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Chapter 1. Executive Summary 
Overview 
Distracted driving is usually associated with driving instability, which can lead to enhanced 
crash risk. Crashes resulting from distracted driving often result in the loss of valuable lives. 
Secondary activities such as cell phone use, eating, talking with passengers, adjusting 
vehicle infotainment controls, and looking at roadside elements or billboards are common 
examples of distracted driving. In 2021 alone, 3,522 road users were killed in traffic accidents 
due to distracted driving in the United States (Stewart, 2023). Early detection of driver 
distraction is critical to preventing traffic crashes due to distracted driving activities by 
providing feedback and warning messages to drivers and surrounding vehicles.  
 
This project develops a framework to detect driver impairment using extensive real-time 
driver biometric information along with data related to vehicle kinematics and the roadway 
environment. The project's primary objective is to advance safety measures by closely 
monitoring driver behavior, examining changes in driver biometric characteristics under 
different distracted driving scenarios, and promptly identifying signs of driver impairment. To 
achieve this objective, the research team performed driving experiments in a controlled 
virtual environment, emulating distracted driving with varying levels of complexity through a 
visual detection response task (i.e., grid of arrows). By employing a multidimensional 
approach to data acquisition, data from multiple sources—including driver gaze data, vehicle 
kinematics indicators, and external factors like interaction with surrounding traffic—is 
collected and analyzed to detect any deviations from regular driving events using the concept 
of driving volatility as an indicator of safety-critical events (SCEs). The project assesses the 
correlations among the variations in driver biometric measures, vehicle motion indicators, 
and roadway surroundings with driver distraction. Finally, the driving events are classified 
into normal and distracted using suitable frequentist and machine learning (ML) techniques. 
The project's ultimate goal is to integrate early indicators of driving impairment into advanced 
driver assistance systems (ADAS) to provide feedback and warnings to the driver and 
surrounding vehicles, potentially helping to prevent accidents and improve overall safety on 
the road. This development holds significant promise for improving traffic safety, given the 
substantial interest of major automotive and information technology stakeholders in these 
applications, particularly those involved in fleet vehicles. 

Research Questions 
The project attempts to address the following research questions: 
 

• Can driver distraction be identified from instantaneous variations in driver biometrics, 
vehicle kinematics, and roadway surroundings in different driving scenarios? 

• How can driving events be classified as normal or distracted/impaired based on 
volatility measures in data streams? 

• How is prolonged distracted driving associated with driving instability and SCEs? 
• Are the driving errors and violations significantly associated with instability in driving 

parameters (vehicle speed, acceleration, jerk) which can lead to SCEs? 
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• Ahmad N. (2021). Role of Human Factors, Driving Instability, and Roadway Environment in 
Safety Critical Events: Safe System Approach. Ph.D. dissertation, University of Tennessee. 
https://trace.tennessee.edu/utk_graddiss/6961.      

Multi-Faceted Approach 
This report presents the contributions made to the existing knowledge under this project in 
four distinct parts. Each part is presented as a separate chapter: 
 
Chapter 2: “Classification of driving behaviors through the analysis of real-time driver, vehicle 
and roadway volatilities” uses real-time large-scale multidimensional data collected through 
sensors that examine the variations in driver biometrics, vehicle kinematics, and roadway 
surroundings in different driving scenarios conducted on multimodal virtual reality (VR) 
simulator at the University of Tennessee, Knoxville. The study classifies driving behaviors as 
normal and distracted by employing a statistical model (i.e., panel ordered logistic regression) 
and ML techniques such as random forest and artificial neural networks, using real-time 
volatilities in driver biometric signals, vehicle kinematics, and roadway surroundings. The 
findings of the study can prove helpful in integrating early indicators of driving impairment 
into ADAS to provide feedback and warnings to the driver and surrounding vehicles, 
potentially helping to prevent accidents and improve overall safety on the road. This chapter 
of the report provides a detailed discussion of the study. 
 
Chapter 3: “How is the duration of distraction-related to safety-critical events? Harnessing 
naturalistic driving data to explore the role of driving instability” uses naturalistic driving data 
collected through the Strategic Highway Research Program 2 (SHRP2) to analyze the 
correlation of the duration of distracted driving with SCEs directly and indirectly through 
driving instability. The study employed a path analysis framework to model the driving 
instability and SCEs jointly. The study found that the chances of a crash and near-crash 
increased by 34% and 40%, respectively, with a unit increase in driving instability. Moreover, 
the chances of both SCEs significantly increased non-linearly with an increase in distraction 
duration beyond 3 seconds. The study highlights the correlation between driving instability 
resulting from distracted driving, with the occurrence of SCEs. The findings of this study are 
presented in detail in this chapter of the report. 
 
Chapter 4: “Exploring pathways from driving errors and violations to crashes: The role of 
instability in driving” utilizes naturalistic driving data and employs path analysis to determine 
the association of driving errors and violations with driving instability and their correlation with 
SCEs. The study found that driving errors, violations, and instability in driving speed 
increases the chances of crashes and near-crashes. Furthermore, driving errors and 
violations are associated directly with crash risk and indirectly through instability in driving 
speed. The paper suggests various countermeasures, such as multiple vehicle technologies 
like Forward Collision Warning Systems, roadway changes, policy interventions, and 
removing sources of external distraction such as billboards to help prevent driving errors and 
violations that lead to instability in driving speed and subsequently SCEs. This chapter of the 
report comprehensively describes various elements of the study.             
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Chapter 5: “Predicting safety-critical events using driver behaviors and performance: 
Application of machine learning,” utilizes driving performance measures and measures of 
driving volatility for a subsample of the SHRP2 Naturalistic Driving Study (NDS) to predict 
the outcomes of SCEs. The study estimates an Ordered Probit model and three ML 
techniques, namely naive Bayes, k-nearest neighbors (KNN), and gradient boosting tree 
(GBT), to predict the SCEs. The study results reveal that the ML methods outperform the 
ordered probit model in predictions, with the gradient boosting model giving the highest out-
of-sample prediction accuracy of 91.23%. The study's findings can assist in improving 
collision warning systems in vehicles equipped with ADAS to help prevent SCEs. The 
analysis is elaborated in detail in this chapter of the report. 

Research Outputs 

Publications and Presentations 
 
Usman, S., A. Khattak, & S. Chakraborty (2024). Detection of distracted driving through the analysis 

of real-time driver, vehicle and roadway volatilities. Submitted for review to the Transportation 
Research Board Annual Meeting, Washington, D.C., 2024. 

Tavassoli R., & Chakraborty, S. (2024). Driver impairment detection and safety enhancement through 
unified analysis of driver, vehicle and traffic volatilities. Submitted for review to the 
Transportation Research Board Annual Meeting, Washington, D.C., 2024. 

Ahmad, N., Arvin, R., & Khattak, A. J. (2023). How is the duration of distraction related to safety-
critical events? Harnessing naturalistic driving data to explore the role of driving instability. 
Journal of Safety Research, 85, 15–30. https://doi.org/10.1016/j.jsr.2023.01.003 

Ahmad, N., Arvin, R., & Khattak, A. J. (2022). Exploring pathways from driving errors and violations 
to crashes: The role of instability in driving. Accident Analysis and Prevention, 179, 106876. 
https://doi.org/10.1016/j.aap.2022.106876 

Ahmad, N., Khattak, A., & Bozdogan, H. (2023). Predicting safety-critical events using driver 
behaviors and performance: application of machine learning. Presented at the Transportation 
Research Board 102nd Annual Meeting, TRBAM-23-00144. 
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Chapter 2 
Classification of Driving Behaviors through the Analysis 
of Real-time Driver, Vehicle and Roadway Volatilities 
 

Abstract 
Common examples of distracted driving are secondary activities such as mobile phone use, 
eating, talking with passengers, adjusting vehicle infotainment controls, and looking at 
roadside elements or billboards. Distracted driving usually gives rise to driving instability 
which leads to increased crash risk and higher crash frequency. Early detection of driver 
distraction is critical to preventing traffic crashes due to distracted driving by providing 
feedback and warning messages to drivers and the surrounding vehicles. This study uses 
real-time multidimensional data collected through sensors that examine the variations in 
driver biometrics, vehicle kinematics, and roadway surroundings in different driving scenarios 
conducted on a multimodal VR simulator. The driving behaviors of the study participants were 
examined under various visual detection response tasks of increasing complexity. The study 
classifies driving behaviors as normal and distracted on a 5-level ordinal scale by employing 
a panel ordered logit model, random forest, and artificial neural network, using real-time 
volatilities in driver biometric signals, vehicle speed and acceleration, and roadway 
surroundings. The study results reveal that the driver gaze and the coefficients of variation 
(CVs) in vehicle speed, driver eye movements, and vehicular distances from the lane 
centerline and the following vehicle significantly impact distracted driving. The study's 
findings align with the principles of the safe systems approach by emphasizing the 
development of proactive safety measures in the form of feedback and warning the driver 
and surrounding vehicles of a potential distracted driving event, helping to foster safer user 
behavior and vehicles.  

1. Introduction 
Driver distraction can be categorized into four types: visual (taking eyes off the road), 

cognitive (mind preoccupied with thoughts), auditory (attention divided due to sounds such 
as ringing cell phone or music played in the vehicle), and physical (unable to steer with both 
hands due to activities like using a mobile phone, texting, or eating) according to the World 
Health Organization (WHO) (World Health Organization, 2010). Distracted driving due to 
various auxiliary tasks performed by drivers, such as talking with passengers, dialing, or 
texting on a mobile phone, setting vehicle infotainment system controls, looking at billboards, 
etc., negatively impacts drivers’ abilities to perform the fundamental driving tasks safely and 
often leads to SCEs (Ahmad et al., 2023). In 2021 alone, 3522 road users were killed in traffic 
accidents due to distracted driving in the United States (Stewart, 2023). Early detection of 
driver distraction is critical to prevent traffic crashes by providing timely feedback and warning 
messages to drivers and the surrounding vehicles. In recent years, the increased use of in-
vehicle and nomadic technologies has led to driver distraction and inattention (Hsieh et al., 
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2012). Although the existing standards of the International Organization for Standardization 
(ISO) to detect distracted driving address visual distraction, the effect of nonvisual, 
cognitively demanding activities like hands-free mobile phone conversations while driving is 
lightly researched. To assess the true distraction caused by such tasks, the ISO is 
standardizing a methodology known as the Detection Response Task (DRT). The DRT 
assesses the attentional effect of secondary tasks on driving performance and involves 
responding to visual or tactile stimuli presented at random intervals, providing a measurable 
indicator of distraction. It measures the number of times a visual or tactile stimulus is detected 
(hit rate) and the response time to this detection (Natasha et al., 2015).  

This study examines drivers’ behaviors under normal and different distracted driving 
scenarios developed using the visual DRT (grid of arrows) with varying difficulty levels to 
model and predict distracted driving using streams of driver biometric signals, vehicle 
kinematics, and roadway surroundings. The study quantifies the instantaneous variations in 
driver biometrics, vehicle position, speed, and acceleration by utilizing the concept of driving 
volatility as a surrogate measure of distracted driving. A key implication of the study is to 
incorporate early signs of distracted driving into ADAS. This integration aims to offer 
feedback and alerts to drivers and nearby vehicles, potentially reducing accidents and 
offering more forgiving automation technology. This advancement shows great potential for 
improving traffic safety, especially considering the notable interest of key stakeholders in the 
automotive and information technology industries, particularly those managing fleet vehicles. 

2. Literature Review 
Numerous studies have investigated the impact of distracted driving on various aspects of 

driving performance, including speed management, driver decision-making, lane-changing 
behavior, and more (Choudhary & Velaga, 2017; He et al., 2014; Oviedo-Trespalacios et al., 
2017). One commonly observed compensatory strategy during distracted driving is lower 
driving speed (Leung et al., 2012; Metz et al., 2015; Yannis et al., 2010). However, studies 
have shown that while drivers may slow down to compensate for the increased complexity, 
the sudden changes in vehicle speed and acceleration tend to destabilize the vehicle 
(Choudhary & Velaga, 2019; He et al., 2014). Some studies have also found that distracted 
drivers tend to increase their headway to offset the increased workload (Santos et al., 2005; 
Yannis et al., 2010), although studies show mixed results regarding this strategy's 
effectiveness (Lee et al., 2018). In terms of lateral control, variations in the steering angle 
and lane excursions have been identified as potential indicators of degraded driving 
performance during distracted driving (Cao & Liu, 2013; Chisholm et al., 2008; Choudhary & 
Velaga, 2019; Rumschlag et al., 2015; Young & Salmon, 2012). The variation in lateral 
acceleration has also been considered in assessing vehicle performance degradation due to 
distracted driving (Blanco et al., 2006; Liu & Ou, 2011). Additionally, the variation in lane 
positioning has been analyzed in numerous studies as a measure of the effects of distraction 
(Irwin et al., 2015; Santos et al., 2005; Thapa et al., 2015). When analyzing visual distraction, 
most studies have reported increased variation compared to baseline (Irwin et al., 2015; 
Thapa et al., 2015), but the results have been inconsistent for phone conversations and other 
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distractions involving cognitive attention (Cao & Liu, 2013; Garrison & Williams, 2013). Data 
collection methods for the detection of distracted driving include driving simulators (Ahangari 
et al., 2018; Dorr et al., 2014; Murphey et al., 2009), test vehicles (Feng et al., 2018; 
Suzdaleva & Nagy, 2018), and smartphones (Bejani & Ghatee, 2018; Mantouka et al., 2019). 
Test vehicles provide data that closely resemble real-world driving conditions but are limited 
in scope due to high costs and data collection difficulties. Data collected from smartphones 
are more comprehensive, capturing information from a diverse population of drivers and 
various types of roadways. However, the data from location-based applications on 
smartphones may be biased, and factors like weather conditions and global positioning 
system (GPS) accuracy can affect measurement accuracy (National Coordination Office for 
Space-Related Positioning, 2020). Notably, driving simulators are a safer and relatively low-
cost option for collecting real-time driver performance and vehicle motion data 
(Mohammadnazar et al., 2021). 

The literature review identified that most previous relevant studies focused on analyzing 
individual driving performance measures such as speed, lane positioning, reaction time, and 
steering wheel angle. However, most studies did not include information related to real-time 
driver biometrics including driver gaze, eye openness, etc. under different distracted driving 
scenarios. Instantaneous variations in drivers’ vision under distracted driving conditions can 
readily assist in the early detection of distracted driving, which can lead to reduced SCEs if 
integrated into driver assistance systems in automated vehicles. This study attempts to 
address the research mentioned above gap by analyzing driver biometrics, including driver 
gaze, eye openness, etc., in addition to vehicle kinematics and roadway surroundings 
collected in a simulated driving environment to model distracted driving and classify the 
driving events into normal (baseline) and distracted driving. The study’s contribution lies in 
incorporating the real-time driver biometric characteristics and employing the concept of 
driving volatility (deviations of driving parameters from normal values) as a surrogate 
measure of SCEs in detecting distracted driving.        

3. Data Description 

3.1 Data Acquisition 
This study examines driver behavior under normal and different distraction scenarios using 

data on driver biometrics, vehicle kinematics, and roadway surroundings collected through 
multiple sensors in a multimodal VR simulator at the University of Tennessee, Knoxville. The 
simulation experiment was designed in Unreal Engine 4, a recent version of an advanced 
real-time 3D graphics creation tool. The simulation environment was populated with AI 
drivers operating with predefined parameters such as following distance, max speed, etc. 
The composition of the physical simulator included a car seat attached to an aluminum 
framing with an electronic steering wheel and pedals. Driver eye movements, a unique 
aspect of the study, were collected using the “HTC Vive Pro Headset,” an advanced VR 
headset worn by the participants for immersion and eye tracking capabilities. Vehicle 
kinematics include speed, acceleration, and deceleration, steering wheel controller 
activation, and brake pedal activation. The vehicle kinematic and roadway contextual data 
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were extracted from the simulation using Lab Streaming Layer, an open-source software 
designed to broadcast, coordinate, and document physiological data from various sensors. 
A total of 26 drivers (14 male and 12 female) participated in the study. All the drivers were 
above 18 and had a valid U.S. driving license. The grid of arrows visual search task was 
used in the study to emulate distracted driving. 4x4, 5x5, 6x6, and 8x8 grids of arrows were 
used to emulate distracted driving conditions with increasing complexity. Drivers were asked 
to detect the position of an arrow facing in a different direction than all other grid arrows. In 
the normal or undistracted scenario, the drivers were requested to drive normally without 
presenting the grid of arrows on the screen. Higher grid size usually results in higher driver 
reaction times in the DRT, analogous to a high level of distraction. For more details on the 
experimental procedure and additional ML-based analysis on the relative importance of the 
different sensor modalities, please refer to “Appendix A.” The drivers’ levels of distraction 
corresponding to the 4x4, 5x5, 6x6, and 8x8 grids of arrows were labeled as Mild, Moderate, 
Significant, and Severe distraction, respectively. The instantaneous variations in driver 
biometrics, vehicle kinematics, and roadway surroundings were quantified using various 
measures of variation or dispersion, indicating driving volatility during the simulated driving 
experiment. A description of the variables used in this study with their units and threshold 
values is provided in Table 1.   

 
Table 1: Description of Variables used in the Study 

Variables Description Unit Threshold Values 

Acceleration Vehicle Acceleration m/s2 NA 

Brake Brake Pedal Activation  NA 0-1 (0 is unpressed, 1 is fully 
pressed). All other values represent 
intermediate brake pedal activation. 

Eye Openness Drivers’ Eye Openness NA 0-1 (0 is closed, 1 is open). All other 
values represent intermediate eye 
openness. 

Pupil Movement Driver’s Eye Movement (Gaze) NA NA 

Speed Vehicle Speed m/s NA 

Steering Steering Wheel Controller 
Activation 

NA (-0.5 ---- 0.5) -0.5 all the way to the 
left, 0.5 all the way to the right 

Throttle Throttle Pedal Activation NA (0,1) 0 is unpressed, 1 is fully 
pressed. All other values represent 
intermediate throttle pedal activation. 

Distance Center  Distance from left front wheel to 
center line of the road 

1/1.5 m NA 

Distance Front Distance to the car in front 1/1.5 m NA 

Distance Behind Distance to the car at the back 1/1.5 m NA 
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Variables Description Unit Threshold Values 

State (Label) An integer classification of what 
level of distraction the driver was 
experiencing during the duration of 
the sample, determined by the size 
of the grid of arrows 

NA 0: Undistracted  

1:4x4 grid (Mild Distraction)  

2: 5x5 grid (Moderate Distraction)  

3: 6x6 grid (High Distraction)  

4: 8x8 grid (Very High Distraction) 

Note: NA means Not Applicable. 

3.2 Measures of Driver, Vehicle, and Roadway Volatility 
Previous literature suggests volatility functions to analyze changes in driving movement, 

specifically in speed, lateral acceleration, longitudinal acceleration, and vehicular jerk (Arvin 
et al., 2021). These functions include the coefficient of variation (CV), mean absolute 
deviation (MAD), quartile coefficient of variation (Qcv), and time-varying stochastic volatility 
(Vf). A brief mathematical description of the volatility functions is provided below: 

3.2.1 Coefficient of Variation (CV): The CV captures dispersion by considering the 
standard deviation and the absolute mean value using the following Equation: 

                                                   𝐶𝐶𝐶𝐶 =  𝑆𝑆𝑆𝑆/|𝑥𝑥𝑥|  ∗ 100                                                           (1) 

3.2.2 Mean Absolute Deviation (MAD): The MAD calculates the mean distance from 
the central tendency of the data using Equation 2. 

                                                      𝑀𝑀𝑀𝑀𝑀𝑀 =  1/𝑛𝑛∑|𝑥𝑥𝑥𝑥 −  𝑥𝑥𝑥|                                                   (2) 

This measure can simultaneously capture both positive and negative values for 
acceleration and deceleration, respectively. 

3.2.3 Quartile Coefficient of Variation (QCV): The Qcv measures the dispersion of 
the data using Equation 3. 

                                                𝑄𝑄𝐶𝐶𝐶𝐶 =  (𝑄𝑄3 − 𝑄𝑄1/𝑄𝑄3 + 𝑄𝑄1) ∗ 100                                       (3) 

where Q1 and Q3 are the first and third quartiles of the data. 

3.2.4 Time-Varying Stochastic Volatility (Vf): The Vf can only be applied to positive 
observations. Hence, it can only be applied to vehicular speed containing only positive 
observations. The Equation for this measure of volatility is given below: 

                                                𝑉𝑉𝑓𝑓 =  √1/(𝑛𝑛 − 1)∑(𝑟𝑟𝑖𝑖 −  𝑟𝑟𝑟)2                                               (4) 

                                                    𝑟𝑟𝑖𝑖 =  𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖/𝑥𝑥𝑖𝑖 − 1) ∗ 100                                                  (5) 

where 𝑥𝑥𝑖𝑖 − 1 is the previous observation than 𝑥𝑥𝑖𝑖, while 𝑟𝑟𝑟 is the mean of parameter 𝑟𝑟.    
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In this study, the concept of temporal driving volatility, developed by Arvin et al. (2021), 
analyzes changes in instantaneous driving behavior over time. This approach captures 
driving behavior as a time-dependent variable by creating a time-series data stream. 
Previous literature indicates that using a 3-second time frame window to calculate driving 
volatility results in the highest correlation between volatility measures and crash risk 
compared to other time windows of 1, 2, and 5 seconds (Arvin et al., 2019). Therefore, a 3-
second time window is used to calculate temporal driving volatility in this study. This study 
uses CV and MAD to capture the temporal variations in driver behavior and vehicle 
kinematics among the volatility measures.  

3.3 Descriptive Statistics 
The simulation experiment was performed for a total duration of 1851 seconds while the 

driver biometrics, vehicle motion indicators, and distances with the surrounding vehicles were 
recorded after every 0.1 seconds. The raw data from the driving simulator consisted of 
1851/0.1 = 18510 observations. However, the data was aggregated every 3 seconds (30*0.1 
sec) to compensate for very small or missing values in the data. The final dataset contains 
18510/30 = 617 observations with a fixed time interval of 3 seconds. The data has volatility 
measures allocated to the observations using a 3-second time window. The State variable, 
an ordinal variable representing the level of distraction experienced by the driver during the 
simulation experiment, is considered the response variable predicted by the original data 
obtained from the simulator and the derived driving volatilities. The descriptive statistics of 
the variables used in the study are presented in Table 2. 
 

Table 2: Descriptive Statistics of Predictor and Response Variables 
Variables Sample Size   Mean SD Minimum Maximum 

Acceleration 617 -0.10 3.88 -74.30 11.09 

Brake 617 0.007 0.05 0 1 

Eye Openness 617 0.81 0.33 0 1 

Eye Movement 617 0.29 0.23 0 1.016 

Speed 617 13.68 3.16 0.0002 26.88 

Steering 617 -0.02 0.03 -0.5 0.5 

Throttle 617 0.08 0.08 0 1 

Distance Center  617 1.38 0.816 0 4.92 

Distance Front 617 42.57 27.00 11.93 174.293 

Distance Behind 617 77.73 51.71 11.77 274.78 

CV-Eye movement 617 0.67 0.36 0.012 1.90 

CV-Speed 617 0.092 0.078 0.003 0.42 

MAD-Acceleration 617 1.64 1.61 0.05 17.08 
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Variables Sample Size   Mean SD Minimum Maximum 

CV-Centre Distance 617 0.25 0.21 0.002 1.21 

CV-Front Distance 617 0.09 0.11 .005 0.98 

CV-Back Distance 617 0.06 0.11 0.001 1.08 

Response Variable Frequency Percentage (%) 

State  

0 204 33.06 

1 123 19.94 

2 120 19.45 

3 85 13.78 

4 85 13.78 

Note: SD = Standard Deviation. 
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Table 3 shows the descriptive statistics of the driving volatility measures in different driving scenarios represented by the values of the 
State variable. Referring to Table 3, the means and standard deviations of the volatility measures relevant to vehicle kinematics and 
roadway surroundings increase with an increase in the level of distraction. This result implies that more variation and higher dispersion 
was observed in the drivers’ performance in vehicle kinematics and roadway surroundings with increasing level of distraction. The 
descriptive statistics of the volatility measures in each distraction scenario align with general perception as higher variations in driver 
biometric characteristics and vehicle kinematics are generally expected in higher distracted driving environments. Furthermore, the 
correlations among the predictor variables were also assessed to identify the possibility of problematic multicollinearity in the ordinal 
logistic regression model (Table 4). Results from Table 4 suggest that the values of the Pearson Correlation Coefficients for the predictor 
variables lie within the interval +0.5 to -0.5, which indicates that multicollinearity does not exist among the predictor variables.         

Table 3: Descriptive Statistics of Volatility Measures in Different Distraction Scenarios 
Volatility 
Measures 

State 0  

(Undistracted) 

N = 204 

State 1  

(Mild Distraction) 

N= 123 

State 2  

(Moderate Distraction)  

N = 120 

State 3  

(Significant Distraction)  

N = 85 

State 4  

(Severe Distraction) 

N = 85 

 Min Max µ σ Min Max µ σ Min Max µ σ Min Max µ σ Min Max µ σ 

CV-Eye 
Movement 

0.012 1.62 0.40 0.330 0.03 1.69 0.68 0.333 0.27 1.72 0.79 0.29 0.28 1.82 0.83 0.28 0.35 1.90 0.94 0.27 

CV-Speed 0.003 0.34 0.06 0.05 0.02 0.35 0.08 0.06 0.033 0.36 0.10 0.068 0.0340 0.39 0.11 0.07 0.0344 0.42 0.12 0.11 

MAD-
Acceleration 

0.05 12.88 1.47 1.44 0.06 13.31 1.56 1.53 0.07 13.89 1.63 1.55 0.09 15.15 1.86 1.73 0.12 17.08 1.95 2.00 

CV-Centre 
Distance 

0.002 1.00 0.15 0.14 0.013 1.03 0.20 0.18 0.040 1.05 0.34 0.19 0.046 1.11 0.35 0.21 0.047 1.21 0.38 0.23 

CV-Front 
Distance 

0.005 0.76 0.08 0.10 0.006 0.84 0.09 0.105 0.007 0.87 0.094 0.106 0.008 0.89 0.11 0.11 0.01 0.98 0.13 0.13 

CV-Back 
Distance 

0.001 0.38 0.04 0.07 0.0019 0.39 0.056 0.08 0.0020 0.67 0.059 0.10 0.0022 1.06 0.07 0.15 0.0025 1.08 0.10 0.15 

Note: Min = Minimum; Max = Maximum; µ = Mean; σ = Standard Deviation 

Table 4: Correlations among Predictor Variables 
Variables Acc/Dec Eye 

Movement 
Speed Steering Throttle Distance 

Centre 
Distance 
Front 

Distance 
Behind 

CV-Eye 
movement 

CV-
Speed 

MAD-
Acc/Dec 

CV-Front 
Distance 

CV-Back 
Distance 

CV-
Centre  

Acc/Dec 1.000              

Eye 
Movement 

0.0492 1.000             

Speed 0.0948 0.0204 1.000            

Steering 0.0613 0.0138 -0.1067 1.000           

Throttle 0.3252 -0.0013 0.0263 -0.0209 1.000          

Distance 
Centre  

0.0297 0.0661 0.0647 0.0532 -0.0718 1.000         

Distance 
Front 

0.0756 0.0312 0.1088 -0.0730 0.1397 -0.0195 1.000        

Distance 
Behind 

0.0101 0.0153 0.3703 0.0389 -0.0594 0.2107 0.0477 1.000       

CV-Eye 
movement 

0.0798 0.1023 0.1097 0.0105 0.0050 0.1046 -0.1056 0.0182 1.000      

CV-Speed 0.0082 0.0939 0.0794 0.0477 0.0113 0.0172 -0.0056 0.0451 0.2009 1.000     

MAD-
Acc/Dec 

-0.0205 -0.0327 -0.0025 0.0349 -0.0656 -0.0744 -0.0497 0.0707 0.0701 0.2382 1.000    

CV-Front 
Distance 

0.0057 0.0038 -0.0215 0.0308 -0.0261 -0.0291 0.0006 -0.0450 0.0918 0.1482 0.2213 1.000   

CV-Back 
Distance 

0.0065 0.0120 -0.0209 0.0402 -0.0679 -0.0828 0.0146 -0.0458 0.0893 0.0997 0.3442 0.3905 1.000  

CV-Centre 
Distance 

0.0379 0.1716 -0.0278 0.0192 -0.0356 0.0498 0.0224 -0.0216 0.2085 0.2825 0.2251 0.2001 0.1777 1.000 

Note: Acc/Dec : “Acceleration/Deceleration” 
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4. Methodology 
The study methodology involves the estimation of a panel ordered logit model, which 

accounts for the ordinal nature of the dependent variable (Drivers’ State) and the panel 
structure of the data as the data involves multiple observations collected for each driver in 
different driving conditions represented by the State variable. Statistical models usually have 
higher interpretability but lower prediction performance than ML methods. Since the real-time 
detection of distracted driving is necessary to develop proactive safety measures, applying 
prediction-based ML methods in the analysis to predict the instances of distracted driving is 
more appropriate. The models’ predictive performance is compared, and the classification 
performance metrics for each category of the dependent variable obtained from all models 
are analyzed. Finally, conclusions are drawn from the results obtained from the frequentist 
and ML approaches. The overall study framework is presented in Figure 1. 
 
 

 
 

Figure 1: Overall Study Framework 
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4.1 Ordered Logit Model 
Ordinal scales possess two key characteristics: (1) A distinct arrangement of levels is 

evident, indicating a clear order. (2) The precise distances between the various levels are 
not known. Extensive research and numerous established techniques (e.g., Multinomial 
Logit, MNL) exist to effectively and efficiently model categorical data by considering them 
nominal variables. Nevertheless, disregarding the inherent ordering information may yield 
dissimilar and less robust outcomes. Conversely, treating an ordered categorical variable as 
ordinal rather than nominal offers several advantages, including simplicity, straightforward 
interpretations, enhanced detection capability, increased flexibility, and a closer resemblance 
to conventional regression analysis (Agresti, 2010; Zheng et al., 2014). A typical 
mathematical formulation of the ordered logit model is given in equation 6: 
 
                                    Y = j if αj-1 < Y* ≤ αj                                                            (6) 
                                         Y* = β’X + ε                                                                 (7) 
 

Where Y denotes the response variable, while Y* is a continuous latent variable whose 
values are derived from the ordinal data. Y* equals the product of the coefficient vector β’ 
and explanatory variable vector X, plus an error term ε. The ordinal response, denoted as j, 
indicates the category where the observed Y falls. αj represents the cut points or the 
boundaries of intervals on the continuous scale of Y*, meaning that Y is assigned to 
category j when the latent variable falls within the jth interval.  
 

Application of logit transformation to the cumulative probabilities to preserve the ordering 
among the categories of the response variable results in the following: 
 
                           Logit[P(Y≤j)] = log(P(Y≤j)/1- P(Y≤j))                                      (8) 
 

A typical equation for the ordered logit model is: 
 
                        Logit[P(Y≤j)] = αj + β1x1+ β2x2+ β3x3+…+βnxn = αj + β’X               (9) 
 

Equation (9) indicates that for different categories j of the response variable Y, the 
association of explanatory variables x1, x2, …, xn is captured by coefficients β, which are 
important in interpreting this model.   

4.2 Panel Ordered Logit Model 
The data collected in this study essentially exhibit a panel structure as multiple 

observations in each driving scenario were recorded for each participant. The observations 
belonging to the same participant may be highly correlated, or observations for each 
participant may result in different cut points of the continuous latent response variable. As 
shown in Equation (9), a conventional ordered logit model cannot handle such inherent 
correlations or subjectivity in the data. Therefore, to solve this problem, Equation (9) is 
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extended by introducing a random variable ui to capture the subjectivity among different 
participants i, resulting in a random effects panel ordered logit model given in Equation (10).   
        Logit[P(Yit≤j)] = αj + (ui + β1x1it + β2x2it + β3x3it +…+ βnxnit) = αj + ui + β’X         (10)  
 

Where Yit denotes the response corresponding to observation t for individual i. The values 
of the explanatory variables for each observation t of each individual i are denoted as x1it, 
x2it, ..., xnit. The random effect for individual i, represented by ui, is unobserved and typically 
assumed to vary among individuals according to a normal distribution ~N (0, σu2). When the 
variance σu2 increases, the correlation between two observations from the same individual 
also increases. The maximum Likelihood approach is used to estimate the parameters in the 
model. 

4.3 Random Forest Classifier 
The concept of random forest was first introduced by Breiman in 2001 (Fawagreh et al., 

2014). A random forest consists of multiple independent basic classifiers known as decision 
trees. Each classifier operates on its own when presented with a test sample, and the 
category label of the sample is determined by aggregating the voting results from each 
classification. The following steps outline the process of building a random forest classifier: 
 
(a) Choose an appropriate value for the variable “M,” which represents the number of features 
in each feature subset. 
 
(b) Randomly select a new feature subset θk from the entire set of features, according to the 
chosen M value. Each subset θk is independent of the other subsets in the sequence θ1, θ2, 
..., θk. 
 
(c) Train the dataset using the selected feature subset to create a decision tree for each 
group in the training set. Each individual classifier can be represented as f(X, θk), where X 
represents the inputs. 
 
(d) Repeat the process by selecting a new θk and training the data with the feature subset 
until all the feature subsets have been traversed. This completes the construction of a 
random forest classifier. 
 
(e) Now add the test dataset and classify each sample based on the aggregated voting 
results from each individual classification. 
 

Using a bagging technique, random operations are used in selecting sample subsets to 
create training sets from the original samples. Bagging is used again to select subsets of 
features from the entire set of features according to the chosen “M” value. Additionally, the 
importance of each feature can be ranked based on its contribution to the final decision. 
Incorporating random operations in the random forest greatly improves its classification 
performance. (Breiman, 2001; Parmar et al., 2018).   
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4.4 Artificial Neural Network 
Artificial neural networks draw inspiration from early models of brain sensory processing. 

These networks can be created by simulating a network of model neurons in a computer. By 
employing algorithms that mimic the functioning of real neurons, we can train the network to 
solve a wide range of problems. A model neuron, also known as a threshold unit, receives 
inputs from other units or external sources, assigns weights to each input, and sums them 
up. If the total input exceeds a specified threshold, the unit outputs a value of one; otherwise, 
it outputs zero. Thus, the unit's output switches from 0 to 1 when the sum of weighted inputs 
matches the threshold. The points in the input space that satisfy this condition define a 
hyperplane. A hyperplane corresponds to a line in two dimensions, while in three dimensions, 
it represents a flat plane. Points on one side of the hyperplane are classified as 0, while those 
on the other side are classified as 1. Consequently, a threshold unit can solve a classification 
problem if a hyperplane can separate the two classes. In the case of a separable 
classification problem, we still need a way to determine the appropriate weights and threshold 
for the threshold unit to solve the problem accurately. This can be achieved iteratively by 
presenting examples with known classifications one after another. This iterative process, 
resembling how humans learn, is called learning or training. During computer-based learning 
simulations, small adjustments to the weights and threshold with each new example are 
made to improve the classification. Throughout the training process, the hyperplane adjusts 
its position until it finds the correct location in space. It undergoes minimal changes once it 
reaches this position (Krogh, 2008).  

4.5 Performance Measures 
To determine the model with the highest accuracy in predicting outcomes outside of the 

training sample, a confusion matrix and various performance indices are calculated using the 
holdout (test) sample. Table 5 presents a generalized confusion matrix for this study's five 
categories of the response variable. The overall out-of-sample prediction accuracy, which 
serves as a measure of the model's performance, can be computed as follows: 
 
Accuracy = (Total number of correctly predicted observations) / (Total number of observations) * 100            (11) 
 

To assess the accuracy of the model in predicting each specific class, precision and recall 
measures can be calculated. Both precision and recall are context-dependent and can be 
chosen based on the desired scope. This study employs the F1 score as a comprehensive 
performance measure for the prediction accuracy of each specific class. The F1 score 
considers both precision (false positives) and recall (false negatives) in evaluating the 
model’s predictive performance. The higher the F1 score of a class, the better the predictive 
performance of the model specific to that class.   
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Table 5: Generalized Confusion Matrix for Performance Evaluation of a Model 
Observed 
Outcomes 

Predicted Outcomes 
Undistracted Mild Distraction Moderate 

Distraction 
Significant 
Distraction 

Severe 
Distraction 

Undistracted A B C D E 

Mild 
Distraction 

F G H I J 

Moderate 
Distraction 

K L M N O 

Significant 
Distraction 

P Q R S T 

Severe 
Distraction 

U V W X Y 

Performance 
Measures 

 

False 
Positives 

(F+K+P+U) (B+L+Q+V) (C+H+R+W) (D+I+N+X) (E+J+O+T
) 

False 
Negatives 

(B+C+D+E) (F+H+I+J) (K+L+N+O) (P+Q+R+T) (U+V+W+
X) 

Precision A/(A+F+K+P+U)  G/(B+G+L+Q+V) M/(C+H+M+R+W) S/(D+I+N+S+X) Y/(E+J+O
+T+Y) 

Recall A/(A+B+C+D+E) G/(F+G+H+I+J) M/(K+L+M+N+O) S/(P+Q+R+S+T) Y/(U+V+W
+X+Y) 

F1 Score 2*Precision*Recall 
Precision + Recall 
 

2*Precision*Recall 
Precision + Recall 
 

2*Precision*Recall 
Precision + Recall 
 

2*Precision*Recall 
Precision + Recall 
 

2*Precisio
n*Recall 
Precision 
+ Recall 

Overall 
Accuracy 

(A+G+M+S+Y) / (A+B+C+…+Y) * 100 

 

5. Results 

5.1 Results of Panel Ordered Logit Model 
The dataset (N=617) was split in an 80:20 proportion, with about 80% of the observations 

(Ntrain = 507) used to train the model. Approximately 20% of the observations (Ntest = 110) 
were used as a holdout sample for making predictions. Table 6 presents the results of the 
panel ordered logit model estimated for the training dataset to quantify the impact of 
instantaneous variations in driver biometrics, vehicle kinematics, and roadway characteristics 
on drivers’ states during the simulated driving experiment. All the predictor variables included 
in the final model were found statistically significant at a 95% and higher confidence level. 
Average marginal effects for the statistically significant predictor variables were also 
estimated. The values from µ1 to µ4 represent threshold values for the adjacent levels of the 
latent continuous response variable. Driving events with a score below -0.983 are classified 
as normal/undistracted. Those who receive a score between -0.983 and 0.0668 are classified 
as driving instances marked with mild distraction, between 0.0668 and 0.9734 as driving 
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events corresponding to moderate distraction, between 0.9734 and 2.007 as driving events 
marked with significant distraction, and higher than 2.007 as driving events corresponding to 
severe level of distracted driving. Table 6 shows that the driver’s eye movements and the 
CVs in drivers’ eye movements, vehicle speed, vehicle distances from the lane centreline, 
and the following vehicle were positively associated with higher levels of driver distraction. 
From the marginal effects of the statistically significant predictor variables in the model, it can 
be observed that a unit change in the CV in drivers’ eye movements is associated with an 
increase of 0.2816 and 0.4775 units in the probability of significant and severe levels of 
distraction, respectively. The marginal effects of the CV in vehicle speed indicate that a unit 
increase in the CV in vehicle speed is associated with an increase in the probability of 
significant and severe levels of driver distraction by 0.0974 and 0.1651 units. Similarly, the 
association of other explanatory variables with the categories of the response variable could 
be assessed from their respective marginal effects. Furthermore, other explanatory variables 
related to drivers’ biometrics (eye openness) and vehicle kinematics (vehicle speed, 
acceleration, steering wheel angle) were found statistically insignificant and subsequently 
removed from the model.    

Referring to the model goodness of fit statistics, the model yields a log-likelihood at 
convergence value of -627.472 and a Pseudo R-squared value of 0.185 which indicates a 
reasonable statistical fit. The model is overall statistically significant (Prob > χ2 = 0.0000) with 
values of Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) as 
1274.944 and 1317.229. Furthermore, a likelihood ratio test also justifies the estimation of 
the panel ordered logit model in comparison to the simple ordered logit model as the 
probability of getting a higher value than χ2(1) = 52.72 is 0.0000, which indicates that the 
estimation of panel ordered logit model is more appropriate for this dataset.  
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Table 6: Results of Panel Ordered Logit Model for Training Dataset 
Variables Coefficient t-stat p-value Marginal Effects (Level of Distraction) 

    Normal Mild  Moderate Significant Severe 

CV-Eye Movement 6.428 10.68 0.000 -0.8865 -0.0612 0.1886 0.2816 0.4775 

CV-Speed 2.223 4.08 0.000 -0.3065 -0.0211 0.0652 0.0974 0.1651 

CV-Centre Distance 4.051 6.99 0.000 -0.5586 -0.0385 0.1188 0.1774 0.3009 

CV-Back Distance 1.747 2.04 0.041 -0.2409 -0.0166 0.0512 0.0765 0.1297 

Eye Movement 1.142 2.05 0.041 -0.1574 -0.0108 0.0335 0.0500 0.0848 

Threshold  

µ1 -0.983 

µ2 0.0668 

µ3 0.9734 

µ4 2.007 

Model Summary  

N 507 

LL at convergence -627.4721 

LL at null -770.3974 

Pseudo R2 0.185 

χ2(5) 285.85 

Prob> χ2(5) 0.000 

AIC 1274.944 

BIC 1317.229 

Likelihood Ratio Test 

Panel Model vs 
Ordered Logit Model 

χ2(1) = 52.72 

Prob > χ2(1) = 0.0000 

Note: N: Number of Observations, LL: Log-likelihood, χ 2: Chi-squared  

Since the objective of this project is to integrate the indicators of distracted driving in 
vehicles equipped with ADAS, more emphasis is placed on the ability of the model to predict 
incidents of distracted driving rather than inferring to distracted driving behavior. To achieve 
the aforementioned objective, predicted probabilities for each category of the response 
variable for each observation in the test dataset were obtained from the trained model. The 
observations were classified into the response variable categories based on the maximum 
value of the predicted probability for the respective category. The model was found to classify 
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the driving events into the respective categories of distraction with 67.58% accuracy. Table 
7 presents the confusion matrix obtained for the test dataset indicating the model's predictive 
performance. 
 

Table 7: Confusion Matrix for Test Dataset in Ordered Logit Model 
 Test Dataset (Ntest = 110)  

 

Observed 
Outcomes 

Predicted Outcomes Total 

Undistracted Mild 
Distraction 

Moderate 
Distraction 

Significant 
Distraction 

Severe 
Distraction 

 

Undistracted 26 7 3 2 0 38 

Mild 5 6 3 1 0 15 

Moderate 0 3 19 3 1 26 

Significant 0 1 1 11 2 15 

Severe 0 1 1 2 12 16 

Total 31 18 27 19 15  

Performance 
Metric 

  

Accuracy 67.27%  

Precision 0.8387 0.3333 0.7037 0.5789 0.8000  

Recall 0.6842 0.4000 0.7307 0.7333 0.7500  

F1 Score 0.7614 0.3666 0.7172 0.6561 0.7750  

 

5.2 Results of Random Forest 
Like the panel ordered logit model, 80% of the data (Ntrain = 507) was used to train the 

random forest model, while 20% (Ntest = 110) was used as a holdout sample for making 
predictions. A grid search was performed for tuning the model’s hyperparameters using 10-
fold cross-validation. The 10-folds cross-validation process involves dividing the available 
data into ten equal subsets. Nine of these subsets are used for training the model, while one 
subset is kept for testing to evaluate the model’s predictive accuracy. This process is 
repeated ten times, each subset serving as the testing data once. The final estimation is 
obtained by averaging the results from all ten iterations. A range of values for the number of 
trees (50, 70, 80, and 100), variables for splitting the node mtry (3, 4, 5, and 8), minimum 
node size (1, 3, 5, and 7), and sample fraction (0.5, 0.6, 0.7, 0.8) were considered among 
which the optimal number of trees, variables for splitting the node mtry, minimum node size, 
and sample fraction were 100, 3, 1, and 0.7 respectively resulting in a minimum cross-
validation error of 0.500. Table 8 presents the results of the grid search for the first ten 
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combinations of the model hyperparameters ranked according to increasing cross-validation 
error. The model achieved an out-of-sample prediction accuracy of 77.27% for the test data 
with the optimal hyperparameters (Table 9).  

The feature importance analysis indicates the individual contribution of the predictors in 
the model accuracy. Figure 2 presents the most influential predictors in the model with their 
relative importance values sorted in descending order. According to Figure 2, the CV in 
drivers’ eye movements is the most influential predictor among the predictor variables, with 
a relative importance of about 68%, followed by the “Back” variable, which indicates the 
distance from the following vehicle, with an importance of about 48%.  

 
Table 8: Results of Top 10 Combinations of Model Hyperparameters 

Number of Trees Variables used for 
splitting the node 

Minimum Node 
Size 

Sample Fraction CV Error 

100 3 1 0.7 0.500 

100 4 1 0.8 0.510 

100 5 3 0.8 0.512 

100 4 1 0.8 0.514 

100 5 1 0.8 0.515 

100 5 5 0.8 0.516 

100 3 5 0.7 0.517 

100 8 1 0.7 0.518 

100 3 3 0.7 0.519 

80 4 1 0.8 0.522 

Note: CV: Cross Validation 
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Table 9: Confusion Matrix for Test Data in Random Forest Model 
Observed 
Outcomes 

Predicted Outcomes  

Undistracted Mild 
Distraction 

Moderate 
Distraction 

Significant 
Distraction 

Severe 
Distraction 

Total 

Undistracted 29 5 2 1 1 38 

Mild 2 11 1 0 1 15 

Moderate 0 4 19 2 1 26 

Significant 0 2 3 10 0 15 

Severe 0 0 0 0 16 16 

Total 31 22 25 13 19  

Performance 
Metric 

  

Accuracy 77.27%  

Precision 0.9354 0.5000 0.7600 0.7692 0.8421  

Recall 0.7631 0.7333 0.7307 0.6667 1.0000  

F1 Score 0.8405 0.5946 0.7451 0.7142 0.9143  

 

Figure 2: Relative Importance of Key Predictor Variables in Random Forest Model 
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5.3 Results of Artificial Neural Network 
Neural networks represent a powerful and robust method in supervised ML, particularly 

for classification problems. They can efficiently handle large-scale data, automatically detect 
relevant features from the input data, capture non-linear relationships between input features 
and the target variable, learn complex patterns in the data, and make highly accurate 
predictions. The statistically significant variables in the frequentist model were selected as 
input features in training the neural network for consistent comparisons. Consistent with the 
ordered logit and random forest models, the neural network was trained on 80% of the data, 
while 20% of the data was allocated for making predictions by the trained model. Since the 
neural network requires normalized continuous input features, all the input features in the 
model were normalized to a unit variance by subtracting the minimum value of every input 
feature from each value and dividing the result by the range of each input feature. The 
specifications of the neural network include a single hidden layer containing 6 neurons, a 
logistic activation function used for smoothing the result of the cross-product of the neurons 
and weights, resilient backpropagation with weight backtracking as the algorithm used to 
train the network, the sum of squared errors as the error function to calculate the error with 
5 repetitions in training the neural network. The maximum number of steps used for training 
the network was 1000000, with a threshold for the partial derivatives of the error function as 
a stopping criterion set as 1. Figure 3 presents a neural network plotted using the 
“NeuralNetTools” package in R software. 

 
Figure 3: Artificial Neural Network Plot 

Referring to Figure 3, the first layer in the neural network includes only input variables 
found statistically significant in the ordered logit model with nodes labeled arbitrarily as I1 
through I5 for 5 input variables. Positive weights between layers are represented by black 
lines, and negative weights by grey lines. The line thickness proportionally represents the 
relative magnitude of each weight. The second layer indicates a hidden layer with 6 neurons 
labeled H1 through H6. The final layer represents the output layer with nodes labeled as O1 
through O5, indicating the response variable categories. Bias nodes connected to the hidden 
and output layers are labeled as B1 and B2, respectively. Predictions were obtained for the 
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test dataset (Ntest = 110) from the neural network trained using the training dataset (Ntrain = 
507). The model yielded an out-of-sample prediction accuracy of 75.45%. The confusion 
matrix indicating the neural network's predictive performance and the performance metrics 
for predicting each class of the response variable are presented in Table 10.   

Table 10: Confusion Matrix for Test Dataset in Neural Network 
Observed 
Outcomes 

Predicted Outcomes  

Undistracted Mild 
Distraction 

Moderate 
Distraction 

Significant 
Distraction 

Severe 
Distraction 

Total 

Undistracted 29 5 2 2 0 38 

Mild 4 8 2 1 0 15 

Moderate  0 2 20 3 1 26 

Significant 0 0 1 12 2 15 

Severe 0 0 1 1 14 16 

Total 33 15 26 19 17  

Performance 
Metric 

  

Accuracy 75.45%  

Precision 0.8787 0.5333 0.7692 0.6316 0.8235  

Recall 0.7632 0.5333 0.7692 0.8000 0.8750  

F1 Score 0.8168 0.5333 0.7692 0.7058 0.8485  

 

6. Discussion 
This study applies a panel ordered logit model and supervised ML methods (i.e., random 

forest and artificial neural network) to analyze a multidimensional dataset that includes 
dynamic information about instantaneous variations in driver biometrics, vehicle kinematics, 
and roadway surroundings in driving environments with varying levels of distraction. Results 
of the panel ordered logit model suggest that the drivers’ eye movements and the CVs in 
drivers’ eye movements, vehicle speed, vehicle distances from the lane centerline, and the 
following vehicle were positively associated with higher levels of driver distraction. These 
findings conform to the expectations of higher volatility in vehicle performance indicators 
associated with chaotic/irregular driving behaviors and are consistent with the results 
obtained in previous similar studies (Arvin et al., 2021; Mohammadnazar et al., 2021; Wali et 
al., 2019).  
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Comparing the prediction accuracy of the statistical model and the two ML methods for 
the holdout sample, the results indicate that the random forest classifier predicts distracted 
driving outcomes with an overall accuracy of 77.27% in the test sample, which is significantly 
higher than the corresponding out-of-sample prediction accuracy of its counterparts. The 
random forest classifier also shows the highest F1 score for four total distracted driving 
outcomes, including undistracted, mild, significant, and severe distraction levels in the test 
sample. To conclude, the random forest classifier was selected as the most accurate method 
to predict levels of distracted driving using simulated driving behavior data in this project. 

7. Limitations 
This study harnesses real-time driving performance data from a AV simulator at the 

University of Tennessee, Knoxville, to detect distracted driving behavior. Although driving 
simulators present a secure, relatively less expensive, and easy-to-install option for the 
acquisition of driving behavioral data, they cannot accurately simulate real-world roadway 
and traffic conditions with their true uncertainty and difficulty levels (Blana & Golias, 2002; 
Godley et al., 2002; Groeger & Murphy, 2020). The data collected from driving simulators 
can suffer from conformity bias, an issue that reflects more careful driver behavior when 
drivers’ driving skills are being monitored (Sajid Hasan et al., 2022). Furthermore, the driving 
behaviors of only a limited number of participants (26 drivers) were collected and analyzed 
in this study. The classification accuracy of the methods used in the study would probably be 
higher with a higher sample size. More robust deep learning algorithms can then be used to 
detect complex patterns and additional features in the data. 

8. Conclusions 
This study attempts to detect distracted driving behavior by incorporating the variations in 

real-time driver biometrics, including driver gaze, eye openness, etc., with vehicle kinematics 
and roadway surroundings obtained from a simulated driving experiment. The study employs 
a frequentist panel ordered logit model, and two ML methods, namely random forest and 
neural network, to determine the key determinants of distracted driving and predict the 
instances of distracted driving with varying levels of complexity with reasonable accuracy. 
The instantaneous variations in the driver biometrics, vehicle, and roadway characteristics 
were captured through indicators of driving volatility. Results of the panel ordered logit model 
suggest that the CV of speed, CV of drivers’ eye movements, CV of vehicular distances from 
the lane center line and the following vehicle, and the driver’s eye movements during various 
distracted driving scenarios were statistically significantly associated with distracted driving. 
Referring to the out-of-sample prediction accuracy for the ML methods, the random forest 
classifier showed the highest overall out-of-sample prediction accuracy (77.27%) for the 
distracted driving outcomes. The study’s contribution lies in incorporating real-time driver 
biometric characteristics and employing measures of driving volatility to detect distracted 
driving. The study’s findings can assist in developing proactive vehicle safety features 
intended to detect distracted driving and warn the drivers of potential risks of SCEs to improve 
overall roadway safety, especially by emphasizing safe vehicles and safe users. 
Furthermore, real-time distracted driving detection can have practical applications in different 
domains. For instance, by analyzing driver behavior and variations in vehicle kinematics 
during distracted driving events, policymakers and traffic safety practitioners can develop 
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tailored interventions and technologies to enhance road safety, promote eco-friendly driving, 
and create personalized driving experiences (Alessandrini et al., 2012; Ranacher et al., 2016; 
Van Mierlo et al., 2004). In summary, the findings of this study can be insightful for developing 
algorithms based on the results of the random forest classifier in automated vehicles, which 
can detect distracted driving incidents using data related to driver and vehicle performance 
to caution the drivers of the risk of SCEs in real-time. 
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Abstract 
The issue of distracted driving is a critical concern due to the variety of secondary tasks 
performed by drivers. This study aimed to investigate how distractions can lead to crashes 
and develop appropriate countermeasures strategies. The study utilized microscopic driving 
data and the safe systems approach to analyze a subsample of NDS data collected through 
the SHRP2 program. The study used rigorous path analysis to jointly model the instability in 
driving and event outcomes, including baseline, near-crash, and crash. The results indicated 
that a longer duration of distraction was positively but non-linearly associated with higher 
driving instability and higher chances of SCEs. The chance of a crash and near-crash was 
higher by 34% and 40%, respectively, with a unit increase in driving instability. Moreover, the 
chance of both SCEs significantly increased non-linearly with an increase in distraction 
duration beyond 3 seconds. For instance, the chance of a crash is 16% for a driver distracted 
for 3 seconds, which increases to 29% if a driver is distracted for 10 seconds. The study's 
findings highlight the total effects of distraction duration on SCEs, which are even higher 
when considering its indirect effects on SCEs through driving instability. The study discusses 
potential practical implications, including traditional countermeasures, such as changes in 
roadway environments and vehicle technologies. Overall, the study emphasizes the need for 
appropriate countermeasure strategies to reduce the risks of distracted driving, which is 
crucial in promoting road safety. 
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1. Introduction 
Most road accidents are caused by human factors (Khattak et al., 2021; Treat et al., 1979), 

including distracted driving, which can lead to recognition errors and adversely affect a 
driver's ability to perform primary driving tasks. Researchers have used newly available 
microscopic NDS data to understand how distractions lead to crashes, which provide 
information on pre-crash driving behaviors and vehicle kinematics that are not available in 
police crash data. This data reveals that subject drivers are often distracted due to cellphone 
use, eating, interacting with other passengers, adjusting or monitoring radio and climate 
control, and other external sources like pedestrians and billboards (Dingus et al., 2016; 
Ranney, 2008; Khattak et al., 2021; Young & Regan, 2007). Studies have explored how 
distraction duration relates to crash risk using NDS data. However, certain research 
questions remain unexplored, such as whether the duration of distraction may relate to SCEs 
indirectly through instability in driving. This study tests this hypothesis by applying a rigorous 
path analysis through the joint estimation, which captures the total (direct + indirect) effects 
of duration of distraction on SCEs while accounting for the potential correlation between the 
unobserved factors that could significantly relate to both instabilities in driving and event 
outcome. The study uses a joint estimation framework, which is unique compared to previous 
studies, and captures the nonlinear effects of distraction duration on SCEs in the joint path 
analysis. The study harnesses newly available microscopic driving data collected through 
SHRP2, using the safe systems approach to explore how the distraction duration (regardless 
of different types of distraction or secondary tasks) may relate to SCEs. Overall, the study 
contributes to developing appropriate countermeasure strategies for distracted driving by 
providing insights into the effects of distraction duration on driving instability and SCEs.  

2. Methodology 
This study examines the relationship between the duration of distraction while driving and 

the likelihood of being involved in a crash or near-crash. The study analyzes data from the 
SHRP2 NDS subsample and uses the CV of speed to measure driving instability. The study 
also includes control variables such as maneuver judgment, relation to a junction, traffic flow 
conditions, and travel speed to gain insights into their relationship with instability in driving 
and SCEs. The conceptual framework of the study is depicted in Figure 4. The study uses 
Tobit and Ordered Probit models to account for the potential correlation between instability 
in driving and SCEs. The study contributes to the literature by accounting for unobserved 
factors that could affect both instabilities in driving and SCEs. 
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Figure 4: Conceptual Framework of the Study 

The SHRP2 NDS data provide real-world data on pre-crash driving behaviors, secondary 
tasks, and vehicle kinematics. The data are recorded via fitted cameras and recording 
equipment, including data about instantaneous speed, acceleration, and deceleration, which 
can be used to derive various indices of instability in driving. The data also includes baselines 
that quantify crash risk. Baselines refer to non-event (routine) driving. Near-crash situations 
refer to evasive maneuvers made by the subject driver to avoid a crash, and a crash is a 
situation in which a subject vehicle comes in contact with either a fixed or moving vehicle or 
object. The data provides unique insight into driver behavior and can be used to improve 
road safety. CV of speed was selected to measure driving instability, and the joint path 
analysis framework was used to show its correlation with event outcomes. 

3. Results 
The study estimated the instability in driving and event outcomes independently and jointly 

using Tobit regression and the Ordered Probit model, respectively. Table 11 shows the 
results of the Tobit and Ordered Probit Model. The study found that instability in driving was 
higher in crash and near-crash events than in baselines. Moreover, the mean CV of speed 
was higher in crashes and near-crashes than in baselines. The study also found distraction 
duration was longer in crashes than near-crashes and baselines. The Tobit model shows 
that instability in driving increases non-linearly with an increase in distraction duration, 
reaching a value of 1 if the subject driver is distracted for 18 seconds. The Ordered Probit 
model indicates that the probability of a crash increases exponentially when the distraction 
duration exceeds 8 seconds. 
 

Results from the joint estimation suggested that unobserved factors that increase driving 
instability but decrease the probability of driving events are significantly correlated. The study 
also found significant evidence about distraction duration's non-linear relationship with 
driving instability and driving events. The variance inflation factors computed for all variables 
included in the final models were less than 5, indicating no considerable evidence of 
multicollinearity. The study's findings could inform future research and policies to reduce 
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driving events and promote safe driving practices. The study finds that as distraction duration 
increases, instability in driving also increases, leading to a higher probability of crashes and 
near-crashes. Furthermore, traffic flow conditions also affect instability in driving, with 
physically divided traffic conditions being safer than undivided or one-way traffic. Additionally, 
the study finds that the probability of crash and near-crash significantly increases with a unit 
increase in instability in driving. The study also conducts a path analysis to quantify the 
indirect effects of distraction duration on SCEs through instability in driving. The results show 
that the crash risk becomes twice if the indirect effects of duration of distraction on crashes 
through driving instability are considered. The study found that distraction duration is non-
linearly associated with driving instability and the probability of SCEs. The study suggests 
that countermeasures such as removing external sources of distraction, educating drivers, 
and using hands-free and vehicle technologies can reduce distracted driving and driving 
instability. However, further research is needed to recommend specific strategies. 
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Table 11: Results of Tobit Model and Ordered Probit Model (Joint Estimation) 
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4. Conclusions  
The paper investigates the relationship between the duration of distraction, driving 

instability, and SCEs using the SHRP2 NDS subsample, which includes baselines, near-
crashes, and crashes. Results indicate that drivers in crashes and near-crashes were 
distracted for longer than baselines. Similarly, drivers in SCEs had higher instability in driving 
compared to baseline drivers. Results reveal that a longer duration of distraction was 
positively associated with higher driving instability and higher chances of SCEs, with the 
chance of a crash and near-crash being higher by 34% and 40%, respectively, with a unit 
increase in instability in driving. The chance of both SCEs significantly increases with an 
increase in distraction duration beyond 3 seconds. The study used a limited sample from 
SHRP2 NDS which may not represent the entire United States or other areas due to 
differences in driving behavior, demographics, traffic, and road conditions. The subsample 
used in the study includes driver demographics and vehicle types which could be associated 
with driving instability and SCEs. Future studies could explore the relationship between driver 
demographics and vehicle types with driving volatility and SCEs. The report highlights 
potential strategies and promising measures that can reduce the duration of distraction and 
driving instability, such as hands-free technologies, message signs, multiple vehicle 
technologies (forward collision warning and adaptive cruise control), and educating drivers 
about the negative consequences of secondary tasks while driving. 
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Abstract 
The study examines the impact of instability in driving speed resulting from driving errors, 
violations, and roadway environments on SCEs. The study analyzed a subsample of the 
SHRP2 NDS by employing a safe systems approach, path analysis, Tobit and Ordered Probit 
regressions to jointly model outcomes. The Tobit model revealed that driving errors and 
violations were associated with instability in the driving speed of the driver. Meanwhile, the 
Probit model showed that driving errors, violations, and instability in driving speed increased 
the chances of crashes and near-crashes. The study found that driving errors and violations 
directly induced crash risk and indirectly through instability in driving speed. The study also 
revealed significant correlations between unobserved factors in the error terms of the two 
models. Ignoring such correlations could lead to inefficient parameter estimates. Based on 
the findings, the study discussed practical implications that could lead to effective 
countermeasures to reduce crash risk. 

1. Introduction 
More than 90% of car crashes are attributed to human factors (Khattak et al., 2021; Singh, 

2015; Treat et al., 1979), and there is a need to understand these factors better. Taxonomies 
of driving behaviors that lead to crashes have been developed in the past (Reason et al., 
1990; Stanton & Salmon, 2009; Treat et al., 1979; Wierwille et al., 2002), however, these 
were based on police crash reports. Police crash reports may not accurately represent driving 
behavior due to subjectivity and underreporting (Dingus et al., 2006; Khattak et al., 2021; 
Yamamoto et al., 2008). To address this, a recent study used objective data from the SHRP2 
NDS to develop a systematic classification of driving errors and violations called the 
Taxonomy of Driving Errors and Violations (TDEV). The TDEV categorizes driving errors and 
violations into six types: recognition errors, decision errors, performance errors, physical 
condition-related errors, experience errors, and violations (intentional or unintentional) 
(Khattak et al., 2021). The availability of high-frequency NDS data from SHRP2 provides a 

https://www.sciencedirect.com/science/article/pii/S0001457522003116
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more realistic data source for studying driving behavior and performance (Arvin et al., 2019; 
Carney et al., 2015; Papazikou et al., 2017, 2019; Richard et al., 2020). The SHRP2 NDS 
data includes detailed information on vehicle kinematics, roadway environments, traffic 
conditions, and real-world microscopic data on driving parameters like speed and secondary 
tasks. This study uses the newly developed TDEV to categorize driving behaviors using 
objective SHRP2 NDS data (Khattak et al., 2021). The study aims to identify potential 
pathways from errors and violations in diverse roadway environments to SCEs through 
instability in driving speed. The study estimates models that account for potential correlations 
between unobserved factors associated with both epoch (video stream) outcomes (i.e., 
baseline, near-crash, and crash) and instability in driving speed.  

2. Methodology 
The study hypothesizes that drivers who make mistakes may take corrective actions that 

cause instability in their driving speed which may then have a significant impact on the 
occurrence of SCEs. The study uses a path analytic framework to explore this idea to 
estimate two constituent models, including the Tobit and the ordered Probit models. This 
method accounts for the correlation between unobserved factors that affect both the CV of 
speed and epoch outcome. The study's methodology is unique because it allows for 
efficiency gains by estimating the two models jointly. The conceptual framework of the study 
is presented in Figure 5. 

 

Figure 5: Study Conceptual Framework  

This study uses a joint estimation method of the Tobit and the ordered Probit model to 
account for potential correlation between unobserved factors that could significantly affect 
instability in driving speed and epoch outcomes. Through path analysis, the study aims to 
quantify the direct, indirect, and total effects of driving errors, violations, and roadway 
environments on crashes and near-crashes. The SHRP2 NDS subsample is used, which 
includes real-world data on pre-crash driving behaviors, secondary tasks, and diverse 
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roadway environments collected via instrumented vehicles. Data on instantaneous speed, 
acceleration, and deceleration is also available in the SHRP2 NDS data. This data allows for 
the derivation of various measures or functions of instability. One advantage of using the 
SHRP2 NDS data is that it includes data on near-crashes and baselines, which allows for the 
computation of crash risk and near-crash risk that cannot be done using police crash reports. 
The SHRP2 NDS sub-sample used in this study includes 9,239 events consisting of 
baselines, near-crashes, and crashes.  

3. Results 
The results of Tobit and Ordered Probit models estimated separately are presented in 

Table 12. The results of the Tobit model indicate that compared to no driving error and 
violation, all types of driving errors and violations positively influence instability in driving 
speed. The study finds that a recognition error and decision error increase the CV of speed 
by 0.2670 and 0.1596 units, respectively, compared to no driving error and violation. The CV 
of speed also increases in urban areas, school zones, and business/industrial locations 
compared to the interstate. Furthermore, the chance of both crash and near-crash increases 
if a driver makes an error or a violation compared to no driving error or violation. 
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Table 12: Results of Model for Instability in Driving Speed and Epoch Outcome Model 

 

 
Table 13 shows the results of the path analysis based on the joint estimation for instability in 
driving speeds and epoch outcomes. The joint estimation results show significant evidence 
that the two sets of unobserved factors contributing to both the instability in driving speed 
and epoch outcome are correlated. Through joint estimation, the parameter signs for all 
variables remain the same; however, their magnitudes vary compared to those in the 
separately estimated models. Based on joint-estimation results, a unit increase in instability 
in driving speed (CV of speed) increases the probability of crashes and near-crashes by 
0.1794 and 0.2950 units, respectively. The study finds that recognition error, compared to no 
driving error and violation, directly increases the chance of a crash by 6.78%. It indirectly 
increases the chance of a crash by 4.72% through the CV of speed. Thus, the total increase 
in the chance of a crash due to a recognition error is 11.51%, significantly greater than the 
direct increase in the chance of a crash due to a recognition error. Performance error has the 
highest impact on crashes and near-crashes, increasing their probabilities by 0.1139 and 
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0.1873, respectively. Furthermore, the probability of crash increases by 0.1035, 0.0829, and 
0.0678 units if a subject driver makes an experience, decision, and recognition errors, 
respectively. The study's key findings are presented through an infographic in Figure 6. 
 

Table 13: Path Analysis Results (Based on Joint Estimation) 
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Figure 6: Key Findings Infographic 

4. Conclusions  
The study presents a joint estimation of models that explore the potential pathways from 

errors and violations in various roadway environments to SCEs through instability in driving 
speed (CV of Speed). The results show that the instability in driving speed increases with all 
five driving errors and violations, with performance errors having the strongest positive 
correlation with crash risk. The study also found that instability in driving speed is significantly 
higher in urban areas, business/industrial locations, and school zones than in driving on 
interstates. Path analysis results indicate that all driving errors and violations contribute to 
SCEs not only directly but also indirectly through instability in driving speed. The study is 
based on a subsample of SHRP2 NDS data and is limited to specific geographic locations, 
which may not represent other parts of the United States or other countries. Although SHRP2 
NDS data partially satisfy research needs related to roadway environments, more detailed 
data on roadway and locality classifications, such as land use, activity centers, and roadway 
functional types, would be helpful in future studies. Additionally, the SHRP2 NDS subsample 
used in this research does not include important variables such as driver demographics (e.g., 
gender, age, and education), and it would be beneficial to investigate how these factors relate 
to instability in driving speed and SCEs with the availability of such data in the future. The 
paper concludes that various countermeasures, such as multiple vehicle technologies, 
roadway changes, policy interventions, and awareness campaigns, can be taken to reduce 
driving errors and violations, reducing the risk of SCEs. For instance, multiple vehicle 
technologies like forward-collision warning systems, adaptive cruise control, and lane 
tracking system can reduce one or more driving errors. Similarly, dilemma zone mitigation 
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systems can reduce a significant percentage of violations. Additionally, removing sources of 
external distraction, such as billboards, can help reduce recognition errors. Finally, 
mandatory training programs for drivers can reduce performance and experience errors.  
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Abstract 
This study attempts to bridge the research gap in predicting safety-critical events (SCEs) 
caused by human factors. The study utilizes Naturalistic Driving Study (NDS) data, which 
offers dynamic pre-crash information about driving behavior and performance. A subsample 
of the SHRP2 NDS dataset, consisting of 9,237 observations, is split into training (70%) and 
test (30%) samples. An Ordered Probit model is employed as a frequentist method to predict 
different levels of severity: baseline, near-crashes, and crashes. The study employed 
Dominance Analysis to determine the most important predictor variables in the statistical 
model. The dominance analysis evaluates 262,143 different models for 18 predictors, 
identifying the most influential predictors for predicting SCEs. Three non-parametric 
supervised ML methods, including naive Bayes (NB), k-nearest neighbors (KNN), and 
gradient boosting tree (GBT) classifiers, are then used to predict SCEs. The GBT classifier 
exhibits the highest out-of-sample prediction accuracy at 91.23%, outperforming the Ordered 
Probit model (85.75%). The study highlights the significance of naturalistic data, particularly 
the CV of speed, deceleration, jerk, driving errors, and secondary task duration, in improving 
the prediction accuracy of SCEs. The study's findings can prove insightful for developing 
more proactive collision warning systems, resulting in safer road users.  
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1. Introduction    
 

Human factors give rise to more than 90% of road traffic crashes (Sabey & Staughton, 
1975; Singh, 2015; Treat et al., 1979). Various studies have attempted to develop 
comprehensive frameworks to identify driving mistakes and transgressions to help adopt 
suitable safety countermeasures (Reason et al., 1990; Stanton & Salmon, 2009; Treat et al., 
1979; Wierwille et al., 2002). However, most of these studies have one common issue: 
utilizing police-reported crash data, which could be biased or highly under-reported. With the 
recent advancements in ML and the availability of detailed pre-crash driver behavior and 
performance in SCEs in the form of NDS data collected through the SHRP2 program, new 
avenues for predicting SCEs can be explored. The NDS data collected through the SHRP2 
program provides detailed information about pre-crash driver behavior and performance, 
including near-crashes and baseline driving. It also includes data on speed, acceleration, 
deceleration, and jerk, allowing the assessment of driving instability (Dingus et al., 2006; 
Hankey et al., 2016). Secondary task duration and details about the roadway and 
environment are also available, making the SHRP2 NDS data a comprehensive and reliable 
source for investigating human factors in diverse contexts. 
 

Recent studies utilizing the SHRP2 NDS data have found that human factors contribute to 
around 93% of road crashes (Khattak et al., 2021). A systematic taxonomy of naturalistic 
driving errors and violations (TDEV) was developed to understand the nature and role of 
these factors. Recognition and decision errors were the primary driving errors contributing to 
road crashes. Previous studies have examined the pathways linking different roadway 
environments to SCEs through driving errors. The studies provide insights into how various 
roadway environments relate to driving errors and violations (Ahmad et al., 2021). 
Additionally, statistical evidence supports a positive correlation between driving instability 
and SCEs using the SHRP2 NDS data (Wali et al., 2019; Wali & Khattak, 2020). The 
mentioned studies utilizing SHRP2 NDS data offer valuable insights into the impact of 
different human factors on SCEs. However, there are still research gaps to address. Firstly, 
while statistical models were used to explore the relationships between human factors (e.g., 
driving errors, violations, distraction duration, driving instability) and SCEs, none of the 
studies focused on real-time prediction of SCEs using these factors. Secondly, none of the 
studies integrated all relevant human factors into a single model for accurate prediction of 
SCEs, including both crashes and near-crashes. 

Consequently, this study aims to enhance predictive accuracy by leveraging the unique 
SHRP2 NDS data, which provides dynamic pre-crash information on driving behavior and 
performance. The study utilizes frequentist statistical models and ML methods, including 
KNN, NB, and GBT classification techniques. These ML methods were chosen for their 
promising prediction performance and cost-effectiveness. This study seeks to deepen the 
understanding of the connection between pre-crash driving behavior, performance, and 
SCEs. It also aims to identify the most accurate model or method for real-time prediction of 
SCEs. By incorporating all available key human factors, such as driving errors, violations, 
distraction duration, and various measures of driving instability, within a real-world naturalistic 
driving context, this study stands out as a unique attempt to predict SCEs using more precise 
ML-based methods. The anticipated findings from this study are expected to contribute 
valuable knowledge, particularly in the context of partially automated vehicles. This 
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knowledge can inform efforts to improve roadway safety by prioritizing safer roadway users 
and safer vehicles. 
 

2. Methodology 
This study evaluates the out-of-sample prediction accuracy of a statistical model and ML 

methods for SCEs. It also employs dominance analysis to compare the importance of 
variables in predicting SCEs between the statistical model and ML methods, providing a more 
effective and consistent comparison. The study framework is depicted in Figure 7. 
 

 
Figure 7: Study Framework 

This study analyzes a subsample of SHRP2 NDS data, providing reliable dynamic pre-
crash information about driving behavior and performance. The data includes vehicle 
kinematics used to assess driving instability by analyzing instantaneous speed, acceleration, 
and deceleration. Detailed information about roadway and environmental variables is also 
recorded through video cameras, radar, and other recording equipment in the subject 
vehicles. A data reductionist team carefully coded the NDS videos' variables to define 
baselines, near-crashes, and crashes. Baselines represent non-event driving periods 
selected for comparison purposes, while near-crashes refer to situations where evasive 
maneuvers were required to avoid collisions. Crashes involve any contact with fixed or 
moving objects that could lead to kinetic energy dissipation. The study considers various 
human factors, including driving errors, violations, measures of driving instability, and 
duration of distraction. The driving error and violation coding relies on the driver's behavior 
and secondary task variables, which indicate their potential contribution to SCEs. Various 
indices, such as the CV of speed, deceleration, acceleration, and jerk, are computed to 
assess driving instability. Acceleration/deceleration represents the first derivative of travel 
speed, while jerk corresponds to the second derivative. Negative jerk indicates the derivative 
of deceleration, while positive jerk relates to the second derivative of travel speed during 
acceleration. The duration of distraction is determined by calculating the difference between 
the secondary task's end time and start time, as provided in the SHRP2 NDS data for each 
specific secondary task. The study aims to bridge research gaps by analyzing both statistical 
models and ML methods to predict SCEs using the SHRP2 NDS data. By comparing the out-
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of-sample prediction accuracy of different models and conducting dominance analysis, the 
study seeks to determine the importance of variables in predicting SCEs. The ML methods 
employed include KNN, NB, and GBT classification techniques, selected for their promising 
prediction performance and cost-effectiveness. The study's unique approach aims to 
enhance understanding of the relationship between pre-crash driving behavior, performance, 
and SCEs while aiding the selection of accurate prediction models for real-time applications.  
 

3. Findings 
The data set of 9,237 observations was randomly divided into a training sample (6,466 

observations) and a test sample (2,771 observations) with a 70:30 ratio. Descriptive statistics 
in Table 14 show that baselines have a significantly lower mean CV of speed, deceleration, 
and negative jerk compared to near-crashes and crashes. For example, the mean CV of 
speed is 0.142 in baselines, significantly lower than in near-crashes (0.556) and crashes 
(0.642). The mean duration of distraction is significantly higher in crashes (3.814 seconds) 
and near-crashes (3.333 seconds) compared to baselines (1.745 seconds). Regarding 
driving errors and violations, baseline drivers, who were not involved in any SCEs, still made 
around 10% of errors and violations that could lead to SCEs. Subject drivers committed errors 
and violations in 61.26% and 92.74% of near-crashes and crashes, respectively. 
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Table 14: Descriptive Statistics of Explanatory Variables 
Explanatory 
Variables 

Baselines (N = 5,195) Near-Crashes (N = 844) Crashes (N = 427) 
µ SD Min Max µ 

 
SD Min Max µ 

 
SD Min Max 

Measures of Volatility 
   CV of Speed 0.14 0.16 0.001 1.92 0.55 0.42 0.02 3.04 0.64 0.38 0.01 2.42 
   CV of 
Deceleration 

0.75 0.23 0.000 2.11 1.24 0.40 0.17 2.66 1.04 0.35 0.00 2.58 

   CV of Negative 
Jerk 

0.79 0.23 0.000 2.78 1.29 0.45 0.48 3.00 1.07 0.41 0.41 2.77 

  
Secondary Task 
Duration 
(seconds) 

1.74 2.14 0.000 8.96 3.33 3.88 0.00 15.68 3.81 4.18 0.00 18.3 

Mean Travel 
Speed (miles per 
hour) 

17.7 8.2 0.002 40.9 11.5 7.44 0.16 42.7 8.20 5.99 0.15 34.4 

 Frequency % Frequency % Frequency % 

Driving Errors   
   No error 4,676 90.01 327 38.74 31 7.26 
   Recognition 
Error 

13 0.25 279 33.06 171 40.05 

   Decision Error 138 2.66 120 14.22 144 33.72 
   Performance 
Error 

4 0.08 7 0.83 29 6.79 

   Violation 297 5.72 89 10.55 39 9.13 
   Physical 
Condition-related 
Error 

63 1.21 17 2.01 7 1.64 

   Experience or 
Exposure Error 

4 0.08 5 0.59 6 1.41 

Intersection Influence 
   No Intersection 
Influence 

4,229 81.41 267 31.64 176 41.22 

   Interchange 
Influence 

112 2.16 79 9.36 15 3.51 

   Stop Sign or 
Traffic Signal 
Influence 

626 12.05 275 32.58 105 24.59 

   Uncontrolled 
Intersection 
Influence 

104 2 91 10.78 34 7.96 

   Parking Lot or 
Driveway 
Entrance/Exit 

99 1.91 98 11.61 87 20.37 
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   Other 
Intersection 
Influence 

25 0.48 34 4.03 10 2.34 

Roadway 
Environment 

            

   Urban area 
indicator (1/0) 

80 1.54 69 8.18 32 7.49 

   Moderate 
Residential (1/0) 

1,165 22.43 124 14.69 89 20.84 

Note: µ: Mean; SD: Standard Deviation 
 

The results of the ordered Probit model presented in Table 15 indicate that an increase in 
the CV of speed, CV of deceleration, and CV of negative jerk leads to a higher chance of a 
crash by 5.17%, 5.98%, and 1.16%, respectively. These findings suggest that drivers with 
more volatile driving behaviors are at a greater risk of crashes. Similar trends are observed 
for near-crashes. The model also highlights the significance of driving errors and violations 
in increasing the likelihood of SCEs. Performance errors have the highest impact, increasing 
crash risk by 13.75%, followed by decision errors (10.09%) and recognition errors (9.08%). 
The duration of distraction contributes to crash risk, with a 0.17% increase for each unit 
increase in distraction duration while other variables are held constant. To compare the 
importance of variables between the statistical model and ML methods, a dominance 
analysis (DA) was performed (Table 16). The DA analysis sampled and evaluated 262,143 
different models, considering 18 predictor variables. The results reveal that recognition error, 
CV of speed, decision error, CV of deceleration, and CV of negative jerk are the top five most 
important predictors, explaining 17.5%, 17.4%, 14.4%, 13.8%, and 8.8%, respectively of the 
overall McFadden R2 (0.493). These findings indicate that approximately 72% (0.354 out of 
0.493) of the McFadden R2 is accounted for by these top five predictor variables, all of which 
relate to human factors. Comparing the predictive performance of the statistical model and 
ML methods reveals that the GBT classifier outperforms the others (Table 17). The GBT 
classifier accurately predicts the event outcome for 91.23% of observations in the test 
sample, demonstrating higher prediction accuracy than the other models. It also exhibits the 
highest precision, recall, and F1 score for crashes and near-crashes in the test sample. 
Consequently, the GBT classifier is the most accurate method for predicting SCEs using the 
SHRP2 NDS data. 
 

The key insights from the GBT classifier highlight the top five most important features for 
predicting SCEs: CV of speed, CV of deceleration, duration of distraction, recognition errors, 
and CV of a negative vehicular jerk, shown in Figure 8. These findings align with the earlier 
dominance analysis and emphasize human factors' significance in predicting SCEs. 
Additionally, both the ordered Probit model and GBT classifier identify driver behavior and 
performance as the most influential predictor variables. The intersection influence and 
roadway variables are less important in predicting SCEs using the SHRP2 NDS data. 
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Table 15: Estimation Results of the Ordered Probit Model 
Key Explanatory Variables Coeff t-stats Chance in % (Marginal 

Effects*100) 
Measures of Volatility Baseline Near-

Crash 
Crash 

   CV of Speed 0.956 9.97 -11.74 6.57 5.17 
   CV of Deceleration 1.107 13.25 -13.59 7.61 5.98 
   CV of Negative Jerk 0.214 2.76 -2.63 1.47 1.16 
Secondary Task Duration (seconds) 0.032 4.18 -0.39 0.22 0.17 
Mean Travel Speed (miles per hour) -0.022 -4.96 0.26 -0.15 -0.12 
Driving Errors (Base = no driving error) 
   Recognition Error 1.681 22.49 -20.64 11.55 9.08 
   Decision Error 1.867 26.13 -22.93 12.84 10.09 
   Performance Error 2.544 11.91 -31.24 17.49 13.75 
   Violation 1.009 13.29 -12.39 6.94 5.45 
   Physical Condition-related Error 0.978 6.19 -12.01 6.72 5.29 
   Experience or Exposure Error 1.781 5.87 -21.86 12.24 9.62 
Intersection Influence (Base = no intersection influence) 
   Interchange Influence 0.785 7.76 -9.64 5.39 4.24 
   Stop Sign or Traffic Signal Influence 0.247 4.03 -3.03 1.70 1.33 
   Uncontrolled Intersection Influence 0.593 6.38 -7.28 4.07 3.20 
   Parking Lot or Driveway Entrance/Exit 0.755 8.80 -9.27 5.19 4.08 
   Other Intersection Influence 0.560 3.59 -6.87 3.85 3.02 
Roadway Environment 
   Urban area indicator (1/0) 0.319 3.08 -3.92 2.20 1.73 
   Moderate Residential (1/0) -0.203 -3.32 2.50 -1.40 -1.10 
Threshold parameters 
   µ1 2.801 27.92 --- --- --- 
   µ2 4.292 37.42 --- --- --- 
Summary Statistics 
   N 6,464 
   Pseudo R2 0.493 
   Loglikelihood (null) -4013.632 
   Loglikelihood (convergence) -2036.74 
   AIC 4113.479 
   BIC 4248.959 
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Table 16: Importance of Predictors on SCEs: Ordered Probit Regressions 

Explanatory Variables Dominance 
Statistic 

Standardized 
Dominance Statistic 

Ranking 

Measures of Volatility 
   CV of Speed 0.086 0.174 2 
   CV of Deceleration 0.068 0.138 4 
   CV of Negative Jerk 0.043 0.088 5 
Secondary Task Duration (seconds) 0.017 0.034 8 
Mean Travel Speed (miles per hour) 0.040 0.081 6 
Driving Errors (Base = no driving error) 
   Recognition Error 0.086 0.175 1 
   Decision Error 0.071 0.144 3 
   Performance Error 0.016 0.033 9 
   Violation 0.011 0.022 10 
   Physical Condition-related Error 0.002 0.004 18 
   Experience or Exposure Error 0.003 0.006 15 
Intersection Influence (Base = no intersection influence) 
   Interchange Influence 0.007 0.015 12 
   Stop Sign or Traffic Signal Influence 0.007 0.015 13 
   Uncontrolled Intersection Influence 0.008 0.016 11 
   Parking Lot or Driveway Entrance/Exit 0.019 0.039 7 
   Other Intersection Influence 0.003 0.006 16 
Roadway Environment 
   Urban area indicator (1/0) 0.002 0.004 17 
   Moderate Residential (1/0) 0.004 0.009 14 
Total 0.493 1.000 --- 

 
 

Table 17: Comparing Overall and Class-level Out-of-Sample Prediction Accuracy 
Performance Measure Ordered Probit NB KNN  GBT  
Overall Accuracy (%) 85.75 89.75 88.70 91.23 

Baseline 
Recall (%) 98.32 96.95 97.13 98.27 
Precision (%) 92.07 95.65 94.39 96.21 
F1 Score (%) 95.09 96.29 95.74 97.23 

Near-Crash 
Recall (%) 38.93 68.70 61.83 71.50 
Precision (%) 56.04 71.43 65.50 74.54 
F1 Score (%) 45.95 70.04 63.61 72.99 

Crash 
Recall (%) 34.44 47.78 44.44 48.33 
Precision (%) 41.06 52.12 57.97 58.39 
F1 Score (%) 37.46 49.86 50.31 52.89 
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Figure 8: Feature Importance Plot for the GBT Classifier 

4. Conclusions 
 

This study utilizes the unique SHRP2 NDS data to improve predictive accuracy for SCEs 
by considering driving behavior and performance. Statistical and ML models were employed 
and evaluated using training and test samples. Dominance analysis determines the most 
important predictor variables for SCEs. The Ordered Probit model and the GBT classifier 
identified human factors as the top predictors, including CV of speed, deceleration, duration 
of distraction, recognition errors, and CV of a negative vehicular jerk. The findings indicate 
that leveraging naturalistic data, particularly the mentioned human factors, significantly 
enhances the accuracy of SCE prediction. The cumulative importance of predictor variables 
related to human factors in the GBT classifier is approximately 94%. Out-of-sample prediction 
accuracy showed that the GBT classifier outperformed other models, achieving an overall 
accuracy of 91.23% for event outcomes (baselines, near-crashes, and crashes). This study 
contributes to the field by utilizing comprehensive human factor data and accurate ML 
techniques in real-world driving environments.  
 

Based on the results, the study suggests potential applications to improve roadway safety. 
Proactive ML algorithms can provide real-time warnings to drivers about potential SCE risks 
based on their behaviors and performance. Furthermore, designing automated vehicle 
features, such as braking systems or cruise control, could take control from drivers after 
receiving warnings about hazardous behaviors. 
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Abstract 
Vehicles are generating more data than ever, and this study seeks to find a way to leverage 
rich vehicle kinematics data in combination with driver biometrics and information about the 
surrounding traffic environment to create a tool for reliable estimation of the driver’s state of 
distraction while operating a vehicle. The tests were conducted in a safe and immersive VR 
environment where participants driving a simulated vehicle (using a head-mounted display 
and natural controls, such as accelerator, brake pedals, and steering wheel) were visually 
distracted by an increasingly complex task. The visual distraction was meant to emulate the 
use of cell phones or operating a touchscreen interface and was achieved by having the 
driver repeatedly find the randomized location of a differently oriented arrow in a grid of 
otherwise similarly directed arrows. Environmental data (such as the relative distance and 
the relative speed of traffic around the subject vehicle, deviation from the lane centerline), 
vehicle kinematics data (such as speed, acceleration, steering input, accelerator, and brake 
effort), as well as driver-biometric data (such as the gaze direction, pulse rate), were collected 
in real-time and synchronized. This combined time-series data was then used to train a 
multivariate time-series feature extractor (WEASEL+MUSE) and a logistic regression 
classifier. The relative importance of the features in the dataset was examined by permuting 
through and quantifying the classification accuracy of combinations of features. Most 
importantly, the data shows that combining the different modalities can give higher predictive 
accuracy than when using any modality. 

 

1. Introduction 
Cognitive issues like stress, inattentiveness, distraction, fatigue, and sleep deprivation are 

the major contributors to crashes (NHTSA, 2017) and are a prime area of R&D among fleet 
operators and long-haul trucking companies. Moreover, it is argued that there is no pathway 
to full autonomy in driving without a robust and infallible driver monitoring system which has 
led Tesla, Cadillac, and open-source platforms such as the Comma.ai to develop driver 
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monitoring systems to complement their Autopilot and OpenDrive systems. Impaired driving 
is a key contributing factor leading to 10,497 fatalities (28% of all transportation crash-related 
deaths) in 2016 (FHWA, 2018). Various studies have investigated the impacts of driver error 
and behavior on the outcome of a crash, such as distracted driving (Neyens and Boyle, 2008; 
Donmez and Liu, 2015), aggressive driving (Paleti et al., 2010; Lambert-Be´langer et al., 
2012), impaired driving (Behnood and Mannering, 2017; Behnood et al., 2014), etc. In the 
United States, aggressive driving (speeding, failure to yield the right of way, and reckless 
driving) contributes to more than 50 percent of fatal crashes (AA Association, 2009). The 
impact of distracted and aggressive driving on driving stability performance is also explored 
by different studies (Horberry et al., 2006; Beede and Kass, 2006; Stavrinos et al., 2013; 
Hamdar et al., 2008). Various measurements are incorporated to explain the stability 
performance of driving, such as speed (Ghasemzadeh et al., 2018), speed variability 
(Rakauskas et al., 2004), lane position maintenance (Rakauskas et al., 2004), lateral control 
(Beede and Kass, 2006), time to collision (Papazikou et al., 2017). A validated model for 
driver behavior can positively benefit the automotive sector. As autonomous driving looms 
ever ahead, there must be a way to quantify the driver's participation in the event of and to 
prevent an accident. A driver behavior model can be a valuable resource to impose a more 
honest discourse in the upcoming era of human-machine fusion. By integrating and fusing 
multiple data sources such as driver biometrics, vehicle kinematics, and environmental 
conditions in real-time, this paper aims to identify the relative importance of data modality 
when classifying whether the driver is distracted or not. In the event the vehicle detects the 
driver is distracted, it would be able to take control of the vehicle and bring it to a stop in a 
safe manner. This allows the driver and the machine to operate synchronously and provides 
a trade-off between vehicle automation and unsafe driver behavior. 

Researchers have made significant progress in developing algorithms and models that 
analyze driver behavior using various data sources. Some approaches focus on analyzing 
vehicle kinematics, such as acceleration, deceleration, and steering behavior, to detect 
driving patterns indicative of distraction or impairment (Ali et al., 2021; Yarlagadda et al., 
2021). Other methods involve analyzing driver biometrics, such as eye movement, facial 
expressions, and physiological measures (e.g., heart rate, skin conductance) to assess the 
driver’s cognitive and emotional state (Dang et al., 2021; Aghaei et al., 2016). In addition, 
studies have considered the surrounding traffic environment to determine the impact of 
external factors on driving performance (Liu et al., 2022; Kashevnik et al., 2021). 

However, most of these studies have focused on analyzing individual data sources in 
isolation, potentially missing the opportunity to exploit the complementary information in 
different data modalities. Integrating and fusing multiple data sources can provide a more 
comprehensive and accurate representation of the driver’s state and facilitate the 
development of more effective safety enhancement systems (Wang et al., 2020; Yang et al., 
2021a). Additionally, understanding the relative importance of different data modalities can 
help optimize the design of these systems, ensuring that they are effective while minimizing 
the burden on the driver and the vehicle. 

In this paper, we present a unified analysis of driver, vehicle, and traffic volatilities in a 
simulated driving environment, which allows for the safe and controlled study of the impacts 
of visual distraction on driving performance. Our approach involves collecting real-time, 
synchronized data from multiple sources, including driver biometrics, vehicle kinematics, and 
environmental conditions. We then employ a multivariate time series feature extractor 
(WEASEL+MUSE) and a logistic regression classifier to analyze the combined data and 
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estimate the driver’s state of distraction. By permuting through and quantifying the 
classification accuracy of combinations of features, we explore the relative importance of 
different data modalities in predicting driver distraction. 

Our results demonstrate that combining multiple data sources can achieve a higher 
predictive accuracy can be achieved than when using any single modality alone. This finding 
has significant implications for the design of future driver monitoring and safety enhancement 
systems, as it suggests that a more comprehensive and effective approach may involve the 
integration of multiple data modalities. Ultimately, our work contributes to the growing body 
of research aimed at improving road safety by better understanding and detecting driver 
impairment and distraction, paving the way for the development of more advanced and 
effective systems that can help reduce the risk of accidents and save lives. 
 

2. Related Works 
Research in distracted driving is diverse, and with the rising popularity of self-driving 

cars, it has never been a more important topic. Many use simulators to safely conduct 
the research (Ahangari, 2019). The use of VR to provide a safe environment for testing 
driver distraction while preserving realism has also been explored (Lin et al., 2008). There 
is also a distinction in the type of distraction applied: manual, visual, or cognitive. Different 
types of distractions manifest themselves in varied ways, namely different changes in 
speed and steering volatility (Engstrom, 2005). The sensors used for this study can each 
individually be found in many studies (Kashevnik et al., 2021), but none have 
conglomerated the array of sensors that we have. Many papers use EEG data as a 
biometric indicator (Fan et al., 2021), which we did not explore due to logistical 
complications with a VR headset. One paper used gaze zone estimation to infer what 
the driver was looking at (Yang et al., 2021b), which accomplishes the same thing our 
virtual processing does. Similarly, another team used gaze data to predict how 
situationally aware the driver was (Zhou et al., 2022). More generally, ML has shown 
strong performance in classifying time series data (Fawaz et al., 2019). 

In recent years, researchers have investigated the role of smartphones as a major 
source of distraction in driving. Some studies have focused on understanding the effects 
of smartphone while driving (Khan et al., 2021), on driving performance, and crash risk 
(Gliklich et al., 2016). Others have examined the potential of using smartphones 
themselves as a source of data for detecting distracted driving behavior, exploiting the 
embedded sensors, such as accelerometers and gyroscopes, to capture information 
about the vehicle’s motion and the driver’s interaction with the phone (Ahmed et al., 
2018). Another line of research has focused on the development ADAS that can 
support drivers in maintaining safe and attentive driving behavior. These systems often 
rely on various sensing technologies, such as cameras, lidars, and radars to monitor 
the vehicle’s surroundings and provide real-time feedback or intervention to help 
drivers avoid potential hazards (Ziebinski et al., 2017). Some studies have explored the 
potential of integrating ADAS with driver monitoring systems to create more holistic 
solutions for detecting and mitigating the effects of driver distraction and impairment 
(Simic´ et al., 2016). 

Our work builds on this rich body of research by investigating the potential of combining 
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multiple data sources, including driver biometrics, vehicle kinematics, and environmental 
conditions, to create a more comprehensive and accurate assessment of driver 
distraction. By collecting data across 3 different modalities, we could quantify the relative 
importance of features in classifying the driver’s state of attention and establish that 
predictive accuracy increases when using all modalities. We also investigated sensor 
importance within each modality, a depth of analysis not missing so far, specifically with 
the variety of sensor features analyzed in this paper (Koay et al., 2022).  

 

              
                                    (a)                                                                                       (b) 

Figure A-1: (a) Driving environment for participants, (b) Driving simulator hardware consisting of 
aluminum frame, steering, brake and accelerator setup and HTC Vive Pro head-mounted display. 

 

3. Methods 

3.1 Virtual Environment 
The VR simulation was designed in Unreal Engine 4 with a two-way road around an 

island as the setting for data collection. The environment was populated with other 
vehicles controlled with logic to simulate realistic driving behavior. Drivers were spawned 
in the simulation on the road shown on the right side of Figure 1a. The participants were 
asked to turn right onto the road as traffic flowed in both directions. Once established on 
the roadway with normal driving behavior, data collection was started.  

The other cars populating the simulation were controlled by an AI controller that 
operated based on distances to the cars in front of them. This was designed to emulate 
realistic traffic behavior where the AI-controlled cars would rubber band when traffic was 
congested. This also required the participants to be vigilant about braking or risk rear-
ending the car in front of them. For the conducted experiments, we omitted all trials 
where the participant crashed or deviated from the designed procedure. This was done 
so that we could create a dataset containing distraction predictors without requiring a 
negative outcome, such as a crash, to be a strongly correlated predictor. 

1) Biometric Sensors: The seat from a real car and a steering wheel and pedals 
designed for gaming were attached to aluminum framing to create the custom simulator. 
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An HTC VIVE Pro VR headset was used to immerse the driver in the environment and 
elicit more natural reactions to the traffic and distraction stimuli. This headset was 
selected for its ability to track pupil position and eye openness. The raw pupil position 
and eye openness data were augmented with a derived feature related to the driver’s 
awareness of the environment, which we call “objects.” Objects were a categorical 
feature describing what the driver was looking at out of a small subset of tracked objects, 
such as the front windshield or the source of visual distraction. This was accomplished 
by using the pupil position sensors inside of Unreal Engine 4 to create a ray trace from 
the in-game camera origin to a fixed distance away in the direction of the driver’s gaze 
and calculating possible intersections of the gaze ray with each tracked object. 4 possible 
focal points (front windshield, arrows, other, and none) were tracked with ”other” and 
”none,” corresponding to when the driver was looking at an un-tracked object or when 
the sensor could not locate the driver’s pupil with confidence. 

2) Kinematic Sensors: We also tracked the car’s speed and acceleration as scalars in 
addition to controller inputs such as steering angle, throttle activation, and brake 
activation. The core additional complexity for multivariate time series data is that 
discriminatory features may be in the interactions between dimensions, not just in the 
autocorrelation within an individual series. Features like throttle and brake have a high 
correlation to features like acceleration. The implications of this inter-modal correlation 
are discussed using a “Leave-one-out” strategy discussed in the Results section. 

3) Environmental Sensors: Environmental sensors encompass all data collected from 
outside the vehicle within the simulation. This includes metrics such as distances to cars 
in front and behind the driver as well as the distance to the center of the lane. 

 
TABLE 1: Feature Aliases, Descriptions, and Units 

Feature Alias Description Units 

Acceleration Vehicle acceleration m/s2 

Speed Vehicle speed m/s 

Steering Steering wheel activation degrees 

Throttle Throttle pedal activation % 

Brake Brake pedal activation % 

Distance to Car in Front Distance to the car in front m 

Distance to Car Behind Distance to the car behind m 

Distance to Center Line Distance from left wheel to centerline m 

Openness How open is eye % 

PupilX Left pupil X-coordinate - 

PupilY Left pupil Y-coordinate - 

Front (Gaze) Is the driver looking through the front 
windshield 

Binary 

Arrows (Gaze) Is the driver looking at arrows Binary 

Other (Gaze) Is the driver looking elsewhere Binary 

Undetected (Gaze) Is the driver’s eye undetected Binary 
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4) Data Collection: Because of the multi-modal nature of the time series data collected 
from different sensors, some physical and some virtual, it was important to synchronize 
the data streams. This was accomplished with Lab Streaming Layer, an open-source 
networked middleware ecosystem to stream, receive, synchronize, and record data 
streams acquired from diverse sensor hardware. The setup allowed for virtual sensors to 
be accessed in Unreal Engine 4 and physical sensors such as galvanic skin response 
sensors and blood pressure (not used in this work). The sensors and UE4 simulation 
communicated with a local server that unified the data into an extensible data format 
(XDF) file, which was later read using PyXDF package in Python. 

 
B. Distraction 

The causes of driver distraction are diverse and pose large risk factors—more than half 
of the crashes that involve inattention were caused by driver distraction (Ranney et al., 
2001; Regan et al., 2008). Thirteen types of potentially distracting activities listed in Stutts 
et al., 2001 include eating or drinking, looking outside of the vehicle, talking or listening 
on a cell phone, dialing a cell phone, using in-vehicle-technologies, and so on. Because 
the distracting activities take many forms, the NHTSA classifies distractions into the 
following four categories from the viewpoint of the driver’s functionality (Ranney et al., 
2001): 

• Visual distraction, e.g., looking away from the roadway, 
• Biomechanical distraction, e.g., manually adjusting the radio volume, 
• Cognitive distraction, e.g., being lost in thought, and 
• Auditory distraction, e.g., responding to a ringing mobile phone. 
In this work, we have followed precedence in literature to design and perform 

experiments designed for visually distract the drivers while asking them to drive 
realistically. Using a head-mounted display to simulate an environment limits the ability 
to accurately model external distractions, such as using a cell phone or interacting with 
the radio or air conditioning. To provide a visual distraction, analogous to visual 
distractions in daily life but quantifiable, a grid of arrows was positioned on a virtual screen 
where the entertainment center would normally be in regular vehicles. The participants 
were asked to name the grid position of the arrow facing differently from the others, and 
after each answer, the challenge was repeated with a different random arrangement of 
arrows. In total, we tested 5 different grid sizes starting from 4x4 grids all the way up to 
8x8 grids. The motivation was to create an easily scalable, bias-resistant metric for 
inducing a particular level of visual distraction. 
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                                   (a)                                                                                    (b) 

Figure A-2: (a) View from the driver’s perspective inside the vehicle, (b) Sample distraction grid - the 
driver is instructed to identify the location (row 3, column 2 in this case) of the “different” arrow 

 
The assumption was that as the grid size increases, the reaction time of drivers to 

identify the grid position of the indicated arrow will increase. For our purpose, we define 
the entire time the participant is actively identifying where the arrows are as distracted, 
even though the driver’s gaze and attention moves back and forth from the distraction 
task to the driving task. The assumption follows our informal categorization of a driver as 
distracted until any activity (visual, cognitive, or auditory) competes with the task of 
controlling the vehicle. 

 

4. Procedure 
A total of 26 drivers (14 male and 12 female) participated in the study. All the drivers 

were above 18 years and had a valid U.S. driving license. Every participant in the study 
was given a prompt explaining that they were to be distracted and asked to drive along a 
road with increasingly demanding distractions (based on the arrow grid size). Because 
of uncontrollable variability in factors like the participant’s driving style and familiarity 
with VR, some participants required multiple attempts at submitting a regimented 
dataset. If a participant crashed or deviated from the verbal instruction, the sample was 
discarded, and the participant was retested. The step-by-step protocol followed during 
these tests is as follows: 

• The participants were asked to acquaint themselves with the environment and 
controls by driving on the road until they felt comfortable. (several minutes) 

• The participant was asked to bring the vehicle to a stop, and their vehicle position 
was reset (teleported) to the starting point. 

• The participants were instructed to turn right onto the road and drive without 
distraction. (≈ 30 seconds) 

• Stop and reset the position. 
• The participants were instructed to turn right onto the road and drive in the 

presence of a specific level of distraction. (≈ 15 − 30 seconds) 
• Stop and reset the position. 
• The participants were instructed to turn right onto the road and drive with a more 

intensive distraction. (≈ 15 − 30 seconds) 
• After these steps, the data collection was stopped and saved to a file. 
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The dataset consists of 15 features, listed in Table 1, each collected from a specific 
distraction condition - undistracted or distracted with a 4 × 4, 5 × 5, 6 × 6 or 8 × 8 grid 
of arrows. Often during the analysis, data corresponding to 4 × 4 and 5 × 5 grids of 
arrows are grouped together as “small distraction,” while the datasets pertaining to the 6 
× 6 and 8 × 8 grids of arrows are grouped together as “large distraction.” The multivariate 
time series data corresponding to these 16 features are then analyzed with a multivariate 
time series feature extractor called WEASEL+MUSE. Both binary classification 
(distracted-vs-undistracted) and ternary classification (distracted-vs-small-vs-large 
distraction) accuracy are studied and reported.  
A. Classifier Model 

A multivariate time series feature extractor was trained using WEASEL + MUSE (Patrick 
Schafer, 2018) along with a logistic regression classifier. The model works under the bag-
of-words paradigm, finding patterns within the data with a sliding window and categorizing 
each pattern with a letter. WEASEL-MUSE takes the derivatives of each input feature 
which is windowed, transformed to the frequency domain, and binned using a bag-of-
words approach. The output of WEASEL + MUSE is a matrix of size n by m where n 
represents the number of samples and m represents the output dimension. Effectively, 
the model outputs a matrix of feature vectors that can be efficiently classified with a 
linear classifier. The outputs of WEASEL + MUSE have no physical signal counterparts, 
as each output feature is a linear combination of input features that maximizes the 
variance of the input features. 

 
B. Feature Importance 

Because WEASEL+MUSE works as a time series feature extractor, the model outputs 
make it difficult to discern the relative importance of features. To work around this, we 
use a method of feature permutation, training the model on multiple subsets of features 
to determine which has the largest impact on accuracy. We first mask each feature in the 
input and compare the resultant accuracy on the dataset to the baseline accuracy with 
all features. This is repeated for each slice of the dataset (4x4 & 5x5, 6x6 & 8x8, and 
a combined dataset). We also test a pairwise feature masking where each possible 
combination of 2 features is masked, the model is trained, and the resultant difference in 
accuracy from the baseline with all features is recorded. This was done to see if the 
interplay between two features was more important for model accuracy rather than one 
single feature being most important. It was also considered because of the low variance 
between some features, such as throttle and acceleration, meaning that masking one 
removes very little information in the feature space. 

5. Results 
Classification is done on the data with two distinct sets of labels. One set of labels formats 
the dataset into a binary classification task where participants are classified as either 
distracted or undistracted without differentiating between the level of distraction. We also 
consider a second set of labels where we divide participants into 3 categories: 
undistracted, distracted, and very distracted. On the binary classification task, we achieve 
93% accuracy; on the ternary classification task, we achieve 85% accuracy. 

Importantly, the distributions of the data collected are distinct across all different levels 
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of distraction, indicating that more challenging distraction induces observable differences 
in the driver’s biometrics and control over the vehicle. 

This fact can be seen in Figure 3. As the grid size of the distraction increases, the time 
spent looking at the arrows increases while the time spent looking through the front 
windshield (front) decreases. The label “Other” corresponds to the driver looking at an 
untracked object (such as a side window or the rear-view mirror or in transit between the 
windshield and the arrows), and “None” corresponds to the HTC Vive Pro sensor not 
detecting the driver’s gaze. Some drivers would look down at the grid of arrows on the 
center console with their eyes rather than moving their heads away from the road, 
which caused the sensors not to be able to detect a major portion of  their eyes. This 
explains the increase in the “None” category with increasing distraction. 

 

 
Figure A-3: Object focal point distribution across 5 levels of 

distraction 
 
We also plot the vertical pupil position distributions with histograms and violin plots to 

observe how distraction level affects driver behavior from an empirical visual inspection of 
the graphs. In Fig 4a and Fig. 4b, as the distraction level increases, the pupils of drivers 
behave in vastly different ways. The mean pupil height is indistinguishable from the 
undistracted case for medium-level distraction. In contrast, in the case of the highest level of 
distraction, drivers have their pupils positioned downward far more, indicating there is some 
consistent behavior across drivers with varying levels of distraction. This may also point to 
the important fact that there is a threshold in the complexity of the distraction-inducing task 
the drivers are trying to accomplish. If the task is too complex, the drivers commit too much 
of their visual bandwidth to the distraction. 
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                         (a)                                                                          (b) 

Figure A-4: (a) Histogram of pupil vertical position, stratified by distraction level, (b) Violin plot of pupil 
vertical position, stratified by distraction level 

We establish feature importance by masking unique pairs of features resulting in 102 
unique pairs. For each masked pair of features, the model is trained on the remaining 
features and the difference in accuracy to the baseline is recorded for each feature in 
the pair. After training and evaluation with all unique masked pairs, we aggregate and 
find the average accuracy when masking a feature in combination with each of the other 
features. For example, the accuracy drop is quite prominent for the “Front (Gaze)” 
category, as seen in both Fig. 5a and Fig. 5b. Fourteen accuracy values are calculated 
by leaving out pairs of features with “Front (Gaze)” being common to each pair of 
features. Each of these 14 accuracy values are then averaged and reported to find the 
relative importance of the feature “Front (Gaze)” when combined with another feature. 
This procedure is then repeated for each feature. It was considered important to train the 
model on pairs of masked features rather than masking individual features to account for 
the interplay between features that influence the model's accuracy. We found tracking 
what the driver was looking at to be the most important feature, which can be attributed 
to the signal's inherent information and the fact that those features are completely 
uncorrelated with any other features, meaning that when masking them, we lose 
significant information. The same could not be said for features that have lower variance 
between them, like acceleration, speed, throttle, brake, etc., where masking only two 
features removes comparatively little information. 
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                           (a)                                                                         (b)                                                                     
Figure A-5: (a) Average classification accuracy when masking a pair of features on a binary classification 
task, (b) Average classification accuracy when masking a pair of features on a ternary classification task 

 
While we only mask features in pairs of 2 due to computational limits, masking more 

features is not expected to drastically change the feature importance measured. A 
smoothing of the graph would be expected as the number of accuracies being averaged 
for each feature would increase dramatically. Notably, the variance of accuracies 
reported before averaging would be expected to increase as there are certain feature 
combinations that remove lots of important information. To observe this effect, we instead 
mask modalities of features as a whole rather than attempting to mask each possible 
group of features, as seen in Fig. 6a and Fig. 6b. Within these plots, we see how 
removing any of the three modalities leads to a significant reduction in classification 
accuracy that is comparable for each modality. This was surprising compared to earlier 
findings when masking only one or two features, indicating that there are non-trivial 
feature interplay dynamics that affect accuracy. Counter to what is seen in masking pairs 
of features, when we mask an entire modality of data, regardless of which modality, the 
accuracies drop significantly more, even when masking modalities containing features 
that seemed unimportant in Fig. 5a and Fig. 5b. This is because the complete removal 
of a modality of data removes information that cannot be recovered otherwise. Said 
another way, the variance within modalities is small, while the variance between 
modalities is large. We also test the unimodal classification accuracy, reporting results in 
Fig. 7a and Fig. 7b. We observe comparable performance when masking only one 
modality, with the exception being biometric features reaching almost the same 
classification accuracy as obtained by using all modalities in the ternary classification 
task. 

While the accuracy differences when masking one modality is slightly different, this 
can be attributed to noise and an effect of a relatively small dataset. The main 
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takeaway, and the hypothesis we formed, is that using all 3 modalities improves 
accuracy when compared to using a subset of these modalities. 

 

     
                                   (a)                                                                               (b) 

Figure A-6: (a) Average classification accuracy when masking features belonging to a modality on binary 
classification task, (b) Average classification accuracy when masking features belonging to a modality on 
ternary classification task 

 

                                    (a)                                                                    (b)                                                                            
Figure A-7: (a) Average classification accuracy when using a single modality on the binary classification 
task, (b) Average classification accuracy when using a single modality on a ternary classification task 

6. Conclusion 
This study has shown the importance of a multi-modal approach to driver monitoring. 

Limitations of the experiment are mainly related to the required use of VR. Extensions of 
this research should observe the changes when collecting more authentic vehicular 
kinematic data. The biometric data proved extremely valuable in classification, but few 
biometric features were chosen for analysis. Further surveys could find more valuable 
biometric features for further use. 

Moreover, the study showcases the potential for developing ADAS that seamlessly 
integrate driver monitoring systems, vehicle kinematics, and environmental data to detect 
and mitigate driver impairment effectively. This comprehensive approach holds promise 
for improving road safety by allowing the vehicle to assume appropriate control when 
the driver is identified as distracted or impaired, subsequently reducing the likelihood of 



 

 

 

 
www.roadsafety.unc.edu A-13 

 

accidents. Future research could expand the dataset and examine supplementary data 
sources and modalities, such as auditory distractions or physiological data, to augment 
the model's predictive accuracy. Furthermore, assessing the real-world applicability of 
the proposed approach through experiments involving actual vehicles and drivers on 
the road under diverse driving conditions and scenarios would be valuable. Integrating 
the proposed approach with other safety features and systems, such as collision 
avoidance systems, lane departure warnings, and adaptive cruise control, could yield a 
comprehensive safety solution for contemporary vehicles. 

This study substantiates the feasibility and advantages of a multi-modal approach 
to driver impairment detection and safety enhancement. By capitalizing on the wealth of 
information available from driver biometrics, vehicle kinematics, and environmental data, 
it is feasible to develop more precise and dependable systems for detecting and mitigating 
driver distraction and impairment. This ultimately contributes to a safer and more efficient 
transportation system, benefiting drivers and society. 
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