.4 104.6 93.0 12.6 

 

Table 26: Distance to pedestrian when driver takeover alert appeared 

Condition Count Mean [ft] Min [ft] Max [ft] Median [ft] SD [ft] 

B1 Defined 0 NA NA NA NA NA 

B1 Degraded 0 NA NA NA NA NA 

B2 Defined 0 NA NA NA NA NA 

B2 Degraded 0 NA NA NA NA NA 

B3 Defined 0 NA NA NA NA NA 

B3 Degraded 3 83.9 65.4 107.5 78.8 17.6 

 

 
 

Pedestrian alert 

 

Figure 15: Diagonal distance when pedestrian alert appeared by individual cars of Car Model B 
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Figure 16: Degrees off the nose when pedestrian alert appeared by individual Model B cars 

 
 

Automatic braking 

 

Figure 17: Diagonal distance when automatic braking occurred 
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Figure 18: Degrees off the nose when automatic braking occurred 

 

Hands on wheel/Double Chime 

 

Figure 19: Diagonal distance of pedestrian when hands-on-wheel/double chime occurred 
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Figure 20: Degrees off the nose when hands-on-wheel/double chime occurred 

 

Only B1 and B2 had hands-on-wheel or double chime alert with 6 cases of B1 and 19 cases of B2. Also, 
those happened only in degraded lanes.  
 

Rapid alert 

 

Figure 21: Diagonal distance when rapid alert appeared 
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Figure 22: Angle off the nose when rapid alert appeared 

 
Only Cars B2 and B3 experienced rapid alert cases, and they always happened to the right of the nose.  
 

Forward collision warning 

 

Figure 23: Diagonal distance when the forward collision warning happened 
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Figure 24: Angle off the nose when the forward collision warning happened 

 
There were only Car B2 and B3 observations. The pedestrian was always to the right of the nose when a 
forward collision warning occurred. 
 

Driver/Final takeover 

 

 

Figure 25: Diagonal distance when driver and final takeover appeared 
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Figure 26: Angle off the nose when driver and final takeover appeared 

 
Only Car B3 had driver and final takeover alerts, and in the degraded lanes condition. At 40 mph (59 ft/s), 
the forward collision warning/rapid alert/final takeover alerts happened on average 67-92 feet away, 
giving the pedestrian 1-1.6 seconds to clear; these were very close calls. 
 


