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Overview: Research Objectives 
The project aims to understand detection of driver impairment using 
streaming biometric information

The key project objectives are:
• Collect unique high-frequency multi-dimensional large-scale 

data using sensors that monitor the driver, vehicle, and roadways.
• Harness the data 

– Quantify variations in driver biometrics and behavior, vehicle kinematics, 
& roadway/env. conditions 

– Utilize the concept of volatility as a leading indicator of crash risk
– Analyze correlations of driver biometrics and driving style with driver 

impairment and crash risk
• Develop algorithms to identify driving impairment by monitoring data 

streams emanating from the driver, vehicle, and roadway in real-time 
to provide feedback and warnings to drivers & surrounding vehicles
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Overview: Research Questions

The research questions related to distracted driving events are:
• Can driver distraction be identified using biometric and vehicle-

based sensors in different driving scenarios?
• How can driving events be classified as normal and 

distracted/impaired based on volatility measures in data streams?
• How is prolonged distracted driving associated with driving 

instability and safety-critical events?
• What are the mechanisms for driving errors and violations that 

lead to safety-critical events?
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R44 Project: Studies Conducted

• Study I:
Detection of Distracted Driving through the Analysis of Real-time Driver, 
Vehicle, and Roadway Volatilities.

• Study II:
How is the Duration of Distraction-related to safety-critical events? 
Harnessing naturalistic driving data to explore the role of driving 
instability.

• Study III:
• Exploring Pathways from Driving Errors and Violations to Crashes: The 

Role of Instability in Driving.

• Study IV:
• Predicting Safety-Critical Events using Driver Behaviors and 

Performance: Application of Machine Learning. 
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Study 1 (Project R44) 

Detection of Distracted Driving through the Analysis of 
Real-time Driver, Vehicle, and Roadway Volatilities
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Introduction 
Types of Driving Distraction
• Visual
• Cognitive
• Auditory
• Physical

• Detection Response Task (DRT) used to assess the attentional 
effect of secondary tasks on driving performance

• Driver response to visual or tactile stimuli presented to drivers at 
random intervals provide a measurable indicator of distraction
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Study Objective 

To detect events of distracted driving under normal and different 
distracted driving
• Driving simulator was used
• Scenarios were developed using the visual DRT (grid of arrows) 

with varying difficulty levels

                  

            Driver’s view inside the vehicle              Driving simulator hardware                            Grid of Arrows
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Study Framework 

• Driving Simulation done on Multimodal Virtual Reality Simulator
• Captured Driver Biometrics, Vehicle Kinematics, and Roadway Surroundings
• 4x4, 5x5, 6x6, 8x8 grids of arrows used as distraction scenarios

                                                    

                                                   

                                                                 Overall study framework
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Methodological Framework 
• Data Collected (N=617)-Dependent Variable

– Level of Distraction (Undistracted, Mild, Moderate, Significant, Severe 
Distraction)

• Estimated Panel Ordered Logit Model
– Ordered nature of the response variable 
– Repeated observations over time for the same subjects

• Applied Machine Learning-Random Forest
– Captures complex non-linear behavior
– Prediction of Distraction is important

• Applied Artificial Neural Network
– Identification of intricate patterns in multidimensional data
– Ability to learn from raw data with minimal preprocessing
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Descriptive Statistics

Means of volatility measures in driver biometrics, vehicle 
kinematics, and roadway surroundings increase with higher levels of 
distraction
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Study Results 

• Ordered Logit Model

• Training Data (N = 507)

• Volatility indicators found 
statistically significant 
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Study Results

• High importance: Coefficients of 
Variation in Eye Movements; 
Vehicle Distance from Centerline; & the 
following vehicle
• Random Forest: Highest Prediction
 Accuracy of 77.27%
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Future Research 

• Variations in driver biometrics (driver gaze, eye openness), 
vehicle kinematics, & surrounding  leading distraction indicators 

• Findings emphasize 
– Development of proactive safety measures
– Driver feedback systems – safety warnings, control assists, & automation

• Development of algorithms-promising results of Random Forest 
classifier in vehicles to detect distracted driving
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Study II (Project R44) 

How is the Duration of Distraction-related to 
Safety-Critical Events? 

Harnessing Naturalistic Driving Data to explore the role of 
Driving Instability
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Introduction 
• Distracted driving is a critical safety concern

• At 50 mph, sending/reading a text for 5 seconds is equivalent to driving the 
length of a football field (360 ft) with eyes closed

• Fundamental understanding of how distractions lead to crashes is needed to 
develop appropriate countermeasure strategies

Data Used

• The study analyzed a subsample of the SHRP-2 naturalistic driving data
– Provides real-world data on pre-crash driving behaviors
– Secondary tasks (along with their duration)
– Vehicle kinematics 
– Roadway and environment variables
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Objectives and Methodology
• To understand how distraction duration relates to SCEs
• To capture any non-linear effects of distraction duration
• Path Analysis applied to safety data
• Direct & Indirect Effects of distracted driving captured in the study
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Modeling results: Joint estimation

Note: * and ** indicate that a particular variable showed partial statistical significance and insignificance, respectively. 
ME-1 which refers to both censored and uncensored observations;
ME-2 indicates probability of being uncensored; ME-3 is similar to ME-1 but based on only uncensored observations.
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Path analysis results using predictive margins
Distraction duration versus Probability of Near-crash

Distraction duration versus Probability of Crash
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Path analysis results using predictive margins

TEs refer to total Effects
IDE refer to indirect effects
DEs refer to direct effects
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Key Findings 

• Instability in driving was higher in crash and near-crash events than in 
baselines. 

• The Coefficient of Variation of speed was higher in crashes and near-
crashes than in baselines. 

• Distraction duration was longer in crashes than near-crashes and baselines. 

• The probability of a crash increases exponentially when the distraction 
duration exceeds 8 seconds.
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Future Research 

• Hands-free technologies (voice-activated controls, and virtual assistants) can 
reduce distracted driving. 

• Fixed and dynamic message signs about distracted driving have the 
potential to reduce both distracted driving and driving instability. 

• Deploying multiple vehicle technologies (e.g., forward-collision warning 
system and adaptive cruise control) can be help reduced driving instability 
and safety critical events. 
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Study III (Project R44) 

Exploring Pathways from Driving Errors and Violations to 
Crashes: the Role of Instability in Driving

May 29, 2024



Introduction 
• Driver errors and violations substantially contribute to roadway 

crashes
• The study explores how driving errors, violations, and roadway 

environments  impact of instability in driving speed and safety-critical 
events. 

Data and Statistical Techniques Used
• The study analyzed a subsample of the SHRP-2 naturalistic driving 

study data (N=9,239)
• Analytical techniques: 

– Path analysis
– Tobit and Ordered Probit regressions to jointly model outcomes
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Study Objective 

• To identify pathways from driving errors and violations in diverse roadway 
environments to SCEs through instability in driving speed

• Jointly estimate models that account for potential correlation between the 
unobserved factors associated with 
– Epoch outcomes (baseline, near-crash, and crash) and 
– Coefficient of variation “COV” of speed (instability in driving speed) 
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Methodology
• Path Analysis

• Driving errors and violations  instability in driving speed (i.e., 
higher COV of speed)  SCEs.
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Path Analysis

Model 1 (Tobit model): 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:  𝑌𝑌1 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝜀𝜀1
Model 2 (Ordered probit) : 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜:  𝑌𝑌2 = 𝛽𝛽0 + 𝛽𝛽2𝑋𝑋2 + 𝛾𝛾𝑌𝑌1 + 𝜀𝜀2



Modeling results: Joint Estimation

All driving errors and violations increase driving instability which in turn increases crash risk
Note: * and ** indicate that a particular variable showed partial statistical significance and insignificance, respectively. 
ME-1 which refers to both censored and uncensored observations;
ME-2 indicates probability of being uncensored; ME-3 is similar to ME-1 but based on only uncensored observations.

May 29, 2024



Key Findings-Graphic
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Key Findings 

• All five driving error types, and violations were associated with 
higher instability in driving speed (COV of speed).

• Performance errors exhibit the strongest positive correlation with 
crash risk, followed by experience errors, decision errors, and 
recognition errors.

• Instability in driving speed is significantly higher in urban areas, 
business/industrial locations, and school zones compared to 
driving on interstates.

• All driving errors and violations not only contribute to SCEs 
directly but also indirectly through instability in driving speed.
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Future research 

• Forward-collision warning systems, adaptive cruise control, lane 
tracking systems, and lateral vehicle detection system can reduce 
one or more driving errors. 

• Dilemma zone mitigation systems have the potential to reduce a 
significant percentage of violations.  

• Awareness campaigns and mandatory training programs for 
drivers can reduce performance errors and experience errors.
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Study IV (Project R44) 

Predicting Safety-Critical Events using Driver Behaviors 
and Performance: Application of Machine Learning. 
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Introduction 

• Human factors give rise to more than 90% of road traffic crashes

• With recent advancements in machine learning (ML) and the availability of 
detailed Naturalistic Driving Study (NDS) data collected through the SHRP-2 
program, new avenues for predicting SCEs can be explored

• Focus on real-time prediction of SCEs using driving errors and violations, 
distraction duration, driving instability.

• Data Used
• The study analyzed a subsample of the SHRP-2 NDS data. 
• Sample Size = 9,237 observations
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Study Objective 

• To enhance predictive accuracy by leveraging the unique SHRP2-NDS data
– Data provides dynamic pre-crash information on driving behavior and performance 

• To deepen the understanding of the connection between pre-crash driving 
behavior, performance, and SCEs. 

• To identify the most accurate model or method for real-time prediction of 
SCEs.
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Methodology
Conventional Statistical Techniques
• Ordered Probit Regression
Machine Learning Methods
• K-Nearest Neighbors
• Naïve Bayes
• Gradient Boosting Decision Tree
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Modeling Results: Estimation of Ordered Probit Model
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Machine Learning Results
Performance Measure Ordered Probit NB KNN GBT 
Overall Accuracy (%) 85.75 89.75 88.70 91.23

Baseline
Recall (%) 98.32 96.95 97.13 98.27
Precision (%) 92.07 95.65 94.39 96.21
F1 Score (%) 95.09 96.29 95.74 97.23

Near-Crash
Recall (%) 38.93 68.70 61.83 71.50
Precision (%) 56.04 71.43 65.50 74.54
F1 Score (%) 45.95 70.04 63.61 72.99

Crash
Recall (%) 34.44 47.78 44.44 48.33
Precision (%) 41.06 52.12 57.97 58.39
F1 Score (%) 37.46 49.86 50.31 52.89
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Key Findings 
• 5.17%, 5.98%, and 1.16% higher chance of a crash due to a unit 

increase in the COV of speed, COV of deceleration, and COV of a 
negative jerk, respectively.

• Performance error leads to the highest increase (13.75%) in crash 
risk followed by decision error (10.09%) and recognition error 
(9.08%)

• Crash risk increases by 0.17% due to a unit increase in the 
duration of distraction while keeping other variables at their mean 
values.

• GBT classifier accurately predicts the event outcome (baseline, 
near-crash, and crash) in the test data with the highest prediction 
accuracy of 91.23%.
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Future Research 
The study findings advocate the need for:
• Training proactive ML-based algorithms which can warn drivers about the 

potential risk of SCEs in real-time based on driver behaviors and 
performance 

• Developing ML algorithms, e.g., GBT classifier can be used to collect and 
process information from sensors in vehicles 
– Can start monitoring driving errors, violations, instability in driving, and duration of 

distraction to predict crash risk in real-time
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Key Takeaways from the Project 
Can driver distraction be identified in different driving 
scenarios?

• Driver distraction can be readily identified from instantaneous 
variations in driver biometrics, vehicle kinematics, and roadway 
surroundings.

• The volatility measures in driver biometrics, vehicle kinematics, 
and roadway surroundings associate with higher levels of 
distraction.

• The coefficients of variation in driver eye movements, distance of 
the vehicle from the lane centerline and the following vehicle were 
determined as key predictors of driver distraction. 
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Key Takeaways from the Project 
How can driving events be classified as normal and 
distracted/impaired?

• Driving events can be classified as undistracted and distracted 
under various levels based on volatility measures
– These include instantaneous variations in driver biometrics, vehicle 

kinematics, and roadway surroundings

• Coefficients of Variation in driver eye movements, vehicle speed, 
vehicle distance from the lane centerline, front and the following 
vehicle can classify driving events. 
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Key Takeaways from the Project 
How is prolonged distracted driving associated with safety-
critical events?

• Longer duration of distracted driving is significantly 
associated with instability in driving (volatility) which in 
turn leads to safety-critical events. 

• Distraction duration is substantially longer in crashes than 
near-crashes and baselines.

• The probability of a crash increases exponentially when 
the distraction duration exceeds 8 seconds.
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Key Takeaways from the Project 
What are the mechanisms for driving errors and violations that 
lead to safety-critical events?

• Driving errors, classified into 5 types and violations are 
significantly associated with higher instability in driving speed 
(COV of speed).

• A unit increase in the COV of speed (measure of driving 
instability) increases the risk of crashes and near-crashes by 
17.94% and 29.50%, respectively. 

• All driving errors and violations not only contribute to SCEs 
directly but also indirectly through instability in driving speed.
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THANK YOU
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